Projection and its Importance in Scientific Computing

Stan Tomov

EECS Department The University of Tennessee, Knoxville

April 12, 2020

COCS 594 Lecture Notes 04/12/2020

Slide 1 / 41

Contact information office : Claxton 317 phone : (865) 974-6317 email : tomov@cs.utk.edu

Additional reference materials:

- [1] R.Barrett, M.Berry, T.F.Chan, J.Demmel, J.Donato, J. Dongarra, V. Eijkhout, R.Pozo, C.Romine, and H.Van der Vorst, *Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd edition)* http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html
- [2] Yousef Saad, Iterative methods for sparse linear systems (1st edition) http://www-users.cs.umn.edu/~saad/books.html

Topics

as related to **high-performance scientific computing**

LABORATORY

Topics

on new architectures – multicore, GPUs (CUDA & OpenCL), MIC

Outline

- Part I – Fundamentals
- Part II

– Projection in Linear Algebra

Part III

– Projection in Functional Analysis (e.g. PDEs)

HPC with Multicore and GPUs

Part I

Fundamentals

Slide 6 / 41

Projection in Scientific Computing [an example – in solvers for PDE discretizations]

Electronic structure calculations

· Density functional theory

Many-body Schrödinger equation (exact but exponential scaling)

$$[-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,j} \frac{Z}{|r_{i} - R_{j}|} \} \Psi(r_{1}, .., r_{N}) = E \Psi(r_{1}, .., r_{N})$$

 Nuclei fixed, generating external potential (system dependent, non-trivial)
 N is number of electrons

Kohn Sham Equation: The many body problem of interacting electrons is reduced to non-interacting electrons (single particle problem) with the same electron density and a different effective potential (cubic scaling).

$$\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{i} \frac{Z}{|r-R_{i}|} + V_{xc}\}\psi_{i}(r) = E_{i}\psi_{i}(r)$$

$$\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{1},..r_{N})|^{2}$$

- V_{xc} represents effects of the Coulomb interactions between electrons
- · ρ is the density (of the original many-body system)

 V_{xc} is not known except special cases \Rightarrow use approximation, e.g. Local Density Approximation (LDA) where V_{xc} depends only on ρ

• A model leading to self-consistent iteration with need for high-performance diagonalization and orthogonalization routines

What is Projection?

Here are two examples

(from linear algebra)

(from functional analysis)

P : orthogonal projection of vector u on e

P : best approximation (projection) of f(x)in span{ e } $\subset C[0,1]$

Definition

• **Projection** is a linear transformation P from a linear space V to itself such that $P^2 = P$

equivalently

Let V is direct sum of subspaces
$$V_1$$
 and V_2
 $V = V_1 \oplus V_2$
i.e. for $\forall u \in V$ there are unique $u_1 \in V_1$ and $u_2 \in V_2$ s.t.
 $u = u_1 + u_2$
Then P: $V \rightarrow V_1$ is defined for $\forall u \in V$ as $Pu \equiv u_1$

THEUNIVERSITY

Computer Science Departmen

Slide 9 / 41

Importance in Scientific Computing

- To compute approximations Pu \approx u where **dim** V₁ << **dim** V V = V₁ \oplus V₂
- When computation directly in V is not feasible or even possible.
 - <u>A few examples</u>:
 - Interpolation (via polynomial interpolation/projection)
 - Image compression
 - Sparse iterative linear solvers and eigensolvers
 - Finite Element/Volume Method approximations
 - Least-squares approximations, etc.

Projection in R²

• In R² with Euclidean inner-product, i.e. for x, $y \in R^2$ (x, y) = $x_1 y_1 + x_2 y_2$ (= $y^T x = x \cdot y$) and $||x|| = (x, x)^{1/2}$

DVATIVE COMPUTING LABORATORY

THEUNIVERSITY of

Projection in Rⁿ/Cⁿ

- Similarly to R²
 - P : Orthogonal projection of u into span $\{e_1, ..., e_m\}, m \le n$.

Let e_i , $i = 1 \dots m$ is **orthonormal** basis, i.e.

$$(\mathbf{e}_{i}, \mathbf{e}_{j}) = 0$$
 for $i \neq j$ and
 $(\mathbf{e}_{i}, \mathbf{e}_{j}) = 1$ for $i=j$
 $\mathbf{P} \mathbf{u} = (\mathbf{u}, \mathbf{e}_{1}) \mathbf{e}_{1} + \dots + (\mathbf{u}, \mathbf{e}_{m}) \mathbf{e}_{m}$ (Exercise)
 \uparrow

Orthogonal projection of u on e_1

How to get an orthonormal basis?

