next up previous contents index
Next: Acronyms Up: List of Symbols and Previous: List of Symbols and   Contents   Index

Symbols


      $A, \ldots, Z$ matrices 

$a, \ldots, z$ vectors
$\alpha, \beta, \ldots, \omega$ scalars
$A^{T}$ matrix transpose
$A^{\ast}$ conjugate transpose of $A$
$A^{-1}$ matrix inverse
$A^{-T}$ the inverse of $A^T$
$A^{-\ast}$ the inverse of $A^*$
$A^{m \times n}$ indicates that $A$ is $m$-by-$n$
$a_{ij}$ matrix element of $A$
$a_{i,.}$ $i$th row of matrix $A$
$a_{.,j}$ $j$th column of matrix $A$
$x^{\ast}y$ vector dot product
$(x,y)$ inner product, such as $x^{\ast}y$
$v_j$ vector $v$ in the $j$th iteration
diag($A$) diagonal of matrix $A$
diag($\alpha, \beta, \ldots$) diagonal matrix constructed from scalars $\alpha, \beta, \ldots$
span($a,b, \ldots$) spanning space of vectors $a,b, \ldots$
span($A$) $= \mbox{range}(A)$, subspace spanned by the columns of $A$
${\cal K}^{m}(A,v)$ Krylov subspace $\mbox{span}\{ v,Av, A^2 v, \ldots, A^{m-1} v \}$
$[x_1,x_2, \ldots ,x_m]$ matrix whose $i$th column is $x_i$
$X(i, j)$ $(i, j)$ entry of $X$
$X(:,i)$ or $X(i,:)$ $i$th column or row of $X$
$X(:,[2,3,5])$ submatrix consisting of columns 2, 3, and 5 of $X$
$X([2,3,5],:)$ submatrix consisting of rows 2, 3, and 5 of $X$
$\cal R$, $\cal C$ sets of real and complex numbers
${\cal R}^{n}$, ${\cal C}^n$ real and complex $n$-spaces
$\Vert x \Vert _{p}$, $\Vert A \Vert _p$ vector and matrix $p$-norm
$\Vert x \Vert _{A}$ the ``$A$-norm,'' defined as $(Ax,x)^{1/2}$
$\Vert A \Vert _F$ matrix Frobenius norm
$\epsilon_M$ machine precision
$\lambda(A)$ eigenvalues of $A$
$\lambda_{\max}(A), \lambda_{\min}(A)$ eigenvalues of $A$ with maximum (resp., minimum) modulus
$\sigma(A)$ singular values of $A$
$\sigma_{\max}(A), \sigma_{\min}(A)$ largest and smallest singular values of $A$
$\kappa_2 (A)$ condition number of matrix $A$, defined as $\kappa_2 (A) = \Vert A\Vert _2\Vert A^{-1}\Vert _2$
$\overline{\alpha} $ complex conjugate of the scalar $\alpha$
$\max \{S\}$ maximum value in set $S$
$\min \{S\}$ minimum value in set $S$
$\sum $ summation
$O(\cdot)$ ``big-oh'' asymptotic bound
$\re(a)$ the real part of the complex number $a$
$\im(a)$ the imaginary part of the complex number $a$
$u \perp v$ the vector $u$ is orthogonal to the vector $v$


next up previous contents index
Next: Acronyms Up: List of Symbols and Previous: List of Symbols and   Contents   Index
Susan Blackford 2000-11-20