
ELSEVIER Parallel Computing 210995) 1189-1211 

PARALLEL 
COMPUTING 

A parallel algorithm for the reduction of a nonsymmetric 
matrix to block upper-Hessenberg form * 

Michael W. Berry a, Jack J. Dongarra a,bj *, Youngbae Kim a 

a Department of Computer Science, The University of Tennessee, Knoxville, TN 379961301, USA 
b Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8083, USA 

Received 13 January 1994; revised 21 May 1994,4 January 1995 

Abstract 

In this paper, we present an algorithm for the reduction to block upper-Hessenberg form 
which can be used to solve the nonsymmetric eigenvalue problem on message-passing 
multicomputers. On such multicomputers, a nonsymmetric matrix can be distributed across 
processing nodes logically configured into a two-dimensional mesh using the block-cyclic 
data distribution. Based on the matrix partitioning and mapping, the algorithm employs 
both Householder reflectors and Givens rotations within each reduction step. 
We analyze the arithmetic and communication complexities and describe the implementa- 
tion details of the algorithm on message-passing multicomputers. We discuss two different 
implementations - synchronous and asynchronous - and present performance results on 
the Intel iPSC/860 and DELTA. We conclude with an evaluation of the algorithm’s 
communication cost, and suggest areas for further improvement. 

Keywords: Linear algebra; Nonsymmetric eigenvalue problem; Hessenberg form; Dis- 
tributed-memory multiprocessors 

1. Introduction 

We present an algorithm for reducing an IZ x n nonsymmetric matrix to block 
upper-Hessenberg form in preparation for solving the nonsymmetric eigenvalue 

* This work is funded in part by the Applied Mathematical Sciences subprogram of the Office of 
Energy Research, U.S. Department of Energy, under Contract DE-AC05840R21400, by the Defense 
Advanced Research Projects Agency under contract DAALO3-91-C-0047, administered by the Army 
Research Office, and by the National Science Foundation Science and Technology Center Cooperative 
Agreement No. CCR-8809615. 

* Corresponding author. Email: dongarra@cs.utk.edu 

0167-8191/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 
SSDI 0167-8191(95)00015-l 



1190 M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 

problem using orthogonal transformations on message-passing multicomputers. On 
sequential machines, similarity transformations are typically used to reduce an 
n x n nonsymmetric matrix A to upper-Hessenberg form so that the QR algorithm 
can be applied to the IZ x n upper-Hessenberg matrix H and thereby compute the 
eigenvalues of A. Two types of similarity transformations are available for the 
reduction. The first type uses orthogonal or unitary factorizations based on 
reflectors or rotations, and the second type uses nonorthogonal or nonunitary 
factorization based on Gaussian elimination. Although the first type costs twice as 
much as the second type, orthogonal or unitary transformations are more com- 
monly used because they guarantee stability. 

The reduction of an n X n real matrix to upper-Hessenberg form using orthogo- 
nal similarity transformations is formalized as 

H = Q=AQ = Qf-, . . . Q,‘Q;AQ,Q,. . . Qn_2, 

where A is an n X n real nonsymmetric matrix, Q is an orthogonal matrix and 
Q’Q = I, and H is an upper-Hessenberg matrix. We note that Q is a product of 
the n - 2 orthogonal matrices (St, Q2,. . . , Qn__* computed through the of - 2 steps 
of an orthogonal factorization. 

For a block version of the reduction to block upper-Hessenberg form on 
sequential machines, the n X n matrix A can be partitioned into N x N blocks 
with equal block size of b 

A= 
41 AI, 

i+i A21 A22 ’ 

where A,, E,!%?~~, A,, EgMn-b), A,, Es4n-bPb, A,, Eg.(“-b)x(n-b) and n = 

bN. 
Suppose that we have computed the QR factorization A,, = (Z,R, and that 

Q, = Z + WIYrr, an orthogonal matrix of the WY form, where W and Y are 
(n - b) X n matrices [91. The block representation of the reduction algorithm is 
then given by 

and Zb is an b X b identity matrix. 
Finally,, after N - 1 block reduction steps, we obtain a block upper-Hessenberg 

matrix, H of the following form 

(HI, H,, . . . . . . H,, 

H,, H22 . . . . . . Hzhl 

+QTAQ= 0 H32 ‘._ . . . HjN 
. . 



M. W Berry et al. /Parallel Computing 21 (1995) 1189-1211 1191 

where each Hij is a d x b dense matrix and Q = Qr . . . Qhr_i with each Qk in WY 
form. Note that Hi+r,i, the subdiagonal blocks of H are upper triangular so that 
the matrix H has lower bandwidth b. In computing the nonsymmetric eigensystem 
associated with A, the original matrix A must also be postmultiplied by the 
orthogonal matrix, Qk, and then perhaps some block version of the Francis 
iteration [9] can be used to find the eigenvalues. This is also a challenging problem 
and the subject of current research. 

Two schemes are available for orthogonal factorizations: Householder reflectors 
and Givens rotations. Householder reflectors involve half the number of arithmetic 
operations as do Givens rotations [9]. On traditional sequential machines, there- 
fore, where the cost of a floating-point operation dominates the cost of a memory 
reference, Householder-based algorithms are generally preferred. Several sequen- 
tial algorithms have been developed for the reduction of a general dense matrix to 
upper-Hessenberg form. For example, one can use D G E H R D from LA PACK [5]. 

Since block methods on high-performance computers improve processing effi- 
ciency by grouping memory references, DGEH R D is implemented using block 
Householder reflectors. 

