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Being Green in HPC

* My Green IT involvement (since 2002)
- NSF Career Award: HPPAC
- SPECPower - server benchmarking
- EnergyStar - US EPA consultant
- Greenb00 - co-founder
- HPPAC Workshop - founding member
- Uptime Institute - fellow
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Economic Impact of HPC Energy Use

» Cost

- $800,000 per year per megawatt

- "Power efficient” Roadrunner: 2.3 MW
» Reliability

- 10 degrees C = 50% reliability

- Environmental Canada IBM Supercomputer
- Recycles thermal energy produced by machine
* Can heat 5-story building (-15 C outside temps)

- Earth Simulator can heat a domed stadium
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Environmental Impact of HPC Energy Use

* Details
- 1 coal generated kWh = 2 Ibs CO2
- 2,204 pounds = 1 metric ton
- My auto: 6.6 metric tons annually

1MW ~ 8,000 tons CO2
(1,204 auto/yr)

6 autos/yr 18 autos/y
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NSF TeraGrid uses ~20MW = 24,088 autos/yr
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Our Story...

My observations circa 2002
- Power will become disruptive to HPC
- Laptops outselling PC's
- Commercial power-aware not appropriate for HPC
- HPC apps terribly inefficient (<10% peak perf)
* Proposed Solution
- Exploit inefficiencies
- Leverage new technologies
- Create Green HPC SW

» Caveat (It's not easy being Greenl)
- Performance is #1 constraintlll
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HPPAC Emerges

*+ SCAPE Project

- High-performance,
power-aware computing
- Two initial goals
* Measurement tools
- Power/energy savings

- Big Goals...no funding
(risk all university
startup funds)

- Overall challenge/goal:
- Same work, less energy!
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Intuition confirmed

IT confronts the datacenter power crisis

alate, canserving resaurces tops the list of challenges far taday's 1T managers
E-m:ail F'r'inter' Friendly Reprirts f. Slazhclat

planned to add 10

In the Data Center, the Heat Is On

Halamka John Today's Top Stories = or Other Servers Stories »

October 23, 2006 (Computerwarld) -- | recently began a project to consolidate fwo dat

Data Center Budgets Face Radical Changes
Consortium head says facilities costs are surpassing the price of hardware

Patrick Thibodeau and Patrick Thibodeau Today's Top Stories = or Other IT Management Stories »
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Overview of Our Green HPC Progress...

- Measurement Infrastructure
- PowerPack (begun 2002)

- Software/hardware for power measurement

- Tempest (begun 2005)

- Software for thermal measurement

+ Control Infrastructure (MISER)
Management Infrastructure for Energy Reduction
- CPU MISER (begun 2002)
- Memory MISER (begun 2004)
- SysteMISER (begun 2007)
- Heat MISER (begun 2007)
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AC+DC Measurement Ain't Easy
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PowerPack I & IT 2002 - present

Scalable, synchronized, and accurate.

Hardware power/energy profiling
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PowerPack AC/DC Power Profiling

IT node .eq. root then
call pmeter_init (Xmhost,xmport)
call pmeter_log (pmlog,NEW_LOG)
endif

<CODE SEGMENT>

IT node .eq. root then
call pmeter_start_session(pm_label)
endif

<CODE SEGMENT>

IT node .eq. root then
call pmeter_pause()
call pmeter_ log(pmlog,CLOSE LOG)
call pmeter_finalize()

endif
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Power Profiles - Single Node

Power consum ption distribution for
memory performance bound (171.swim) Power
System Power: 59 Watt Supply
Power Supply 12%
21% System-Fan
6%
CPU-Fan
4%
Motherboard
6%
Disk
3%

Other Chipset
5% Memory
15%

{c} Fower distribution for 17 1.swim :
systermn power 209 2 Watts

Pentium III (2002) AMD Opteron (2007)
CPU is largest consumer of power typically (under load)
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Power Profiles
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(b} Power distribution for 164.gzip:
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systermn power 209.2 Watts {d} Power distribution for ep: systerm power 165.2 Watts

+
Fig. 5 Power distribution for a single node under different workloads: (a) zere workload (system 12 in idle state); (b) CFU bounded
workload; (¢ memory bounded workload,; (d) disk bounded worlcload.+
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NAS PB FT - Performance Profiling

Part of the timeline of FT.B.4 visualized by JUMPSHOT

B reduce [ all-to-all

all-to-all

compute compute (comm)

t

About 50% time spent in communications.
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Power Profile of FT Benchmark (Class B, NP=16)
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Power profiles reflect performance profiles.
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One FFT Iteration (PowerPack)
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Fig 7 Mapping between power profile and code segments for FT benchmark (Class B). Using code analysiz and code-power profile
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One FFT Iteration (Tempest)

FT detailed profile
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Avoid Power Meas: Predict CPU Power
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Avoid Power Meas: Predict Memory Power
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Green HPC (using smart DVFS scheduling)

CPUSPEED Daemon
[example]$ start cpuspeed
[example]$ mpirun —np 16 Tt.B.16

MPI_Init(Q);

<CODE SEGMENT>
setspeed(600);
<CODE SEGMENT>
setspeed(1400);
<CODE SEGMENT>

MPI_Finalize();

External Scheduling
[example]$ psetcpuspeed 600
[example]$ mpirun —np 16 Ft.B.16

NEMO & PowerPack Framework for saving energy
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CPU MISER Scheduling (FT)

Normalized Energy and Delay with CPU MISER for FT.C.8

@ normalized delay

W normalized energy

1000 1200 1400 CPU MISER

36% energy savings, less than 1% performance loss
See SC2004, SC2005 publications.
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Green HPC (using smart memory management)
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Page Allocation Shaping + Allocation Prediction + Dynamic Control
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The future..my POV

» Will Moore's Law continue?
- Absolutely. Until at least 2012. Power still a problem

»+ Will there be a silver bullet for Green HPC?
- No. Exotic solutions succumb to commodity market.
- Vendors will sell silver bullets like magic beans.

- Look for solutions across the stack
- New challenge: integration
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The future..what's next?

- Information-driven control
- Streaming sensor data from any source
- Power & thermal sensors on board, PDUs, wireless, etc.

» Look for policy (EPA) to impact commodity - HPC
- Example: power supply efficiencies, Energy Star ratings
- How will you build a cluster from non-Energy Star equip
- HPC will eventually "turn on" power saving software
- May not have a choice (policy, commodities, etc)
- We already do at the micro-architecture level

- Job scheduling easy place to start, virtualization will help
- All techniques I discussed are easily integrated in OS
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Thanks for listening. cameron@cs.vt.edu
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http://www.spec.org/specpower/
http://www.energystar.gov/

http://www.uptimeinstitute.org/
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