
 Slide 1 / 41

Projection and its Importance
in Scientific Computing

__

COCS 594 Lecture Notes
04/12/2020

Stan Tomov
EECS Department

The University of Tennessee, Knoxville

April 12, 2020

 Slide 2 / 41

Contact information

 office : Claxton 317

 phone : (865) 974-6317

 email : tomov@cs.utk.edu

Additional reference materials:
[1] R.Barrett, M.Berry, T.F.Chan, J.Demmel, J.Donato, J. Dongarra, V. Eijkhout,

 R.Pozo, C.Romine, and H.Van der Vorst, Templates for the Solution of Linear Systems:

 Building Blocks for Iterative Methods (2nd edition)

 http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html

[2] Yousef Saad, Iterative methods for sparse linear systems (1st edition)

 http://www-users.cs.umn.edu/~saad/books.html

mailto:tomov@cs.utk.edu
http://www-users.cs.umn.edu/~saad/books.html

 Slide 3 / 41

Topics
as related to high-performance scientific computing‏

 Projection in

Scientific Computing

 PDEs, Numerical

solution, Tools, etc.

 Sparse matrices,

parallel implementations

 Iterative Methods

 Slide 4 / 41

Topics
on new architectures – multicore, GPUs (CUDA & OpenCL), MIC

 Projection in

Scientific Computing

 PDEs, Numerical

solution, Tools, etc.

 Sparse matrices,

parallel implementations

 Iterative Methods

 Slide 5 / 41

Outline

Part I
– Fundamentals

Part II
– Projection in Linear Algebra

Part III
– Projection in Functional Analysis (e.g. PDEs)

HPC with Multicore and GPUs

 Slide 6 / 41

Part I

Fundamentals

 Slide 7 / 41

Projection in Scientific Computing
[an example – in solvers for PDE discretizations]

 A model leading to self-consistent iteration with need for
 high-performance diagonalization and orthogonalization routines

 Slide 8 / 41

What is Projection?

Here are two examples
 (from linear algebra) (from functional analysis)

u

Pu e

P : orthogonal projection of

 vector u on e

0 1

1 e = 1

Pu

u = f(x)

P : best approximation (projection) of f(x)

 in span{ e } ⊂ C[0,1]

The error (u – Pu) to be
orthogonal to vector e

The error (u – Pu) to be
orthogonal to vector e

 Slide 9 / 41

Definition

Projection is a linear transformation P from
 a linear space V to itself such that
 P2 = P

equivalently
 Let V is direct sum of subspaces V

1
 and V

2

 V = V
1
  V

2

 i.e. for  u ∈ V there are unique u
1
∈ V

1
 and u

2
∈V

2
 s.t.

 u = u
1
+u

2

 Then P: VV

1
 is defined for  u ∈ V as Pu ≡ u

1

 Slide 10 / 41

Importance in Scientific
Computing

To compute approximations Pu  u where dim V
1
 << dim V

 V = V
1
  V

2

When computation directly in V is not feasible or even possible.

A few examples:

– Interpolation (via polynomial interpolation/projection)

– Image compression

– Sparse iterative linear solvers and eigensolvers

– Finite Element/Volume Method approximations

– Least-squares approximations, etc.

 Slide 11 / 41

Projection in R2

In R2 with Euclidean inner-product, i.e. for x, y ∈ R2

 (x, y) = x
1
 y

1
 + x

2
 y

2
 (= yT x = x⋅y)

 and || x || = (x, x)1/2

Pu
e

u

e

Pu = e (Exercise)
(u, e)

|| e ||2

P : orthogonal projection of

 vector u on e

 i.e. for || e || = 1

 Pu = (u, e) e

 Slide 12 / 41

Projection in Rn / Cn

Similarly to R2

P : Orthogonal projection of u into span{e
1
, ... , e

m
}, m ≤ n.

 Let e
i
, i = 1 ... m is orthonormal basis, i.e.