On a parallel machine where memory access times may dominate flop times, 
Givens algorithms may be preferable. In [4], for example, it was shown that on the 
Denelcor HEP (a shared-memory multiprocessor), Givens algorithms were twice as 
fast as Householder algorithms (see also [2]>. Dongarra and Ostrouchov have also 
developed a parallel algorithm for reducing a matrix to upper-Hessenberg form on 
distributed-memory multiprocessors [3]; the implementation in LA PA C K is dis- 
cussed by Dongarra and van de Geijn in [7]. In 1989, Pothen and Raghavan [ll] 
showed that a hybrid algorithm could take advantage of both low-cost arithmetic 
operations of Householder algorithm and low-cost communication of Givens 
algorithms. 

In this paper, we design and implement a parallel algorithm for message-passing 
multicomputers, in which processors are treated as a logical p x q two-dimen- 
sional mesh regardless of what its actual underlying network topology may be. Our 
approach achieves processing efficiency by partitioning a general dense matrix into 
block submatrices and distributing the blocks among processors in block-cyclic 
fashion to exploit the nature of row-oriented and column-oriented computations. It 
then applies QR factorizations based on Householder reflectors and Givens 
rotations for the blocks below the subdiagonal at each reduction step. 

The remainder of this paper is organized as follows. In Section 2, we discuss our 
parallel algorithm for the reduction to block upper-Hessenberg form. We present a 
communication model for message-passing multicomputers, and discuss matrix 
partitioning and mapping of the data using such a model. In Section 3, two 
different implementations of our parallel algorithm on some message-passing 
multicomputers are presented. Section 4 discusses the arithmetic and communica- 
tion complexities of the algorithm. Section 5 presents the performance results of 
experiments with two implementations on the Intel iPSC/860 hypercube and the 
Intel Touchstone DELTA mesh multicomputers. Finally, Sections 6 and 7 discuss 
the performance results of the algorithm in more details with an evaluation of the 



1192 M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 

algorithm’s communication cost, and suggest areas for enhancing the new parallel 
algorithm. 

2. The parallel algorithm 

In this section, we describe a general communication topology and the details of 
our parallel algorithm. We also show how the original matrix is partitioned and 
mapped onto processors of message-passing multicomputers. The specific details 
of the algorithm are discussed in Section 2.3. 

2.1 Communication topology 

We assume that processing nodes of the message-passing multicomputer can be 
easily configured into a logical two-dimensional mesh, or a processor grid regard- 
less of the underlying network topology. Assume the processor grid has p proces- 
sors in each row and q processors in each column, and that neighboring processors 
in the grid may or may not be physically connected. For example, in hypercube 
architectures, a subcube can be reconfigured into a processor grid, but it has 
different connections between the neighboring processors. Fig. l(a) shows a typical 
processor grid as a two dimensional mesh, and Fig. l(b) shows a 24 subcube 
reconfigured into a 4 X 4 two-dimensional mesh. Note that a ‘0’ represents a 
processing node and that each physical connection is represented by a solid line. 

In our algorithm, each intermediate transformation matrix computed to reduce 
a block must be broadcast to all processors on the corresponding row and column 
to update the remaining blocks of the original matrix at each reduction step. This 
broadcasting strategy totally depends upon the network of the message-passing 
multicomputer, and therefore has a great effect on the performance of our 
algorithm. 

Two general message-passing methods can be used to update the rest of the 
matrix A: one-to-one broadcasting in pipelined fashion and one-to-many broad- 
casting. Fig. 2 shows those broadcasting methods. For convenience, we use Pj,j to 

(a) A mesh-connected processor grid (b) A cube reconfigured into a 4 x 4 mesh 

Fig. 1.4 x 4 two-dimensional meshes. 



M.W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1193 

(a) One-to-many broadcasting Cb) One-to-one broadcasting using a unidirectional ring 

Fig. 2. The communication patterns for broadcasting on a 4 X 4 processor grid. 

denote the processor in the (i, j) position of the processor grid, and Pi, * and P, ,j 
to denote the processors assigned to the ith row and jth column of the grid. In 
one-to-one broadcasting, the processor being reduced first sends a message to the 
next row processor, Pi,j + 1 and then sends it to the processor Pi,j+2, etc. As soon as 
the diagonal processor, Pi,i, receives a message, it sends the message to both the 
next row and column processors. In one-to-many broadcasting, the processor, Pi,j 
being reduced broadcasts a message to the corresponding row and column proces- 
sors, Pi, + and P, ,j simultaneously. Further details of such message-passing meth- 
ods will be discussed in the next section. 

2.2 Matrix partitioning and mapping 

Since message-passing multicomputers typically have no globally-shared mem- 
ory, the data must be distributed among the processing nodes in some way. 
Typically, data is distributed by rows if the computation is row-oriented, and by 
columns if it is column-oriented. For the reduction algorithms using similarity 
transformations, the matrix A must be updated by both premultiplying and 
postmultiplying an intermediate orthogonal matrix at each reduction step. Thus, 
the computations of the algorithm are both row-oriented and column-oriented, 
and hence parallelism of our algorithm stems from the computations along both 
row and column with processors configured into a processor grid. 

In our algorithm, an IZ x it matrix is distributed into processors in block-cyclic 
fashion, i.e. via N x N blocks of equal size b, where N = n/b. Fig. 3 illustrates the 
partitioning of a 48 X 48 matrix into 12 X 12 block submatrices (with equal block 
size) so that the partitioned block submatrices are mapped onto a 4 X 4 processor 
grid. 

