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Contact information

    office :  Claxton 317

    phone : (865) 974-6317

    email  : tomov@cs.utk.edu

Additional reference materials:
[1] R.Barrett, M.Berry, T.F.Chan, J.Demmel, J.Donato, J. Dongarra, V. Eijkhout,

      R.Pozo, C.Romine, and H.Van der Vorst, Templates for the Solution of Linear Systems:

      Building Blocks for Iterative Methods (2nd edition)

      http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html

[2] Yousef Saad, Iterative methods for sparse linear systems (1st edition)

      http://www-users.cs.umn.edu/~saad/books.html

      

mailto:tomov@cs.utk.edu
http://www-users.cs.umn.edu/~saad/books.html
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Topics
as related to high-performance scientific computing‏

      Projection in

Scientific Computing

           

 PDEs, Numerical 

solution, Tools, etc. 

    

     Sparse matrices, 

parallel implementations 

      

          Iterative Methods
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Topics
on new architectures – multicore, GPUs (CUDA & OpenCL), MIC 

      Projection in

Scientific Computing
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solution, Tools, etc. 
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parallel implementations 

      

          Iterative Methods
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Outline

Part I
– Fundamentals

Part II
– Projection in Linear Algebra

Part III
– Projection in Functional Analysis (e.g. PDEs)

HPC with Multicore and GPUs 
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Part I

Fundamentals
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Projection in Scientific Computing
[ an example – in solvers for PDE discretizations ]

 A model leading to self-consistent iteration with need for
  high-performance diagonalization and orthogonalization routines 
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What is Projection?

Here are two examples
      (from linear algebra)                                       (from functional analysis) 

u

Pu e

P : orthogonal projection of 

      vector u on e

0 1

1 e = 1

Pu

u = f(x)

P : best approximation (projection) of f(x)

     in span{ e } ⊂ C[0,1]

The error (u – Pu) to be
orthogonal to vector e

The error (u – Pu) to be
orthogonal to vector e
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Definition

Projection is a linear transformation P from
                      a linear space V to itself such that
                               P2 = P

equivalently
             Let V is direct sum of subspaces V

1
 and V

2

                               V = V
1
  V

2

             i.e. for  u ∈ V there are unique u
1
∈ V

1
 and u

2
∈V

2
 s.t. 

                                u = u
1
+u

2

                    
 Then P: VV

1
 is defined for   u ∈ V as Pu ≡ u

1
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Importance in Scientific
Computing

To compute approximations Pu  u where  dim V
1
 << dim V

                         V = V
1
  V

2

When computation directly in V is not feasible or even possible.

A few examples:

– Interpolation (via polynomial interpolation/projection)

– Image compression

– Sparse iterative linear solvers and eigensolvers

– Finite Element/Volume Method approximations

– Least-squares approximations, etc.
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Projection in R2

In R2 with Euclidean inner-product, i.e. for x, y ∈ R2

                                               (x, y) = x
1
 y

1
 + x

2
 y

2
     ( = yT x = x⋅y )

             and    || x || = (x, x)1/2

Pu
e

u

e

Pu =                e           (Exercise) 
(u, e)

|| e ||2

P : orthogonal projection of 

      vector u on e

   i.e. for || e || = 1

  Pu = (u, e) e
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Projection in Rn / Cn

Similarly to R2

P : Orthogonal projection of u into span{e
1
, ... , e

m
}, m ≤ n.

     Let e
i
, i = 1 ... m is orthonormal basis, i.e.

                                        (e
i
, e

j
) = 0          for i≠j  and    

                                        (e
i
, e

j
) = 1          for i=j

                             P u = (u, e
1
) e

1
 +  ...  + (u, e

m
) e

m       
( Exercise )

Orthogonal projection of u on e
1
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How to get an orthonormal basis?
Can get one from every subspace by Gram-Schmidt orthogonalization:

Input    : m linearly independent vectors x
1
, ..., x

m

Output : m orthonormal vectors x
1
, ..., x

m

          1.    x
1
 =  x

1
 / || x

1
 ||

          2.    do i = 2, m

          3.         x
i
 = x

i
 - (x

i
, x

1
) x

1
 - ... - (x

i
, x

i-1
) x

i-1           
(Exercise: x

i
    x

1
 , ... , x

i-1
)

          4.         x
i
 = x

i
 / || x

i
 ||  

          5.    enddo

Known as Classical Gram-Schmidt (CGM) orthogonalization

Orthogonal projection of x
i
 on x

1
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How to get an orthonormal basis?

What if we replace line 3 with the following (3')?

       3.         x
i
  =  x

i
 - (x

i
, x

1
) x

1
 - ... - (x

i
, x

i-1
) x

i-1  

           
3'.         do j = 1, i-1

                        x
i
 = x

i
 – (x

i
, x

j
) x

j

                    enddo

Equivalent in exact arithmetic (Exercise) but not with round-off errors (next) !