 (e
i
, e

j
) = 0 for i≠j and

 (e
i
, e

j
) = 1 for i=j

 P u = (u, e
1
) e

1
 + ... + (u, e

m
) e

m
(Exercise)

Orthogonal projection of u on e
1

 Slide 13 / 41

How to get an orthonormal basis?
Can get one from every subspace by Gram-Schmidt orthogonalization:

Input : m linearly independent vectors x
1
, ..., x

m

Output : m orthonormal vectors x
1
, ..., x

m

 1. x
1
 = x

1
 / || x

1
 ||

 2. do i = 2, m

 3. x
i
 = x

i
 - (x

i
, x

1
) x

1
 - ... - (x

i
, x

i-1
) x

i-1
(Exercise: x

i
  x

1
 , ... , x

i-1
)

 4. x
i
 = x

i
 / || x

i
 ||

 5. enddo

Known as Classical Gram-Schmidt (CGM) orthogonalization

Orthogonal projection of x
i
 on x

1

 Slide 14 / 41

How to get an orthonormal basis?

What if we replace line 3 with the following (3')?

 3. x
i
 = x

i
 - (x

i
, x

1
) x

1
 - ... - (x

i
, x

i-1
) x

i-1

3'. do j = 1, i-1

 x
i
 = x

i
 – (x

i
, x

j
) x

j

 enddo

Equivalent in exact arithmetic (Exercise) but not with round-off errors (next) !

Known as Modified Gram-Schmidt (MGS) orthogonalization

x
i

 Slide 15 / 41

CGS vs MGSCGS vs MGS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8 16 32 64

procs

ti
m

e
(s

) MGS 0500
MGS 1000
CGS 0500
CGS 1000

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32

procs

ti
m

e
(s

ec
)

MGS 0500
MGS 1000
MGS 2000
MGS 4000
CGS 0500
CGS 1000
CGS 2000
CGS 4000

 [Results from Julien Langou:]
Scalability of MGS and CGS on two different clusters for matrices of various size
m=[500 1000 2000 4000] per processor, n = 100

 Slide 16 / 41

CGS vs MGS

1.00E-19

1.00E-18

1.00E-17

1.00E-16

1.00E-15

1.
00

E
+

01

1.
00

E
+

02

1.
00

E
+

03

1.
00

E
+

04

1.
00

E
+

05

1.
00

E
+

06

1.
00

E
+

07

1.
00

E
+

08

1.
00

E
+

09

1.
00

E
+

10

K(A)

||A
 -

 Q
R

||/
||A

||
1.00E-15
1.00E-13
1.00E-11
1.00E-09
1.00E-07
1.00E-05
1.00E-03
1.00E-01

1.00E+01
1.00E+03

1.
00

E
+

01
1.

00
E

+
02

1.
00

E
+

03
1.

00
E

+
04

1.
00

E
+

05

1.
00

E
+

06
1.

00
E

+
07

1.
00

E
+

08

1.
00

E
+

09
1.

00
E

+
10

K(A)

||
I

-
Q

^
T

Q
 ||

CGS
MGS

 [Results from Julien Langou:]
Accuracy of MGS vs CGS on matrices of increasing condition number

 Slide 17 / 41

QR factorization

Let A = [x
1
, ... , x

m
] be the input for CGS/MGS and

 Q = [q
1
, ... , q

m
] the output;

R : an upper m  m triangular matrix defined from the CGR/MGS.

Then

 A = Q R

 Slide 18 / 41

Other QR factorizations
What about the following?
[known as Cholesky QR]

 1. G = ATA

 2. G = L LT (Cholesky factorization)

 3. Q = A (LT)-1

Does Q have orthonormal columns (i.e. QTQ=I),

i.e. A = QLT to be a QR factorization (Exercise)

When is this feasible and how compares to CGS and MGS?

 Slide 19 / 41

Other QR factorizations

Feasible when n >> m

Allows efficient parallel implementation:

blocking both computation and communication

AT GA

=
 P1 P2 . . .

Investigate numerically accuracy
and scalability
(compare to CGS and MGS)
Exercise

 Slide 20 / 41

How is done in LAPACK?
Using Householder reflectors

 H = I – 2 w wT

w = ? so that

 H x
1
 =  e

1

  w = ... (compute or look at the reference books)

Allows us to construct

 X
k
  H

k-1
 ... H

1
 X =

w
x

Hx

 Q
(Exercise(

LAPACK implementation : “delayed update” of the trailing matrix +

 “accumulate transformation” to apply it as BLAS 3

 Slide 21 / 41

Part II

 Projection in Linear Algebra

 Slide 22 / 41

Projection into general basis
How to define projection without orthogonalization of a basis?