In summary, the matrix mapping strategy is essentially a wrapping of the rows of 
the IZ x n matrix A around the p processor rows, namely, P,,, , P2,*, . . . , Pp,, or a 
wrapping of the columns of A around the 4 processor columns, namely, P*,l, 
P P . Hence, if the nodes of a p X q processor grid are indexed by (i, j>, 
wzi;k’ ;‘s;%p, and 1 <j I 4, then the blocks can be wrapped onto this grid by 
assigning A,., to node (I mod p, J mod 4). 



1194 M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 

2.3 The algorithm 

Based on the matrix partitioning, mapping, and communication model described 
in the preceding sections, the algorithm applies both Householder reflectors and 
Givens rotations to reduce all blocks below the subdiagonal at each step. The 
algorithm consists of two phases: a QR factorization phase and a Givens phase. 
While the QR factorization phase is based on Householder reflectors to reduce 
each block in the current block column to upper triangular form, the Givens phase 
uses Givens rotations to annihilate all elements of each triangularized block except 
for the main subdiagonal block. 

Suppose that the jth block column is being reduced and i is the row index of a 
block submatrix in block column j. The processor that owns the block submatrix 
A, has a row index of i mod p and a column index of j mod q. In the QR 
factorization phase, Householder reflectors are used to compute Qij such that 
Aij = QijRij. The blocks below the subdiagonal in the current block column are 
reduced to upper triangular form. This phase can be carried out locally by each 
processor without any communication. The rest of the original matrix A is then 
updated by pre- and postmultiplication by Qij. Once each processor computes an 
orthogonal matrix Qij for each block below the subdiagonal using Householder 
reflectors, it broadcasts Qij to all processors on its processor row and on its 

Block Column J 

1 2 3 4 5 6 7 6 9 10 11 12 

(a) A 4 x 4 block A(1.J) 

(b) A 4 x 4 processor grid 

(c) A 12 x 12 block matrix mapped onto a 4 x 4 processor grid. 

Fig. 3. Matrix partitioning and mapping. 



M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 1195 

1 

2 

3 

4 

5 

6 

7 

6 

9 

10 

11 

12 

12 3 4 5 6 7 6 9 10 11 12 

Blocks to be updated 

Triangularized blocks 

q Zeroed-out blocks 

1 Columns to be updated 

I 
Rows to be updated 

Fig. 4. The matrix triangularized in the QR factorization phase. 

corresponding processor column i. Fig. 4 illustrates the subsequent matrix triangu- 
larization. Fig. 5 depicts the message flows in this phase. 

Throughout the Givens phase, all blocks below the subdiagonal except for the 
main subdiagonal block are annihilated. This phase applies a sequence of Givens 
rotations between two blocks for eliminating all elements of one block with the 
other block as a pivot block. Fig. 6 illustrates the process of computing a sequence 
of Givens rotations between two 3 x 3 upper triangular blocks. The reduction of 
the jth current block column to block upper-Hessenberg form is composed of two 
steps: local annihilation and global annihilation. 

In Step 1 of the Givens phase (local annihilation), each processor in the current 
column that owns the blocks below the subdiagonal annihilates all elements of its 
local blocks below the subdiagonal with its lowest-numbered local block as a pivot 
block. This Givens triangular reduction technique has been widely used before, e.g. 
implementation of the Levenberg-Marquardt algorithm [lo]. Once a sequence of 
Givens rotations for each of two upper triangular blocks is computed, it must be 
broadcast to all processors on its row and corresponding column for updating the 
rest of matrix. Hence, after this step, each processor has left only one local block 
below the subdiagonal with lowest-numbered index (see Fig. 7). 

In Step 2 of the Givens phase (global annihilation), the lowest-numbered block 
of each processor on the current column is paired with that of another processor, 
and then one of two global blocks is annihilated by computing a sequence of 



1196 M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 

1 2 3 4 5 6 7 8 9 10 11 12 

P. 
1.1.J 

(b) Message flow of a diagonal processor 

- { message flows 

I,?‘,, i.: : Blocks to be updated 

7 Triangularized blocks 

cl 
Zexced-out blocks 

W Columns to be updated by pastmultiplication 

Rows to be updated by premultiplication 

(a) Message Flows after triangularized in the QR factorization phase. 

Fig. 5. Message flows after triangularized by Householder algorithms. 

Givens rotations with another block as a pivot block. This annihilation step 
requires all pairs of processors to participate in computing a sequence of Givens 
rotations between two paired blocks regardless of whether any computational work 
remains for a particular processor. This step requires communications between the 
paired processors for exchanging its whole row blocks. The step can be done 
recursively in log, p stages, where p is the number of processor rows (see Fig. 8). 

0.0 0.0 

00 00 pivot block 
1 

0 0 c 

0 
3 

--; 000 

l a * 0 o*--:2 00 Zeroed block 

a 0 W :1 0 

_-_ 
: local annihilation within a block o- 

G global annihilation between two blocks 

0 zeroed-out element 

Fig. 6. A sequence of Givens rotations between two upper triangular blocks. 



M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1197 

1 

2 

3 

4 

5 

6 

7 

6 

9 

iI 

1 

1: 

1 

2 

3 

4 

5 

6 

7 

6 

9 

10 

11 

12 

1 2 3 4 5 6 7 6 9 10 11 12 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

Column 3 

Fig. 7. The matrix after the step I of Givens phase. 

