
Discretization of PDEs and Tools for the Parallel
Solution of the Resulting Systems

Stan Tomov

Innovative Computing Laboratory
Computer Science Department

The University of Tennessee

Wednesday April 08, 2020

CS 594, 04-08-2020



CS 594, 04-08-2020



Outline

Part I
Partial Differential Equations

Part II
Mesh Generation and Load Balancing

Part III
Tools for Numerical Solution of PDEs

CS 594, 04-08-2020



Part I

Partial Differential Equations
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Mathematical Modeling

Mathematical Model:

a representation of the essential aspects of an existing system
which presents knowledge of that system in usable form
(Eykhoff, 1974)

Mathematical Modeling:
Real world Model

←→

Navier-Stokes equations:

∇ · u = 0
∂u

∂t
= −(u · ∇)u − 1

ρ
∇p + ν∇2u + f

B.C . , etc .
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Mathematical Modeling

We are interested in models that are

Dynamic
i.e. account for changes in time

Heterogeneous
i.e. account for heterogeneous systems

Typically represented with

Partial Differential Equations
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Mathematical Modeling

How can we model for e.g. Heat Transfer?

Heat
* a form of energy (thermal)

Heat Conduction
* transfer of thermal energy from a region of higher

temperature to a region of lower temperature

Some notations

Q : amount of heat
k : material conductivity
T : temperature
A : area of cross-section
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Heat Transfer

The Law of Heat Conduction

4Q

4t
= k A

4T

4x

Change of heat is proportional to the gradient of the temperature
and the area A of the cross-section.

Q : amount of heat
k : material conductivity
T : temperature
A : area of cross-section
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Heat Transfer

Consider 1-D heat transfer in a thin wire

so thin that T is piecewise
constant along the slides, i.e.
T0(t), T1(t), T2(t), etc.

ideally insulated

Let us write a balance for the temperature at T1 for time t +4t

T1(t +4t) =?
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Heat Transfer

T1(t +4t) ≈ T1(t)

+ k4t
(T2(t)− T1(t))

(4x)2

+ k4t
(T0(t)− T1(t))

(4x)2

= T1(t) + k4t
T2(t)− 2T1(t) + T0(t)

(4x)2

Take lim4x ,4t→0

⇒ ∂T

∂t
= k

∂2T

∂x2
(Exercise)
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Heat Transfer

Extend to 2-D and put a source term f to easily get

∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+ f ≡ k 4T + f

Known as the Heat equation
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Other Important PDEs

Poisson equation (elliptic)

4u = f

Heat equation (parabolic)

∂T

∂t
= k 4T + f

Wave equation (hyperbolic)

1

ν2

∂2u

∂t2
= 4u + f

CS 594, 04-08-2020



Classification of PDEs

For a general second-order PDE in 2 variables:

Auxx + Buxy + Cuyy + · · · = 0

Elliptic:

if B2 − 4AC < 0

process in equilibrium (no time dependence)

easy to discretize but challenging to solve

Parabolic:

if B2 − 4AC = 0

processes evolving toward steady state

Hyperbolic:

if B2 − 4AC > 0

not evolving toward steady state

difficult to discretize (support discontinuoities) but easy to
solve in characteristic form
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How do we solve them?

Numerical solution approaches:

Finite difference method

Finite element method

Finite volume method

Boundary element method
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Finite Difference Method

use finite differences to approximate differential operators

one of the simplest and extensively used method in solving
PDEs

the error, called truncation error, is due to finite
approximation of the Taylor series of the differential operator
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A Finite Difference Method Example

Consider the 2-D Poisson equation:

∂2u

∂x2
+
∂2u

∂y2
= f

The idea, first in 1-D:

Use Taylor series to approximate d2u
dx2 (x) with

u(x), u(x + h), u(x − h)

u(x + h) = u(x) + h
du

dx
(x) +

h2

2

d2u

dx2
(x) +

h3

3!

d3u

dx3
(x) +O(h4)

u(x − h) = u(x)− h
du

dx
(x) +

h2

2

d2u

dx2
(x)−

h3

3!

d3u

dx3
(x) +O(h4)

⇒
d2u

dx2
(x) =

1

h2
(u(x + h) + u(x − h)− 2u(x)) +O(h2)
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A Finite Difference Method Example

Similarly in 2-D

Use Taylor series to approximate 4u(x , y) with
u(x , y), u(x + h, y), u(x − h, y), u(x , y + h), u(x , y − h).

u(x + h, y) = u(x, y) + h
∂u

∂x
(x, y) +

h2

2

∂2u

∂x2
(x, y) +

h3

3!

∂3u

∂x3
(x, y) +O(h4)

u(x − h, y) = u(x, y)− h
∂u

∂x
(x, y) +

h2

2

∂2u

∂x2
(x, y)−

h3

3!

∂3u

∂x3
(x, y) +O(h4)

u(x, y + h) = u(x, y) + h
∂u

∂y
(x, y) +

h2

2

∂2u

∂y2
(x, y) +

h3

3!

∂3u

∂y3
(x, y) +O(h4)

u(x, y − h) = u(x, y)− h
∂u

∂y
(x, y) +

h2

2

∂2u

∂y2
(x, y)−

h3

3!