Can get one from every subspace by Gram-Schmidt orthogonalization:
 <u>Input</u> : m linearly independent vectors x₁, ..., x_m
 <u>Output</u> : m orthonormal vectors x₁, ..., x_m

1.
$$x_{1} = x_{1} / ||x_{1}||$$

2. do i = 2, m
3. $x_{i} = x_{i} - (x_{i}, x_{1}) x_{1} - ... - (x_{i}, x_{i-1}) x_{i-1}$ (Exercise: $x_{i} \perp x_{1}, ..., x_{i-1}$)
4. $x_{i} = x_{i} / ||x_{i}||$
5. enddo
5. enddo

Known as Classical Gram-Schmidt (CGM) orthogonalization

How to get an orthonormal basis?

• What if we replace line 3 with the following (3')?

enddo

- Equivalent in exact arithmetic (Exercise) but not with round-off errors (next) !
- Known as **Modified Gram-Schmidt** (MGS) orthogonalization

CGS vs MGS

[Results from Julien Langou:]

Scalability of MGS and CGS on two different clusters for matrices of various size $m=[500 \ 1000 \ 2000 \ 4000]$ per processor, n = 100

CGS vs MGS

[Results from Julien Langou:]

Accuracy of MGS vs CGS on matrices of increasing condition number

ICL C UI

INNOVATIVE COMPUTING LABORATORY

THEUNIVERSITY

Computer Science Depa

QR factorization

$$\mathbf{A} = \mathbf{Q} \mathbf{R}$$

Other QR factorizations

• What about the following?

[known as Cholesky QR]

- 1. $G = A^{T}A$ 2. $G = L L^{T}$ (Cholesky factorization) 3. $Q = A (L^{T})^{-1}$
- Does Q have orthonormal columns (i.e. Q^TQ=I),
 i.e. A = QL^T to be a QR factorization (Exercise)
- When is this feasible and how compares to CGS and MGS?

Other QR factorizations

- Feasible when n >> m
- Allows efficient parallel implementation:
 blocking both computation and communication

How is done in LAPACK?

• Using Householder reflectors

 $\mathbf{H} = \mathbf{I} - \mathbf{2} \mathbf{w} \mathbf{w}^{\mathrm{T}}$

• w = ? so that H $x_1 = \alpha e_1$

 \Rightarrow w = ... (compute or look at the reference books)

LAPACK implementation : "delayed update" of the trailing matrix +

"accumulate transformation" to apply it as BLAS 3

Part II Projection in Linear Algebra

Slide 21 / 41

Projection into general basis

- How to define projection without orthogonalization of a basis?
 - Sometimes is not feasible to orthogonalize
 - Often the case in functional analysis
 (e.g. Finite Element Method, Finite Volume Method, etc.)
 where the basis is "linearly independent" functions (more later, and Lecture 2)
- We saw if $X = [x_1, ..., x_m]$ is an orthonormal basis

(*)
$$\mathbf{P} \mathbf{u} = (\mathbf{u}, \mathbf{x}_1) \mathbf{x}_1 + \dots + (\mathbf{u}, \mathbf{x}_m) \mathbf{x}_m$$

• How does (*) change if X are just linearly independent? $\mathbf{P} \mathbf{u} = ?$

Projection into a general basis

• The problem:

Find the coefficients $C = (c_1 \dots c_m)^T$ in

$$P u = c_1 x_1 + c_2 x_2 + \dots + c_m x_m = X C$$

so that

$$u - Pu \perp span\{x_1, ..., x_m\}$$

or \Leftrightarrow so that the error e in

(1) $\mathbf{u} = \mathbf{P} \mathbf{u} + \mathbf{e}$

is \perp span{ $x_1, ..., x_m$ }

Projection into a general basis

• (1)
$$\mathbf{u} = \mathbf{P} \, \mathbf{u} + \mathbf{e} = \mathbf{c}_1 \, \mathbf{x}_1 + \mathbf{c}_2 \, \mathbf{x}_2 + \ldots + \mathbf{c}_m \, \mathbf{x}_m + \mathbf{e}_m \,$$

 Multiply (1) on both sides by "*test*" vector/function x_j (terminology from functional analysis) for j = 1,..., m

$$(\mathbf{u}, \mathbf{x}_{j}) = \mathbf{c}_{1}(\mathbf{x}_{1}, \mathbf{x}_{j}) + \mathbf{c}_{2}(\mathbf{x}_{2}, \mathbf{x}_{j}) + \ldots + \mathbf{c}_{m}(\mathbf{x}_{m}, \mathbf{x}_{j}) + (\mathbf{e}, \mathbf{x}_{j})$$