Blocks 10 be updated 

Triangulanzed blocky 

cl 
Zeroed-out blocks 

‘I Columns to be updated 

7 Tnangular blocks to be zeroed 

1 2 3 4 5 6 7 6 9 10 11 12 

Fig. 8. The matrix after the step II of Givens phase. 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

Column 3 

a--- 

1 - 

I 

Blocks to be updated 

, 

1 

2 I‘, Triangulnrized blocks 

Z.eroe&out blocks 

Rows to be updated 

Trianguhzed blocks to be 

For convenience, we denote a ‘pivoting processor’ as a processor that owns a 
pivot block and a ‘zeroing processor’ as a processor that owns a block to be 
annihilated. The pivoting processor has a lower-numbered row block index than 
that of the zeroing processor; hence, only the pivoting processors at the previous 
stage participate in the next stage. At the beginning of each of log p stages, every 
processor is paired with the nearest neighboring processor that owns a nonzero 



1198 M.U? Berry et al./Parallel Computing 21 (1995) 1189-1211 

block. Then, every processor exchanges its current local pivot block to the current 
paired processor. Both processors should compute the same sequence of Givens 
rotations to zero out one block. While one processor zeros out the received block 
with its own block as a pivot block, the other processor zeros out its own block with 
the received block as a pivot block. Between the two stages, both the pivoting and 
zeroing processors must broadcast a Givens sequence computed at the previous 
stage to the processors on its row and corresponding column of the processor grid. 
After log, p stages, only one triangular block (i.e. the main subdiagonal block) 
remains. Thus, the current block column is reduced to block upper-Hessenberg 
form. This process completes a reduction step of the algorithm and is repeated on 
the remaining unreduced block columns. A complete pseudocode of the algorithm 
is given in Fig. 9. 

3. Time complexity analysis 

In this section, we analyze the time complexity of both the arithmetic operations 
and the communications of our parallel algorithm. We denote tA as the arithmetic 
time complexity and t, as the communication time complexity. For simplicity, we 
ignore the extra communication cost required for pairs of processors to exchange 
the whole block column for a column update in Step 2 of the Givens phase in cases 
where a processor grid is not square. 

First, we compute the computation and communication costs of each phase on 
the jth block column at each reduction step. Then, we sum over all block columns 
to get the complexity of the phase for the entire algorithm. Suppose that the 
dimension of the block matrix is N with block size of b and that the processor grid 
is p X q. Thus, a processor has IN/p1 row blocks and [N/q1 column blocks. We 
assume that p divides N and q divides N. 

3.1 Arithmetic complexity 

In the QR factorization phase, a processor on the jth block column computes 
(N - j)/p QR factorizations of the b X b block submatrices below the subdiagonal. 
Row processors that must premultiply A by these transformations have (N - j)/p 
x (N - j)/q blocks to update. Column processors that must postmultiply A have 

N/p X (N - j)/q blocks to update. For each block, the arithmetic cost for the 
orthogonal factorization is :b3 floating-point operations (flops). The premultiplica- 
tion of each block row requires 2b3(N - j)/q flops, and the postmultiplication of 
each block column requires 2b3N/p flops. While the arithmetic complexity for the 
premultiplication of each block row in the QR factorization phase is then multi- 
plied by the number of block rows, (N - j>/p, the arithmetic complexity for the 
postmultiplication of each block column is multiplied by the number of block 
columns, (N - j)/q. The arithmetic complexity summed over all the block columns 
is then given by 



M.W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1199 

Algorithm: 

for each block co1 j = 1 to N do 
QRf act(j); QR factorization phase 
Givens(j); Givens phase 

endf or 

procedure: QRfact Cj) (Figures 4, 5) 

for each local row block i = j + 1 to N - 1 do 

dgeqr(Q,,); Compute Q,, 
bcast(QZ,); to processors in row i and co1 i 

rowupdats(QiI); premultiplication, QTJAi,. 

if i is my co1 then 
colupdate(Q,,); postmultiplication, A*,iQt,j 

endif 
endf or 

procedure: Givens(j) (Figures 6, 7, 8) 

1. local annihilation (Figure 7) 
for each local row block i = j + 2 to N - 1 do 

dzeroblk(G,,); Compute G,, 

bcast(G,,); to processors in row i and col i 

rowupdate(G,j); premultiplication, GcJAi,* 

if i is my co1 then 
colupdate(G;,); postmultiplication, A*,iG,,, 

endif 
endf or 

2. global annihilation (Figure 8) 
for Ic= 1 to log,p do 

if my top row block not zeroed out then 
exchange(al1 blocks in the top row) 
dzeroblk(G,,); Compute G,, 

bcast(Gi,); to processors in row i and co1 i 
rowupdate(G,,); premultiplication, Gc]A,,. 
if i is my co1 then 

if necessary then 
exchange (all blocks in the corresponding col) 

endif 
colupdate(G,,); postmultiplication, A,,zGi,, 

endif 
endif 

endf or 
Fig. 9. A pseudocode of the algorithm. 



1200 M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 

In the Givens phase, the arithmetic cost results from the two different steps, 
local and global annihilation. The arithmetic cost of local annihilation on the jth 
block column is 

While the arithmetic cost for global annihilation in log, p stages is 

Hence, the total arithmetic cost of the Givens phase is 

N-2 
fA( Givens) = c ( tA( I) + fA( II)) 

j=l 

= - +log, p)( b(b2+y(6+6by +6bZ). 