– Sometimes is not feasible to orthogonalize

– Often the case in functional analysis

(e.g. Finite Element Method, Finite Volume Method, etc.)

where the basis is “linearly independent” functions (more later, and Lecture 2)

We saw if X = [x
1
, ... , x

m
] is an orthonormal basis

 (*) P u = (u, x
1
) x

1
 + ... + (u, x

m
) x

m

How does (*) change if X are just linearly independent ?

 P u = ?

 Slide 23 / 41

Projection into a general basis
The problem:
 Find the coefficients C = (c

1
 ... c

m
)T in

 P u = c
1
 x

1
 + c

2
 x

2
 + . . . + c

m
 x

m
 = X C

 so that

 u – Pu ⊥ span{x
1
, ..., x

m
}

 or ⇔ so that the error e in

 (1) u = P u + e

 is ⊥ span{x
1
, ..., x

m
}

 Slide 24 / 41

Projection into a general basis
(1) u = P u + e = c

1
 x

1
 + c

2
 x

2
 + . . . + c

m
 x

m
 + e

Multiply (1) on both sides by “test” vector/function x
j

(terminology from functional analysis) for j = 1,..., m

 (u , x
j
) = c

1
 (x

1
, x

j
)+ c

2
 (x

2
, x

j
)+ . . . + c

m
 (x

m
 , x

j
) + (e, x

j
)

i.e., m equations for m unknowns

In matrix notations (XT X) C = XT u (Exercise)

 XT Pu = XT u

XTX is the so called Gram matrix (nonsingular; why?) => there exists a unique

 solution C

0

 Slide 25 / 41

Normal equations
System
 (XT X) C = XT u

is known also as Normal Equations

The Method of Normal Equations:
Finding the projection (approximation) Pu ≡ XC (approximation)
of u in X by solving the Normal Equations system

 Slide 26 / 41

Least Squares (LS)
Equivalently, system
 (XT X) C = XT u

gives also the solution of the LS problem
 min || X C – u ||

since || v
1
 – u ||2 = || (v

1
 – Pu) – e ||2 = || v

1
 – Pu ||2 + || e ||2

 ≥ || e ||2 = || Pu – u ||2 for ∀ v
1
 ∈ V

1

C∈Rm

P u

 Slide 27 / 41

LS
Note that the usual notations for LS is: For A∈Rnm, b∈Rn find
 min || A x – b ||

Solving LS with QR factorization
 Let A = Q R, QTA = R = R

1
, QT b =

c

m

 0 d n - m
 Then
 || Ax – b ||2 = || QTAx – QTb ||2 = || R

1
x – c ||2 + || d ||2

 i.e. we get minimum if x is such that
 R

1
x = c

x∈Rm

 Slide 28 / 41

Projection and iterative solvers
The problem : Solve
 Ax = b in Rn

Iterative solution: at iteration i extract an approximate
 x

i
 from just a subspace V = span[v

1
, ..., v

m
] of Rn

How? As on slide 22, impose constraints:
 b – Ax  subspace W = span[w

1
,...,w

m
] of Rn, i.e.

 (*) (Ax, w
i
) = (b, w

i
) for ∀ w

i
 ∈W= span[w

1
,...,w

m
]

Conditions (*) known also as Petrov-Galerkin conditions

Projection is orthogonal: V and W are the same (Galerkin conditions) or

 oblique : V and W are different

 Slide 29 / 41

Matrix representation
 Let V = [v

1
, ..., v

m
], W = [w

1
,...,w

m
]

 Find y ∈Rm s.t. x = x
0
 + V y solves Ax = b, i.e.

 A V y = b – Ax
0
 = r

0

subject to the orthogonality constraints:

 WTA V y = WT r
0

The choice for V and W is crucial and determines various
methods (more in Lectures 13 and 14)

 Slide 30 / 41

A General Projection Algorithm

Prototype from Y.Saad's book

 Slide 31 / 41

Projection and Eigen-Solvers
The problem : Solve
 Ax = x in Rn

As in linear solvers: at iteration i extract an approximate
 x

i
 from a subspace V = span[v

1
, ..., v

m
] of Rn

How? As on slides 22 and 26, impose constraints:
 x – Ax  subspace W = span[w

1
,...,w

m
] of Rn, i.e.