- i.e., **m** equations for **m** unknowns
- In matrix notations \Leftrightarrow (X^T X) C = X^T u (Exercise) \Leftrightarrow X^T Pu = X^T u
- X^TX is the so called Gram matrix (nonsingular; why?) => there exists a unique solution C

Normal equations

• System

 $(\mathbf{X}^{\mathrm{T}} \mathbf{X}) \mathbf{C} = \mathbf{X}^{\mathrm{T}} \mathbf{u}$ is known also as **Normal Equations**

• The *Method of Normal Equations*:

Finding the projection (approximation) Pu = XC (approximation) of u in X by solving the Normal Equations system

Least Squares (LS)

• Equivalently, system $(\mathbf{X}^{\mathrm{T}} \mathbf{X}) \cdot \mathbf{C} = \mathbf{X}^{\mathrm{T}} \mathbf{u} \quad P \mathbf{u}$ gives also the solution of the LS problem $\min_{\mathbf{C} \in \mathbb{R}^{m}} || \mathbf{X} \mathbf{C} - \mathbf{u} ||$ since $|| \mathbf{v}_{1} - \mathbf{u} ||^{2} = || (\mathbf{v}_{1} - P\mathbf{u}) - \mathbf{e} ||^{2} = || \mathbf{v}_{1} - P\mathbf{u} ||^{2} + || \mathbf{e} ||^{2}$ $\geq || \mathbf{e} ||^{2} = || P\mathbf{u} - \mathbf{u} ||^{2} \text{ for } \forall \mathbf{v}_{1} \in \mathbf{V}_{1}$

LS

• Note that the usual notations for LS is: For $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$ find

$$\min_{x\in R^{m}}\parallel A x - b \parallel$$

• Solving LS with QR factorization

Let
$$A = Q R$$
, $Q^T A = R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$, $Q^T b = \begin{pmatrix} c \\ d \end{pmatrix}$ m
Then

Then

$$|| Ax - b ||^2 = || Q^T Ax - Q^T b ||^2 = || R_1 x - c ||^2 + || d ||^2$$

i.e. we get minimum if x is such that

$$\mathbf{R}_1 \mathbf{x} = \mathbf{c}$$

ICL

INNOVATIVE COMPUTING LABORATORY Slide 27 / 41

Projection and iterative solvers

• The problem : Solve

$$Ax = b$$
 in R^n

- Iterative solution: at iteration **i** extract an approximate \mathbf{x}_i from just a subspace V = span[$v_1, ..., v_m$] of Rⁿ
- How? As on slide 22, impose constraints: $b - Ax \perp subspace W = span[w_1,...,w_m] of R^n$, i.e.
 - (*) $(Ax, w_i) = (b, w_i)$ for $\forall w_i \in W = span[w_1, ..., w_m]$
- Conditions (*) known also as Petrov-Galerkin conditions
- Projection is *orthogonal*: V and W are the same (Galerkin conditions) or *oblique* : V and W are different

• Let $V = [v_1, ..., v_m], W = [w_1, ..., w_m]$ Find $y \in \mathbb{R}^m$ s.t. $\mathbf{x} = \mathbf{x_0} + \mathbf{V} \mathbf{y}$ solves $A\mathbf{x} = \mathbf{b}$, i.e. $\mathbf{A} \mathbf{V} \mathbf{y} = \mathbf{b} - A\mathbf{x_0} = \mathbf{r_0}$

subject to the orthogonality constraints:

$$\mathbf{W}^{\mathrm{T}}\mathbf{A} \mathbf{V} \mathbf{y} = \mathbf{W}^{\mathrm{T}} \mathbf{r}_{\mathbf{0}}$$

• The choice for V and W is crucial and determines various methods (more in Lectures 13 and 14)

A General Projection Algorithm

- Prototype from Y.Saad's book
 - 1. Until convergence, Do:
 - 2. Select a pair of subspaces K and L
 - 3. Choose bases $V = [v_1, \ldots, v_m]$ and $W = [w_1, \ldots, w_m]$ for \mathcal{K} and \mathcal{L}

$$4. \quad r := b - Ax$$

 $5. \quad y := (W^T A V)^{-1} W^T r$

$$6. \qquad x := x + Vy$$

7. EndDo

Projection and Eigen-Solvers

• The problem : Solve

 $Ax = \lambda x$ in R^n

- As in linear solvers: at iteration i extract an approximate
 x_i from a subspace V = span[v₁, ..., v_m] of Rⁿ
- How? As on slides 22 and 26, impose constraints: $\lambda x - Ax \perp subspace W = span[w_1,...,w_m] of R^n$, i.e.
 - (*) $(Ax, w_i) = (\lambda x, w_i)$ for $\forall w_i \in W = span[w_1, ..., w_m]$
- This procedure is known as **Rayleigh-Ritz**
- Again projection can be *orthogonal* or *oblique*