3.2 Communication complexity 

The communication complexity of the QR factorization phase on the jth block 
column is dominated by the cost of broadcasting a transformation of each block 
matrix, Aij to all processors on the row and column. Suppose that (Y is the 
communication startup cost and p is the transmission time per floating-point 
number. In the store-and-forward mechanism, the message transfer time between 
two adjacent processors can be represented as (Y + m/3, where m is the number of 
floating-point numbers in the messages. If a message is delivered h hops away, the 
message transfer time can be roughly estimated as h(cl! + m/3>. In the wormhole 
routing mechanism used in the Intel DELTA, the message transfer time is almost 
independent of the distance (number of hops) between processors [l]. In this case, 
if network contention is not considered, the message transfer time can be repre- 
sented as (Y + rnp regardless of the distance that a message has to traverse. In our 
analysis, for convenience, we assume that the message transfer time is (Y + m/3 for 
m floating-point numbers. The communication cost for the QR factorization phase 
is therefore given by 

Similarly, the communication costs for two different steps of the Givens phase 
on the jth block column are given by 

tc(Q = (,+b(b+l)@, 



M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1201 

Table 1 
Complexity summary of the algorithm 

QR 

Arithmetic cost (t,) Communication cost (tc) 

;(N2 +4N)a + $(N’h’+ N2h + O(n))P 

Givens I ;(N3b3 + N3b2) 

+ $(N’b’+ N3b2)+ Oh’) 

&N2a + -$N2b2 + N2b+ O(n)@ 

Givens II ($ + GXN2b3 + N2b2) log, p 5Na log, p +(; + hN2b2 + O(n))P log, p 
P 

+ Oh log, PI 

and 

t,(W = (1% P)@ +b(b + l>P> 

+(21og, p) i( a+b* yl) + (a++3)). 
Hence, the total communication cost of the Givens phase is given by 

N-2 

t,(Givens) = c (tc( I) + tc( II)) 
j=l 

3.3 Complexity summary 

The complexity of the algorithm is summarized in Table 1. Clearly, the arith- 
metic cost of our algorithm dominates the total cost of the algorithm. Furthermore, 
the communication cost depends on how a message is broadcast to the row and 
column. For a rectangular processor grid, for example, the communication cost of 
the Givens phase is increased by the extra communications required for a column 
update in both Step 1 and Step 2. Based on our complexity analysis, Fig. 10 depicts 
the predicted and experimental timing results of the algorithm for the block size 25 



1202 M. U! Berry et al. /Parallel Computing 21 (1995) 1189-1211 

3000 - 

3 
g 
M 
E 
F zooo- 

8 
‘C 
& 
8 
u 

1000 - 

5doO 6000 7000 8000 9000 

Matrix Size, n 

I Predicted Arithmetic time (Givens) 
o Predicted Arithmetic time (QR) 
o Predicted Communication time (Givens) 
m Predicted Communication time (QR) 

. . l . . Experimental Total Execution Time 

Fig. 10. Predicted and experimental timing results of the algorithm - Predicted timing result is based on 
the complexity analysis. Experimental result is for the asynchronous implementation. (For the Intel 
DELTA, block size b = 25, processor grid = 16 X 16, and N = n /b, a = 140 psec, p = .41 psec, and flop 
time = .2 psec) 

on a 16 x 16 processor grid of the Intel DELTA as the matrix size is varied 
between 5,000 and 10,000. 

4. Implementations 

The target architectures for our algorithm are message-passing multicomputers 
such as the Intel iPSC/860, the Intel DELTA, the TMC CM-5, the Cray T3D, and 
the Ncube nCUBE. A message-passing multicomputer is a distributed-memory 
multiprocessor in which each processor owns a local memory module. A point-to- 
point interprocessor communication network provides a mechanism for communi- 
cation between processors. 

Several factors affect the performance of the algorithm on such multicomputers. 
First, with block-cyclic data distribution, the block size raises the issue of granular- 
ity in communication as well as in computation of the algorithm. Specifically, as 
the block size increases, the number of computations and the size of a message to 
transfer also increase, while the number of communications decreases. Second, an 



M.W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1203 

important aspect in the mapping technique is load balancing. Our algorithm 
maintains load balancing statically by wrapped mapping on both the row and 
column. Third, and most important, is the waiting time when messages are 
broadcast along the row and column simultaneously. This waiting time is affected 
mostly by the broadcasting mechanisms that the machine’s system software sup- 
plies. 

In this section, we describe two different implementations of the algorithm on 
the Intel iPSC/860 and the DELTA: blocking and nonblocking. Blocking refers to 
the case when a processor receiving/sending a message from/to another processor 
must wait until the receiving/sending process is complete; nonblocking refers to 
the case when receiving/sending a message does not block the processor. These 
blocking and nonblocking mechanisms are often referred to as ‘synchronous’ and 
‘asynchronous’ message passing, respectively. We have used the B LA s [Sl and 
LA PACK routines for doing all basic block computations. No global combine 
operations among processors are required in the current implementations. 

4.1 Communication routines on Intel machines 

On Intel machines, a program running on one processor can send a message to 
and receive a message from another processor by calling two different sets of 
communication primitives provided by the operating system. The set for blocking 
calls comprises c s e n d ( 1 and c r e c v ( 1. The set for nonblocking calls comprises 
isend and irecv0; the msgdone0 call is used to check whether an 
asynchronous operation has completed. 

4.2 Synchronous implementation 

For our synchronous implementation, we use the BLACS (Basic Linear Algebra 
Communication Subprograms) communication library [6]. The BLACS are a linear 
algebra communication library written using communication primitives of 
message-passing multicomputers. The library provides portable, efficient, and 
modular high-level routines for manipulating and communicating data structures 
that are distributed among the memories of message-passing multicomputers. 
Also, it embeds several different communication topologies and supports various 
broadcasting schemes for processing nodes of multicomputers logically configured 
as a two-dimensional mesh, or grid ‘. 

Our synchronous implementation contains three different versions: S T R E E, 

I R I N G, and D R I N G. Each of which depends on how a message is broadcast in a 
linear array of row processors or column processors. I R I N G, D R I NG, and S T R E E, 

were implemented using broadcasting schemes that the BLACS supports: increas- 
ing ring, decreasing ring, and minimum spanning tree, respectively. Those broad- 
casting schemes require unidirectional ring topologies or linear arrays. 