Known as Modified Gram-Schmidt (MGS) orthogonalization

x
i
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CGS vs MGSCGS vs MGS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8 16 32 64

# procs

ti
m

e 
(s

) MGS 0500
MGS 1000
CGS 0500
CGS 1000

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32

# procs

ti
m

e 
(s

ec
)

MGS 0500
MGS 1000
MGS 2000
MGS 4000
CGS 0500
CGS 1000
CGS 2000
CGS 4000

   [ Results from Julien Langou: ]
Scalability of MGS and CGS on two different clusters for matrices of various size
m=[500  1000  2000  4000] per processor, n = 100
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CGS vs MGS
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Q
 ||

CGS
MGS

   [ Results from Julien Langou: ]
Accuracy of MGS vs CGS on matrices of increasing condition number
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QR factorization

Let A = [x
1
, ... , x

m
] be the input for CGS/MGS and 

      Q = [q
1
, ... , q

m
] the output;

R : an upper m  m triangular matrix defined from the CGR/MGS.

Then

                                          A = Q R
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Other QR factorizations
What about the following? 
[known as Cholesky QR]

                             1.          G = ATA

                             2.          G = L LT      (Cholesky factorization)

                             3.          Q = A (LT)-1

Does Q have orthonormal columns (i.e. QTQ=I), 

i.e. A = QLT to be a  QR factorization (Exercise)

When is this feasible and how compares to CGS and MGS?
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Other QR factorizations

Feasible when n >> m

Allows efficient parallel implementation:

blocking both computation and communication

AT GA

=
    P1         P2          . . .

Investigate numerically accuracy 
and scalability 
(compare to CGS and MGS)
Exercise
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How is done in LAPACK?
Using Householder reflectors

          H = I – 2 w wT

w = ?   so that 

      H x
1
 =  e

1

        w =   ...   (compute or look at the reference books)

Allows us to construct

                  X
k
       H

k-1
 ... H

1
   X  = 

w
x

Hx

    Q
(Exercise(

LAPACK implementation : “delayed update” of the trailing matrix + 

                                             “accumulate transformation” to apply it as BLAS 3
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Part II 

 Projection in Linear Algebra 
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Projection into general basis
How to define projection without orthogonalization of a basis?

– Sometimes is not feasible to orthogonalize

– Often the case in functional analysis

(e.g. Finite Element Method, Finite Volume Method, etc.) 

where the basis is “linearly independent” functions (more later, and Lecture 2) 

We saw if X = [x
1
, ... , x

m
] is an orthonormal basis

        (*)             P u = (u, x
1
) x

1
 +  ...  + (u, x

m
) x

m

How does (*) change if X are just linearly independent ?

                      P u =                    ?
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Projection into a general basis
The problem:
      Find the coefficients C = (c

1
 ... c

m
)T in

             P u = c
1
 x

1
 + c

2
 x

2
 +  . . .  + c

m
 x

m
 = X C

       so that

             u – Pu  ⊥  span{x
1
, ..., x

m
}

      or   ⇔  so that the error e in 

      (1)           u  =  P u  +  e

      is ⊥  span{x
1
, ..., x

m
}
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Projection into a general basis
(1)          u  =  P u  +  e  =  c

1
 x

1
 + c

2
 x

2
 +  . . .  + c

m
 x

m 
 +  e

Multiply (1) on both sides by “test” vector/function x
j
 

(terminology from functional analysis) for  j = 1,..., m

      (u , x
j
) = c

1
 (x

1 
, x

j
)+ c

2
 (x

2 
, x

j
)+  . . .  + c

m
 (x

m
 , x

j
) + (e, x

j
)

i.e., m equations for m unknowns

In matrix notations (XT X) C = XT u           (Exercise)

                               XT Pu = XT u

XTX is the so called Gram matrix (nonsingular; why?)    =>  there exists a unique

                                                                                                solution C      

0
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Normal equations
System 
                       (XT X) C = XT u

is known also as Normal Equations

The Method of Normal Equations: 
Finding the projection (approximation) Pu ≡ XC (approximation)
of u in X by solving the Normal Equations system
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Least Squares (LS)
Equivalently, system 
                       (XT X) C = XT u

gives also the solution of the LS problem
                             min || X C – u ||

since       || v
1
 – u ||2  = || (v

1
 – Pu) – e ||2 = || v

1
 – Pu ||2 + || e ||2  

                                ≥ || e ||2  = || Pu – u ||2    for  ∀ v
1
 ∈ V

1

C∈Rm

P u
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LS
Note that the usual notations for LS is: For A∈Rnm, b∈Rn find 
                      min || A x – b ||

Solving LS with QR factorization
  Let     A = Q R,     QTA = R =   R

1     
,  QT b =

     
c

                        
m

                                                      0                    d            n - m
  Then 
            || Ax – b ||2 = || QTAx – QTb ||2 = || R

1
x – c ||2 + || d ||2

  i.e. we get minimum if x is such that
                                       R

1 
x = c

x∈Rm
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Projection and iterative solvers
The problem       :  Solve 
                                       Ax = b         in Rn

Iterative solution:   at iteration i extract an approximate
                               x

i
 from just a subspace V = span[v

1
, ..., v

m
] of Rn

How?                      As on slide 22, impose constraints:
                                b – Ax  subspace W = span[w

1
,...,w

m
] of Rn, i.e.