Matrix representation

• Let $V = [v_1, ..., v_m], W = [w_1, ..., w_m]$ Find $y \in \mathbb{R}^m$ s.t. $\mathbf{x} = \mathbf{V} \mathbf{y}$ solves $A\mathbf{x} = \lambda \mathbf{x}$, i.e. $\mathbf{A} \mathbf{V} \mathbf{y} = \lambda \mathbf{V} \mathbf{y}$

subject to the orthogonality constraints:

 $\mathbf{W}^{\mathrm{T}}\mathbf{A} \mathbf{V} \mathbf{y} = \mathbf{\lambda} \mathbf{W}^{\mathrm{T}} \mathbf{V} \mathbf{y}$

 The choice for V and W is crucial and determines various methods (more in Lectures 4 and 5)

Part III Projection in PDEs

Slide 33 / 41

Projection in Functional Spaces

- The discussion so far can be applied to any functional innerproduct space (examples to follow)
- An important space is **C[a, b]**, the space of continuous functions on [a, b], with inner-product

$$(f, g) = \int f(x) g(x) dx$$

and induced norm

$$\| f \| = (f, f)^{1/2}$$

UNIVERSITY of UNNESSEE Juter Science Department

Projection in Functional Spaces

- Projection P: $V \rightarrow V_1$ where $V = V_1 \oplus V_2$
- In functional analysis and scientific computing V_1 is usually taken as
 - Piecewise polynomials
 - In PDE approximation (FEM/FVM), Numerical integration, etc.

 2π

- Trigonometric functions

 $\{ \sin(n x), \cos(n x) \}_{n=0,...}, x \in [0, 2\pi]$

Orthogonal relative to

$$(f, g) = \int f(x) g(x) dx$$
 (Exercise)
0

Normal equations / LS

• Exercise:

f(x) = sin(x)Find the projection in V₁ = span{x, x³, x⁵} on interval [-1, 1] using inner-product

$$(f, g) = \int f(x) g(x) dx$$

-1

and norm $|| f || = (f,f)^{1/2}$

Normal equations / LS

- Leads to Gram matrix that is very ill-conditioned (called Hilbert matrix: Gram matrix for polynomials 1, x, x², x³, ...)
- For numerical stability is better to orthogonalize the polynomials
- There are numerous examples of orthonormal polynomial sets
 - * Legendre, Chebyshev, Hermite, etc.
 - * Check the literature for more if interested

Integration via Polynomial Interpolation

Take

$$\int f(x) dx \approx \int p(x) dx$$

where p is a polynomial approximation to f

Taking p a polynomial interpolating f at n+1 fixed nodes x_i leads to quadrature formulas

$$\int f(x) \, dx \approx A_0 f(x_0) + ... + A_n f(x_n)$$

that are exact exact for polynomials of degree $\leq n$

• Smart choice of the nodes x_i (Gaussian quadrature) leads to formulas that are exact for polynomials of degree $\leq 2n+1$

Galerkin Projection

- Numerical PDE discretizations have a common concept:
 - Represent computational domain with mesh
 - Approximate functions and operators over the mesh

Galerkin Projection

Finite dimensional spaces (e.g. V₁) can can be piecewise polynomials defined over the mesh, e.g.

- Numerical solution of PDE (e.g. FEM)
 - Boundary value problem: Au = f, subject to boundary conditions
 - Get a "weak" formulation: $(Au, \phi) = (f, \phi)$ multiply by test function ϕ and integrate over the domain

a(u,
$$\phi$$
) = $\langle f, \phi \rangle$ for $\forall \phi \in S$

- Galerkin (FEM) problem: Find $u_h \in S_h \subset S$ s.t. a(u_h, ϕ_h) = <f, ϕ_h > for $\forall \phi_h \in S_h$

Learning Goals

- To refresh some linear algebra essentials that are of fundamental importance for scientific computing
- The idea and application of **Petrov-Galerkin conditions** as a way of defining computationally feasible formulations (approximations)
- Some generic examples demonstrating the ideas in
 - Linear algebra
 - Functional analysis
 - (to get more specific in the following lectures)