 (*) (Ax, w
i
) = (x, w

i
) for ∀ w

i
 ∈W= span[w

1
,...,w

m
]

This procedure is known as Rayleigh-Ritz

Again projection can be orthogonal or oblique

 Slide 32 / 41

Matrix representation
 Let V = [v

1
, ..., v

m
], W = [w

1
,...,w

m
]

 Find y ∈Rm s.t. x = V y solves Ax = x, i.e.

 A V y = Vy

subject to the orthogonality constraints:

 WTA V y = WT Vy

The choice for V and W is crucial and determines various

methods (more in Lectures 4 and 5)

 Slide 33 / 41

Part III

Projection in PDEs

 Slide 34 / 41

Projection in Functional Spaces
The discussion so far can be applied to any functional inner-
product space (examples to follow)

An important space is C[a, b], the space of continuous functions
on [a, b], with inner-product
 b

 (f, g) = ∫f(x) g(x) dx

 a
and induced norm
 || f || = (f, f)1/2

 Slide 35 / 41

Projection in Functional Spaces
Projection P: V  V

1
 where V = V

1
  V

2

In functional analysis and scientific computing V
1
 is usually taken as

– Piecewise polynomials
• In PDE approximation (FEM/FVM), Numerical integration, etc.

– Trigonometric functions
 { sin(n x), cos(n x) }

n=0,...
 , x  [0, 2]

Orthogonal relative to 2

 (f, g) = ∫f(x) g(x) dx (Exercise)

 0

 Slide 36 / 41

Normal equations / LS
Exercise:

 f(x) = sin(x)
Find the projection in V

1
 = span{x, x3, x5} on interval [-1, 1] using

inner-product 1

 (f, g) = ∫f(x) g(x) dx

 -1

and norm || f || = (f,f)1/2

 Slide 37 / 41

Normal equations / LS
Leads to Gram matrix that is very ill-conditioned
(called Hilbert matrix: Gram matrix for polynomials 1, x, x2, x3, ...)

For numerical stability is better to orthogonalize the
polynomials

There are numerous examples of orthonormal
polynomial sets
 * Legendre, Chebyshev, Hermite, etc.

 * Check the literature for more if interested

 Slide 38 / 41

Integration via Polynomial Interpolation
Take

 ∫f(x) dx  ∫p(x) dx

where p is a polynomial approximation to f

Taking p a polynomial interpolating f at n+1 fixed nodes x
i
 leads to

quadrature formulas

 ∫f(x) dx A
0
 f(x

0
) + ... + A

n
 f(x

n
)

that are exact exact for polynomials of degree ≤n

Smart choice of the nodes x
i
 (Gaussian quadrature) leads to formulas

that are exact for polynomials of degree ≤2n+1

 Slide 39 / 41

Galerkin Projection
Numerical PDE discretizations have a common concept:

– Represent computational domain with mesh

– Approximate functions and operators over the mesh

 Slide 40 / 41

Galerkin Projection
Finite dimensional spaces (e.g. V

1
) can

can be piecewise polynomials
defined over the mesh, e.g.
Numerical solution of PDE (e.g. FEM)

– Boundary value problem: Au = f, subject to boundary conditions

– Get a “weak” formulation: (Au, ϕ) = (f, ϕ) - multiply by test function ϕ
 and integrate over the domain

 a(u, ϕ) = <f, ϕ> for ∀ ϕ ∈ S

– Galerkin (FEM) problem: Find uh ∈ Sh ⊂ S s.t.
 a(uh, ϕh) = <f, ϕh> for ∀ ϕh ∈ Sh

ϕi

i

 Slide 41 / 41

Learning Goals
To refresh some linear algebra essentials that are of fundamental
importance for scientific computing

The idea and application of Petrov-Galerkin conditions
as a way of defining computationally feasible formulations
(approximations)

Some generic examples demonstrating the ideas in

– Linear algebra

– Functional analysis
(to get more specific in the following lectures)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