                 (*)           (Ax, w
i
) = (b, w

i
)       for ∀ w

i
 ∈W= span[w

1
,...,w

m
]

Conditions (*) known also as Petrov-Galerkin conditions

Projection is orthogonal: V and W are the same (Galerkin conditions) or

                          oblique      : V and W are different
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Matrix representation
 Let                          V = [v

1
, ..., v

m
],  W = [w

1
,...,w

m
]

 Find y ∈Rm  s.t.       x = x
0
 + V y       solves   Ax = b, i.e.

                         A V y = b – Ax
0
 = r

0    

                                                                   
subject to the orthogonality constraints:

                             WTA V y = WT r
0

The choice for V and W is crucial and determines various
methods (more in Lectures 13 and 14)
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A General Projection Algorithm

Prototype from Y.Saad's book
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Projection and Eigen-Solvers
The problem           :  Solve 
                                       Ax = x         in Rn

As in linear solvers:  at iteration i extract an approximate
                                  x

i
 from a subspace V = span[v

1
, ..., v

m
] of Rn

How?                      As on slides 22 and 26, impose constraints:
                                x – Ax  subspace W = span[w

1
,...,w

m
] of Rn, i.e.

                 (*)           (Ax, w
i
) = (x, w

i
)       for ∀ w

i
 ∈W= span[w

1
,...,w

m
]

This procedure is known as Rayleigh-Ritz

Again projection can be orthogonal or  oblique
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Matrix representation
 Let                          V = [v

1
, ..., v

m
],  W = [w

1
,...,w

m
]

 Find y ∈Rm  s.t.       x = V y       solves   Ax = x, i.e.

                         A V y = Vy
    

                                                                   
subject to the orthogonality constraints:

                             WTA V y =  WT Vy

The choice for V and W is crucial and determines various

methods (more in Lectures 4 and 5)
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Part III 

Projection in PDEs
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Projection in Functional Spaces
The discussion so far can be applied to any functional inner-
product space (examples to follow)

An important space is C[a, b], the space of continuous functions
on [a, b], with inner-product
                                    b

                      (f, g) = ∫f(x) g(x) dx

                                    a
and induced norm
                       || f || = (f, f)1/2
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Projection in Functional Spaces
Projection P: V  V

1
       where V = V

1
  V

2

In functional analysis and scientific computing V
1
 is usually taken  as

– Piecewise polynomials
• In PDE approximation (FEM/FVM), Numerical integration, etc.

– Trigonometric functions
     { sin(n x), cos(n x) }

n=0,...
 , x  [0, 2]

Orthogonal relative to               2

                                     (f, g) = ∫f(x) g(x)  dx          (Exercise)

                                                  0
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Normal equations / LS
Exercise:

                        f(x) = sin(x)
Find the projection in V

1
 = span{x, x3, x5} on interval [-1, 1] using

inner-product                          1

                       (f, g) = ∫f(x) g(x)  dx

                                              -1
         
and norm || f || = (f,f)1/2 
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Normal equations / LS
Leads to Gram matrix that is very ill-conditioned
(called Hilbert matrix: Gram matrix for polynomials 1, x, x2, x3, ...)

For numerical stability is better to orthogonalize the
polynomials

There are numerous examples of orthonormal
polynomial sets
  * Legendre, Chebyshev, Hermite, etc.

   * Check the literature for more if interested
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Integration via Polynomial Interpolation
Take 

                ∫f(x)  dx   ∫p(x)  dx  

where p is a polynomial approximation to f

Taking p a polynomial interpolating f at n+1 fixed nodes x
i
 leads to

quadrature formulas

                 ∫f(x)  dx  A
0
 f(x

0
) + ... + A

n
 f(x

n
)      

that are exact exact for polynomials of degree ≤n

Smart choice of the nodes x
i
 (Gaussian quadrature) leads to formulas

that are exact for polynomials of degree ≤2n+1
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Galerkin Projection
Numerical PDE discretizations have a common concept:

– Represent computational domain with mesh

– Approximate functions and operators over the mesh
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Galerkin Projection
Finite dimensional spaces (e.g. V

1
) can

can be piecewise polynomials
defined over the mesh, e.g. 
Numerical solution of PDE (e.g. FEM)

– Boundary value problem:      Au      =  f,    subject to boundary conditions

– Get a “weak” formulation:   (Au, ϕ) =  (f, ϕ)     - multiply by test function ϕ
                                                                              and integrate over the domain

                                             a(  u, ϕ) = <f, ϕ>  for ∀ ϕ ∈ S

– Galerkin (FEM) problem:   Find uh ∈ Sh ⊂ S  s.t.
                                            a(  uh, ϕh) = <f, ϕh>  for ∀ ϕh ∈  Sh

ϕi

i
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Learning Goals
To refresh some linear algebra essentials that are of fundamental
importance for scientific computing

The idea and application of Petrov-Galerkin conditions 
as a way of defining computationally feasible formulations
(approximations)

Some generic examples demonstrating the ideas in

– Linear algebra

– Functional analysis 
(to get more specific in the following lectures)
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