∂3u

∂y3
(x, y) +O(h4)

⇒ ∆u(x, y) =
1

h2
(u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h)− 4u(x)) +O(h2)

CS 594, 04-08-2020



A Finite Difference Method Example
Consider the 1-D equation:

d2u

dx2
(x) = f (x), for x ∈ (0, 1)

and the Dirichlet boundary condition

u(0) = u(1) = 0

The interval [0, 1] is discretized uniformly with
n + 2 pointsb b b b b b b bx0 x1 xn xn+1

-�
h
-�
h

-�
h
-�
h

At any point xi we are looking for ui , an
approxmation of the exact solution u(xi ), using
the approximation

−ui−1 + 2ui − ui+1 = h2fi ,

and the fact that u0 = un+1 = 0 ,

we obtain a linear system of the form

Ax = b

where b = (fi )i=1,n and x = (ui )i=1,n and

A =
1

h2



2 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



(slide used material from Julien Langou’s presentation)
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A Finite Difference Method Example

Consider the 2-D Poisson equation:

∆u = f

and the Dirichlet boundary condition

u(x , y) = 0 for (x , y) ∈ ∂Ω

The interval [0, 1]× [0, 1] is discretized
uniformly with (n + 2)× (n + 2) points

b b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b b

6
?

h
-�
h

A =
1

h2



B −I
−I B −1

−I B −1

. . .
. . .

. . .

−I B −I
−I B


where B =



4 −1
−1 4 −1

−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4



(slide used material from Julien Langou’s presentation)
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Finite Element Method

Remember the slides from the previous lecture
http://www.cs.utk.edu/∼dongarra/WEB-PAGES/SPRING-2013/Lect10-2013.pdf

Main pluses/minuses of FEM vs FDM

FEM can handle complex geometries

FDM is easy to implement

CS 594, 04-08-2020

http://www.cs.utk.edu/~dongarra/WEB-PAGES/SPRING-2013/Lect10-2013.pdf


A Finite Element Method Example
Consider the 1-D Dirichlet problem:

(1) u′′(x) = f (x), for x ∈ (0, 1)

and the Dirichlet boundary condition
u(0) = u(1) = 0

Weak or Variational formulation:

Multiply (1) by smooth v and integrate over (0,1)

∫ 1

0
f (x)v(x)dx =

∫ 1

0
u′′(x)v(x)dx

Integrate by parts the above RHS

∫ 1

0
u′′(x)v(x)dx = u′(x)v(x)|10 −

∫ 1

0
u′(x)v′(x)dx

= −
∫ 1

0
u′(x)v′(x)dx ≡ −a(u, v)

Variational formulation: Find u ∈ H1
0 (0, 1) such that

∫ 1

0
f (x)v(x)dx = −a(u, v) for ∀v ∈ H1

0 (0, 1)
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A Finite Element Method Example

Discretization (Galerkin FE problem):

Replace H1
0 (0, 1) with finite dimensional subspace V

Shown is a 4 dimensional space V (basis in
blue) and a linear combination (in red)

What is the matrix form of the problem
(Exercise)
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Part II

Mesh Generation and Load Balancing

slides at: http://www.cs.utk.edu/∼dongarra/WEB-PAGES/SPRING-2013/Lect12-p2.pdf
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Part III

Tools for Numerical Solution of PDEs
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Parallel PDE Computations

Challenges:

Software Complexity

Data Distribution and Access

Portability, Algorithms, and Data Redistribution

Read more in Chapter 21
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Software for PDEs

There is software; to mention a few packages:

Overture
OO framework for PDEs in complex moving geometry

PARASOL
Parallel, sparse matrix solvers; in Fortran 90

SAMRAI
OO framework for parallel AMR applications

Hypre
Large sparse linear solvers and preconditioners

PETSc
Tools for numerical solution of PDEs

FFTW
parallel FFT routines

Diffpack
OO framework for solving PDEs

Doug
FEM for elliptic PDEs

POOMA
OO framework for HP applications

UG
PDEs on unstructured grids using multigrid

See also: http://www.mgnet.org/ http://www.nhse.org/ http://www.netlib.org/
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PETSc

PETSc: Portable, Extensible Toolkit for Scientific computation

for large-scale sparse systems

facilitate extensibility

provides interface to external packages, e.g.
BlockSolve95, ESSL, Matlab, ParMeTis,
PVODE, and SPAI.

programed in C, usable from Fortran and C++

uses MPI for all parallel communication

in a distributed-memory model
user do communication on level higher than MPI

Computation and communication kernels:
MPI, MPI-IO, BLAS, LAPACK
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PETSc’s Main Numerical Components

more info at: http://acts.nersc.gov/petsc/
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Learning Goals

A brief overview of Numerical PDEs and related issues

Mathematical modeling

PDEs for describing changes in physical processes

More specific discretization examples

Finite Differences (natural)
FEM
reinforce the idea and application of Petrov-Galerkin conditions

Issues related to mesh generation and load balancing and
importance in HPC

Adaptive methods

Software
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