next up previous contents index
Next: Documentation Design and Program Up: Generalized Eigenvalue and Singular Previous: Generalized Nonsymmetric Eigenproblems (GNEP)   Contents   Index


Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an $m \times n$ matrix $A$ and a $p \times n$ matrix $B$ is given by the pair of factorizations

\begin{displaymath}
A = U \Sigma_1 [0,\; R ] Q^T
\;\;\; {\rm and} \;\;\;
B = V \Sigma_2 [0, \; R ] Q^T \;.
\end{displaymath}

The matrices in these factorizations have the following properties:
$\Sigma_1$ and $\Sigma_2$ have the following detailed structures, depending on whether $m-r \geq 0$ or $m-r < 0$. In the first case, $m-r \geq 0$, then

\begin{displaymath}
\Sigma_1 = \bordermatrix{ & k & l \cr
\hfill k & I & 0 \cr
...
...rmatrix{ & k & l \cr
\hfill l & 0 & S \cr
p-l & 0 & 0 } \; .
\end{displaymath}

Here $l$ is the rank of $B$, $k=r-l$, $C$ and $S$ are diagonal matrices satisfying $C^2 + S^2 = I$, and $S$ is nonsingular. We may also identify $\alpha_1 = \cdots = \alpha_k = 1$, $\alpha_{k+i} = c_{ii}$ for $i=1, \ldots , l$, $\beta_1 = \cdots = \beta_k = 0$, and $\beta_{k+i} = s_{ii}$ for $i=1, \ldots , l$. Thus, the first $k$ generalized singular values $\alpha_1 / \beta_1 , \ldots , \alpha_k / \beta_k$ are infinite, and the remaining $l$ generalized singular values are finite.
In the second case, when $m-r < 0$,

\begin{displaymath}
\Sigma_1 = \bordermatrix{ & k & m-k & k+l-m \cr
\hfill k & I & 0 & 0 \cr
m-k & 0 & C & 0 }
\end{displaymath}

and

\begin{displaymath}
\Sigma_2 = \bordermatrix{ & k & m-k & k+l-m \cr
\hfill m-k ...
... & 0 \cr
k+l-m & 0 & 0 & I \cr
\hfill p-l & 0 & 0 & 0 } \; .
\end{displaymath}

Again, $l$ is the rank of $B$, $k=r-l$, $C$ and $S$ are diagonal matrices satisfying $C^2 + S^2 = I$, $S$ is nonsingular, and we may identify $\alpha_1 = \cdots = \alpha_k = 1$, $\alpha_{k+i} = c_{ii}$ for $i=1, \ldots , m-k$, $\alpha_{m+1} = \cdots = \alpha_r = 0$, $\beta_1 = \cdots = \beta_k = 0$, $\beta_{k+i} = s_{ii}$ for $i=1, \ldots , m-k$, and $\beta_{m+1} = \cdots = \beta_r = 1$. Thus, the first $k$ generalized singular values $\alpha_1 / \beta_1 , \ldots , \alpha_k / \beta_k$ are infinite, and the remaining $l$ generalized singular values are finite.

Table 2.6: Driver routines for generalized eigenvalue and singular value problems
Type of Function and storage scheme Real/complex Complex
problem     Hermitian
GSEP simple driver LA_SYGV (real only) LA_HEGV
  divide and conquer driver LA_SYGVD (real only) LA_HEGVD
  expert driver LA_SYGVX (real only) LA_HEGVX
  simple driver (packed storage) LA_SPGV (real only) LA_HPGV
  divide and conquer driver LA_SPGVD (real only) LA_HPGVD
  expert driver LA_SPGVX (real only) LA_HPGVX
  simple driver (band matrices) LA_SBGV (real only) LA_HBGV
  divide and conquer driver LA_SBGVD (real only) LA_HBGVD
  expert driver LA_SBGVX (real only) LA_HBGVX
GNEP simple driver for Schur factorization LA_GGES  
  expert driver for Schur factorization LA_GGESX  
  simple driver for eigenvalues/vectors LA_GGEV  
  expert driver for eigenvalues/vectors LA_GGEVX  
GSVD singular values/vectors LA_GGSVD  


Here are some important special cases of the generalized singular value decomposition. First, if $B$ is square and nonsingular, then $r=n$ and the generalized singular value decomposition of $A$ and $B$ is equivalent to the singular value decomposition of $AB^{-1}$, where the singular values of $AB^{-1}$ are equal to the generalized singular values of the pair $A$, $B$:

\begin{displaymath}
AB^{-1} = (U \Sigma_1 R Q^T)(V \Sigma_2 R Q^T)^{-1} =
U ( \Sigma_1 \Sigma_2^{-1} ) V^T \; \; .
\end{displaymath}

Second, if the columns of $(A^T \; B^T)^T$ are orthonormal, then $r=n$, $R=I$ and the generalized singular value decomposition of $A$ and $B$ is equivalent to the CS (Cosine-Sine) decomposition of $(A^T \; B^T)^T$ [20]:

\begin{displaymath}
\left( \begin{array}{c} A \\ B \end{array} \right) = \left( ...
...array}{c} \Sigma_1 \\ \Sigma_2 \end{array} \right) Q^T \; \; .
\end{displaymath}

Third, the generalized eigenvalues and eigenvectors of $A^TA - \lambda B^TB$ can be expressed in terms of the generalized singular value decomposition: Let

\begin{displaymath}
X = Q \left( \begin{array}{cc} I & 0 \\ 0 & R^{-1} \end{array} \right) \; \; .
\end{displaymath}

Then

\begin{displaymath}
X^T A^T A X = \left( \begin{array}{cc}
0 & 0 \\
0 & \Sigm...
...{cc}
0 & 0 \\
0 & \Sigma^T_2 \Sigma_2
\end{array} \right).
\end{displaymath}

Therefore, the columns of $X$ are the eigenvectors of $A^TA - \lambda B^TB$, and the ``nontrivial'' eigenvalues are the squares of the generalized singular values (see also section 2.2.5.1). ``Trivial'' eigenvalues are those corresponding to the leading $n-r$ columns of $X$, which span the common null space of $A^T A$ and $B^T B$. The ``trivial eigenvalues'' are not well defined2.1.
A single driver routine LA_GGSVD computes the generalized singular value decomposition of $A$ and $B$ (see Table 2.6). The method is based on the method described in [33,2,3].


next up previous contents index
Next: Documentation Design and Program Up: Generalized Eigenvalue and Singular Previous: Generalized Nonsymmetric Eigenproblems (GNEP)   Contents   Index
Susan Blackford 2001-08-19