SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  SSTEQR computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the implicit QL or QR method.
*  The eigenvectors of a full or band symmetric matrix can also be found
*  if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to
*  tridiagonal form.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'V':  Compute eigenvalues and eigenvectors of the original
*                  symmetric matrix.  On entry, Z must contain the
*                  orthogonal matrix used to reduce the original matrix
*                  to tridiagonal form.
*          = 'I':  Compute eigenvalues and eigenvectors of the
*                  tridiagonal matrix.  Z is initialized to the identity
*                  matrix.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) REAL array, dimension (LDZ, N)
*          On entry, if  COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          eigenvectors are desired, then  LDZ >= max(1,N).
*
*  WORK    (workspace) REAL array, dimension (max(1,2*N-2))
*          If COMPZ = 'N', then WORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm has failed to find all the eigenvalues in
*                a total of 30*N iterations; if INFO = i, then i
*                elements of E have not converged to zero; on exit, D
*                and E contain the elements of a symmetric tridiagonal
*                matrix which is orthogonally similar to the original
*                matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0 )
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 30 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
     $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
     $                   NM1, NMAXIT
      REAL               ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
     $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANST, SLAPY2
      EXTERNAL           LSAME, SLAMCH, SLANST, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAE2, SLAEV2, SLARTG, SLASCL, SLASET, SLASR,
     $                   SLASRT, SSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
     $         N ) ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSTEQR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.EQ.2 )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Determine the unit roundoff and over/underflow thresholds.
*
      EPS = SLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = SLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
*
*     Compute the eigenvalues and eigenvectors of the tridiagonal
*     matrix.
*
      IF( ICOMPZ.EQ.2 )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
      NMAXIT = N*MAXIT
      JTOT = 0
*
*     Determine where the matrix splits and choose QL or QR iteration
*     for each block, according to whether top or bottom diagonal
*     element is smaller.
*
      L1 = 1
      NM1 = N - 1
*
   10 CONTINUE
      IF( L1.GT.N )
     $   GO TO 160
      IF( L1.GT.1 )
     $   E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO )
     $         GO TO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
     $          1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GO TO 30
            END IF
   20    CONTINUE
      END IF
      M = N
*
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L )
     $   GO TO 10
*
*     Scale submatrix in rows and columns L to LEND
*
      ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.EQ.ZERO )
     $   GO TO 10
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
     $                INFO )
      ELSE IF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
     $                INFO )
      END IF
*
*     Choose between QL and QR iteration
*
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      END IF
*
      IF( LEND.GT.L ) THEN
*
*        QL Iteration
*
*        Look for small subdiagonal element.
*
   40    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 50 M = L, LENDM1
               TST = ABS( E( M ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
     $             SAFMIN )GO TO 60
   50       CONTINUE
         END IF
*
         M = LEND
*
   60    CONTINUE
         IF( M.LT.LEND )
     $      E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 80
*
*        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L+1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL SLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
               WORK( L ) = C
               WORK( N-1+L ) = S
               CALL SLASR( 'R', 'V', 'B', N, 2, WORK( L ),
     $                     WORK( N-1+L ), Z( 1, L ), LDZ )
            ELSE
               CALL SLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
            END IF
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND )
     $         GO TO 40
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
         R = SLAPY2( G, ONE )
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         MM1 = M - 1
         DO 70 I = MM1, L, -1
            F = S*E( I )
            B = C*E( I )
            CALL SLARTG( G, F, C, S, R )
            IF( I.NE.M-1 )
     $         E( I+1 ) = R
            G = D( I+1 ) - P
            R = ( D( I )-G )*S + TWO*C*B
            P = S*R
            D( I+1 ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = -S
            END IF
*
   70    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = M - L + 1
            CALL SLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
     $                  Z( 1, L ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( L ) = G
         GO TO 40
*
*        Eigenvalue found.
*
   80    CONTINUE
         D( L ) = P
*
         L = L + 1
         IF( L.LE.LEND )
     $      GO TO 40
         GO TO 140
*
      ELSE
*
*        QR Iteration
*
*        Look for small superdiagonal element.
*
   90    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 100 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
     $             SAFMIN )GO TO 110
  100       CONTINUE
         END IF
*
         M = LEND
*
  110    CONTINUE
         IF( M.GT.LEND )
     $      E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 130
*
*        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L-1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL SLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
               WORK( M ) = C
               WORK( N-1+M ) = S
               CALL SLASR( 'R', 'V', 'F', N, 2, WORK( M ),
     $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
            ELSE
               CALL SLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
            END IF
            D( L-1 ) = RT1
            D( L ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND )
     $         GO TO 90
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
         R = SLAPY2( G, ONE )
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         LM1 = L - 1
         DO 120 I = M, LM1
            F = S*E( I )
            B = C*E( I )
            CALL SLARTG( G, F, C, S, R )
            IF( I.NE.M )
     $         E( I-1 ) = R
            G = D( I ) - P
            R = ( D( I+1 )-G )*S + TWO*C*B
            P = S*R
            D( I ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = S
            END IF
*
  120    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = L - M + 1
            CALL SLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
     $                  Z( 1, M ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( LM1 ) = G
         GO TO 90
*
*        Eigenvalue found.
*
  130    CONTINUE
         D( L ) = P
*
         L = L - 1
         IF( L.GE.LEND )
     $      GO TO 90
         GO TO 140
*
      END IF
*
*     Undo scaling if necessary
*
  140 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      ELSE IF( ISCALE.EQ.2 ) THEN
         CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      END IF
*
*     Check for no convergence to an eigenvalue after a total
*     of N*MAXIT iterations.
*
      IF( JTOT.LT.NMAXIT )
     $   GO TO 10
      DO 150 I = 1, N - 1
         IF( E( I ).NE.ZERO )
     $      INFO = INFO + 1
  150 CONTINUE
      GO TO 190
*
*     Order eigenvalues and eigenvectors.
*
  160 CONTINUE
      IF( ICOMPZ.EQ.0 ) THEN
*
*        Use Quick Sort
*
         CALL SLASRT( 'I', N, D, INFO )
*
      ELSE
*
*        Use Selection Sort to minimize swaps of eigenvectors
*
         DO 180 II = 2, N
            I = II - 1
            K = I
            P = D( I )
            DO 170 J = II, N
               IF( D( J ).LT.P ) THEN
                  K = J
                  P = D( J )
               END IF
  170       CONTINUE
            IF( K.NE.I ) THEN
               D( K ) = D( I )
               D( I ) = P
               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
            END IF
  180    CONTINUE
      END IF
*
  190 CONTINUE
      RETURN
*
*     End of SSTEQR
*
      END