’ Note that the BLACS currently do not support nonblocking routines. 



1204 hf. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 

Synchronous, 16x4 

2500 

2000 

. 

Asynchronous, 16x4 
_-_ 

- ‘Lx- “, _ 
_: =_-_ -.-._ _,_ __e- 

____------ 

- - _ _ _ _,=‘-=._ Synchronous! @@. _ -._._._._.-.- 
L 

15?o 
I I 

12 14 16 16 20 22 24 26 28 30 
Block Size 

Fig. 11. Performances on the iPSC/860 for matrices of order 5,000 on different processor grids of 64 
processing nodes. 

350 - 

Increasing’ring 
‘. 

294;’ I 
20 25 30 

Black Size 

Fig. 12. Performances for ST R E E, D R I N G, I R I N G, and asynchronous codes on the iPSC/860 for 
matrices of order 6,000 on an 8 X 8 processor grid. 



M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1205 

Seidel [12] has shown that in ring broadcasts such as increasing ring and 
decreasing ring, while the original sending processor is required to spend only the 
amount of time to send a message to the next processor, the last processor must 
waste p times as much as that of receiving and sending a message. 

Minimum spanning tree broadcasting requires that p be an integer power of 2. 
This scheme takes logzp times as much as that of receiving and sending a 
message. Thus, the minimum spanning tree broadcasting consumes less waiting 
time than ring broadcasting. In addition, we use force-typed messages for paired 
processors to exchange a whole block row with each other in the Givens Step 2. 

4.3 Asynchronous implementation 

Synchronous implementations could block further computations that are inde- 
pendent of incoming messages. The goal of an asynchronous implementation is to 
reduce the time wasted in waiting for incoming messages. 

In the asynchronous implementation, a message is broadcast to all processors on 
the row and column simultaneously, without being send to intermediate nodes. 
This scheme has two principal disadvantages: it can cause network contentions, 
and the sending processor takes much more time than receiving processors. For 
this implementation, we must use the Intel nonblocking low-level communication 
primitives directly. Note that in order to maintain the ordering of computations for 

Increasing ring ,‘. . . . . . 
,.,.' '.., 

'. 

'. 
',. 

. . 

1.05' I 
10 15 20 25 30 35 

Block Size 

Fig. 13. Performance STREE, DRING, I RING, and asynchronous codes on the Intel DELTA 
matrices of order 10,000 on a 16 X 16 processor grid. 

for 



1206 M. W. Beny et al. /Parallel Computing 21 (1995) 1189-1211 

row updating and column updating, some data structures are used to manage 
queues for incoming messages received by each processor. Also, no force-typed 
messages are used. 

8001 
(a) QR factorization phase 

700 \ 

t 

\ 
\ 

\ 

600- ‘1 \ \ \ 
:: 500- 

\ 
z \ \ 
.E ‘\ Row Update 

\ 

z ‘. 
iz400- 

\ 
. . 

‘. . 
. . 

300 
--__ 

Col Update 

--_ -_ ---___ 

200- 

Broadcast 

‘O40 15 20 25 
Block Size 

30 35 

(b) Givens phase I 

2 BOO- 

2 .- 
.E 600. 
+ Col Update 

_-- -_--. , ‘\ _ 
400 ., 

2oIb 
10 20 30 40 

Block Size 

(c) Givens phase II 

200 

150 

I , 
/’ 

100 /’ - 
I 

I 

ROW Update/ , ’ * 

t 

_-’ 
l’ 

.’ 

50 I’ 
/*_ 

,’ ,’ “-‘Co1 Update 

/’ 
1,’ I 

10 20 30 40 

Fig. 14. Detailed times on the iPSC/860 for matrices of order 6,000 on an 8 X 8 processor grid. 



M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 1207 

5. Experimental results 

Our implementations were run and timed on both the Intel iPSC/860 and the 
DELTA. All test runs were performed in 64-bit arithmetic for random matrices 
with values between 0.0 and 1.0. 

(a) QR factorization phase 

““Ix 

700 -\ 
\ 

\ 
\ 

600- ‘\ 
\ 

\ Row Update 
\ 

:: \ 

% 

500. 
\ 

\ 
._r ‘\ 

E 
‘\ \ 

iz 400- ‘. 
‘. 

‘. 
‘. 

300 - --__ 
Cal Update -_____ ---... 

--__ 
-_ - _ --_____ --_ _______-------- 

200 - 

Broadcast 

1ooL------L- 
IO 15 20 25 

Block Size 

/ 

4t 

(b) Givens phase I 
1400 

-_ 

. . . 
1200 

ROW 

1000 

(c) Givens phase II 

3o01 

g 600. 

2 
0, 
E 600. 

_-. 

200 I 
Broadcast 

0 
IO 20 30 40 

0 
10 20 30 40 

Block Size 

Fig. 15. Detailed times on the Intel DELTA for matrices of order 6,000 on an 8 X 8 processor grid. 



1208 M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 

The asynchronous implementation performed better than the synchronous 
implementations on a rectangular processor grid, say 16 X 4. Fig. 11 shows this 
performance improvement in cases where the number of processor rows is greater 
than that of processor columns. The explanation rests with the fact that for a 
rectangular processor grid p x q, where p > q, more parallelism is achieved along 
row computations, and the waiting time of broadcasting messages along rows is less 
in the asynchronous implementation than in the synchronous implementations. 

The synchronous implementations perform better on a square processor grid 
than on a rectangular processor grid, due to significant amount of waiting time or 
extra communication spent in the Givens phase. Hence, all test runs were per- 
formed on the square processor grid of maximum size that the machines provide. 
On the iPSC/860, the processor grid 8 X 8 was used for a matrix of order 6,000. 
On the DELTA, the processor grid was 16 X 16 for a matrix of order 10,000. The 
asynchronous implementation was also run with identical matrices on the both 
machines for comparison purposes. All timings were performed for different block 
sizes to find the best block size. Figs. 12 and 13 show the performance results 
among the current implementations. 

For the purpose of comparing detailed timing and performance results of 
computation and communication parts of the algorithm, the ST R E E code of the 
synchronous implementation was run for a matrix of order 6,000 with the same 
processor grid 8 X 8 on the both machines. Detailed timing results are shown in 
Figs. 14 and 15, and their numeric data are provided in Tables 2 and 3 of the 
Appendix. In these tables, ‘Row’ stands for row updating of blocks, ‘Col’ for 

Table 2 
ST R E E: Detailed timing results on the Intel iPSC/860 for a matrix of order 6,000 on an 8 X 8 processor 
grid 

NB Total (sets) QR fact. (Ops, Sets, %I Givens (Ops, Sets, %I 

Op counts Time % Op counts Time % 

10 3320.96 0.3559 1181.96 35.6 0.591 2138.97 64.4 
15 3072.65 0.3577 923.06 30.0 0.571 2149.57 70.0 
20 2861.63 0.3581 856.20 29.9 0.561 2005.42 70.1 
25 2735.18 0.3582 780.80 28.5 0.555 1954.37 71.5 
30 2852.59 0.3582 763.60 26.8 0.550 2088.98 73.2 
35 2908.16 0.3580 795.54 27.3 0.546 2112.61 72.7 
40 2947.40 0.3578 853.50 29.0 0.543 2093.89 71.0 

NB QR fact. phase (sets) Givens phase I (sets) Givens phase II (sets) 

QR Beast Row Co1 Givens Beast Row co1 Givens Beast Row co1 

10 6.17 186.34 725.66 261.90 7.16 102.95 1354.93 478.86 2.73 125.61 36.01 23.38 
15 4.57 190.39 486.22 241.02 6.66 109.29 1275.16 512.88 3.88 151.83 50.64 35.69 
20 3.92 210.65 401.41 239.71 6.61 70.04 1236.66 451.71 5.19 119.98 65.86 47.66 
25 3.39 227.38 327.71 221.99 6.31 134.05 1001.41 479.01 6.26 197.33 72.27 56.65 
30 3.19 250.30 292.06 217.80 6.21 147.12 1131.41 406.15 7.55 235.89 92.94 62.06 
35 3.22 270.80 289.47 231.83 6.62 103.84 1136.93 499.16 9.03 168.61 107.48 81.68 
40 3.02 371.75 259.06 219.50 6.30 144.78 1118.76 404.05 10.37 197.07 124.69 89.11 



A4.W Berry et al/Parallel Computing 21 (1995) 1189-1211 1209 

Table 3 
s T R E E: Detailed timing results on the Intel DELTA for a matrix of order 6,000 on an 8 X 8 processor 
grid 

NB Total (sets) QR fact. fops, Sets, %I Givens (Ops, Sets, %o) 

Op counts Time % Op counts Time % 

10 3138.22 0.3559 
15 2906.21 0.3577 
20 2692.83 0.3581 
25 2543.63 0.3582 
30 2639.85 0.3582 
35 2677.06 0.3580 
40 2709.29 0.3578 

NB QR fact. phase (sets) 

QR Beast Row co1 

1099.42 35.0 0.591 2038.77 65.0 
830.71 28.6 0.571 2075.49 71.4 
749.86 27.8 0.561 1942.96 72.2 
663.70 26.1 0.555 1879.92 73.9 
638.68 24.2 0.550 2001.17 75.8 
647.57 24.2 0.546 2029.49 75.8 
679.67 25.1 0.543 2029.62 74.9 

Givens phase I (sets) Givens phase II (sets) 

Givens Beast Row Cal Givens Beast Row co1 

10 4.60 109.51 722.95 260.64 3.46 54.44 1321.15 478.41 1.69 114.7 35.34 22.83 
15 3.49 100.41 485.25 240.76 3.27 43.10 1264.03 512.45 2.00 161.31 51.22 34.63 
20 3.06 107.59 400.00 238.74 3.27 24.65 1224.01 450.24 2.63 123.06 66.47 46.64 
25 2.71 111.04 327.08 222.58 3.17 38.67 1003.83 478.64 3.19 222.56 73.16 55.46 
30 2.59 127.31 290.77 217.78 3.16 37.89 1119.47 405.51 3.84 276.63 92.68 61.43 
35 2.67 123.54 288.80 232.36 3.46 19.31 1139.42 498.32 4.74 175.11 107.81 81.24 
40 2.56 199.62 258.24 219.10 3.30 29.96 1110.17 403.37 5.45 265.65 124.68 88.00 

column updating, ‘QR’ for computing QR factorization of blocks, ‘Givens’ for 
computing Givens rotations of blocks, and ‘Beast’ for broadcasting messages to 
their corresponding row and column processors. 

6. Conclusions 

The performance results of the current implementations of our algorithm on the 
Intel iPSC/860 and DELTA are quite consistent, considering the distinct charac- 
teristics of both machines. 

As shown in Fig. 10, the experimental timing results correspond to the predicted 
result within 15%. The discrepancy between observed and predicted results can be 
attributed to message-waiting times caused by network traffic delays. The algo- 
rithm demonstrates improved parallel efficiency on larger and larger square 
processor grids as communication time consumes a smaller and smaller fraction of 
overall execution time. 

0 

0 

We draw several conclusions from these results: 
The STRE E code performs better than any of the other synchronous codes on 
the both machines, even though the DELTA has a mesh architecture. 
The asynchronous implementation performs best among implementations. This 
superior performance stems from less waiting time because of nonblocking 
communications. 



1210 M.W. Berry et al./Parallel Computing 21 (1995) 1189-1211 

0 The most important factor limiting the performance of the synchronous imple- 
mentation is blocking receiving processors. Specifically, the receiving processors 
spend most of their time waiting for messages (transformation matrices) from 
row and column processors. Furthermore, once messages are received, all blocks 
on the corresponding row and column are updated synchronously. Thus, syn- 
chronous communications limit the performance. 

l Premultiplication (row updating) is much slower than postmultiplication (column 
updating), even without any communications. Furthermore, the ratio of premul- 
tiplication versus postmultiplication is improved and both premultiplication and 
postmultiplication are faster as the block size becomes larger; however, commu- 
nication becomes slower for larger block size choices. 

l The timing ratio of row updating versus column updating in the Givens phase is 
larger than that in the QR-factorization phase. This may be due to differences 
in memory access patterns and possible cache misses when blocks are accessed 
for updating in the Givens phase. 

l The best block size for our current implementations is between 20 and 30. 

7. Future work 

The classical reduction to Hessenberg form using Householder reflectors inher- 
ently requires a large number of floating-point operations, $” for an IZ x n 

nonsymmetric matrix. In our parallel algorithm, the computation cost still domi- 
nates the total cost of the algorithm, and the communication cost is inexpensive 
(See Table 1). Thus, there is a tradeoff between the improved performance 
possible by using more processors and the degradation resulting from more 
communications. 

In view of the overhead of managing some data structures for handing asyn- 
chronous sends and receives, one might explore the use of h s end ( 1 and h r e c v ( 1. 
These Intel routines behave like interrupt handlers, invoking a routine specified as 
arguments when a program running on a processor receives an incoming message. 
To use them, however, we need to use large c ammo n blocks in Fortran to handle 
asynchronous message passing. 

Another area for research is load balancing. When the block size is large, 
wrap-mapping in a round-robin fashion is not optimal. A mapping created by 
wrapping processors on the row and column alternately in reverse order would be 
better. 

An alternative algorithm might have each processor in the current column apply 
the QR factorization to the entire local column block instead of using the separate 
QR and Givens phases. This algorithm would save floating-point operations, but 
would require messages of larger size. For postmultiplication, the messages (trans- 
formation matrices) would be broadcast to all processor columns when a processor 
grid is rectangular. The proposed Given+based reduction is preferable for the 
block-cyclic data distributions as opposed to the usual wrap-mapping to ensure 
good load balancing. 



M. W. Berry et al. /Parallel Computing 21 (1995) 1189-1211 1211 

Finally, we envision this algorithm as a highly parallel algorithm for massive 
parallel multicomputers with thousands of processing nodes, such as the Intel 
Paragon, or on message-passing multicomputers with smaller communication la- 
tency. 

Acknowledgement 

We acknowledge valuable comments and suggestions by Prof. Gene H. Golub of 
Stanford University. This research was performed in part using the Intel Touch- 
stone DELTA System operated by the California Institute of Technology on behalf 
of the Concurrent Supercomputing Consortium and also conducted on the Intel 
iPSC/860 System located at the Oak Ridge National Laboratory. The authors also 
thank the anonymous referees for the helpful comments and suggestions for 
improving the manuscript. 

References 

[l] M. Barnett, D.G. Payne and R. van de Geijn, Optimal broadcasting in mesh-connected architec- 
tures, Technical Report TR-91-38, University of Texas, 1991. 

[2] E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, Soul 
J. Sci. Stat. Comput., ll(5) (1990) 990-1028. 

[31 J.J. Dongarra and S. Ostrouchov, LAPACK block factorization algorithms on the intel ipsc/860, 
Technical Report CS-90-115, University of Tennessee, 1990 LAPACK Working Note 24. 

[4] J.J. Dongarra, A.H. Sameh and D.C. Sorensen, Implementation of some concurrent algorithms for 
matrix factorizations, Parallel Comput., 3 (1986) 25-34. 

[5] J.J. Dongarra, D.C. Sorensen and S. Hammarling, Block reduction of matrices to condensed forms 
for eigenvalue computations, _I. Computat. Applied Math. 27 (1989) 215-227. 

[61 J.J. Dongarra, R. van de Geijn and R.C. Whaley, A users’ guide to the BLACS, Technical Report 
CS-93-187, University of Tennessee, 1993, LAPACK Working Note 57. 

[7] J.J. Dongarra and R.A. van de Geijn, Reduction to condensed form for the eigenvalue problem on 
distributed memory architectures, Parallel Comput. 18 (1992) 973-982. 

[8] J.J. Dongarra, J. DuCroz and S. Hammerling, A set of level 3 basic linear algebra subprograms., 
ACM Trans. Math. Soft. 16(l) (1990) 1-17. 

[91 G.H. Golub and C.V. Van Loan, Matrix Computations, 2nd ed. (Johns Hopkins University Press, 
Baltimore, MD, 1989). 

[lo] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, 
NJ, 1974). 

[ill A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder 
algorithms, SLAM1 Sci. Stat. Comput. lO(6) (1989) 1113-1134. 

[12] S.R. Seidel, Broadcasting on linear arrays and meshes, Technical Report ORNL/TM-12356, Oak 
Ridge National Laboratory, 1990. 


