High Performance Design of Batched Tensor Computations: Performance Analysis, Modeling, Tuning and Optimization

Azzam Haidar Ahmad Abdelfattah, Jack Dongarra, Stan Tomov MAGMA team @ ICL.UTK.EDU

MAGMA: Batched, Tensor, Deep Learning, Embedded, LA

Some of my thoughts and observations

- Design: library v.s. paper
- Design: standard v.s. interleaved
- Methodology, Performance Model and Performance Counter Analysis
- Small sizes results

- Working on MAGMA customized kernel for Deep Learning and tensor contraction
- How a 2X speedup can be faster than 10X
- Some of my observations on benchmark reporting
- I am not going to talk about accuracy reproducibility (Jim cover it) but rather I am going to talk benchmark reproducibility

initialize (A, B, C);
flush cache large data
start_timer
call mydgemm_batched
end_timer

initialize (A, B, C);
flush cache large data
start_timer
for (i=0; i<maxiter; i++)
 call mydgemm_batched
end_timer</pre>

initialize (A, B, C);
flush cache large data
start_timer
for (i=0; i<maxiter; i++)
 call mydgemm_batched
end_timer</pre>

Some of my thoughts and observations

• Reproducibility and reliability

Design: library v.s. paper

- Design: standard v.s. interleaved
- Methodology, Performance Model and Performance Counter Analysis
- Small sizes results

- Library need to follow standard interface
 - Which might add many overhead in particular for small matrices
- Library have to be used by developers, applications
- Library have to be generic and accommodate at least most practical cases
- A library (.a .so) cannot be 1 GB, so template instantiation should be limited
- Library have to reliable and robust
- Maybe reproducible accuracy

- A library should check argument error
- A Library should also check for numerical error and need to be conform with the standard (e.g., Cholesky, LU, and QR need to check for: diag error, singularity, overflow, underflow etc..)

• Papers, posters, proposals:

- I have seen code without any checking,
- Even sometimes without accuracy verification, or with self made error checking
- Most of the time compiled for every size for every run,
- Work only on a very particular case
- That's fine when dealing with particular application but cannot be adopted in a library

Some of my thoughts and observations

- Reproducibility and reliability
- Design: library v.s. paper
- Design: standard v.s. interleaved
- Methodology, Performance Model and Performance Counter Analysis
- Small sizes results

Design: standard v.s. interleaved

Interleaved is good but:

- gemm might work
- Cholesky, is easy to implement but when the matrix is larger than 16/32 the matrices might not fit into the reg/sm of the SMX, and thus the matrix is going to be reloaded at every update.
- LU what is going to happen when every matrix has different pivot
- How to handle variable sizes (gemm, lu, QR LA)
- Iterative solvers working on different set of batched matrices might converge while the other set still iterating.
- Multifrontal solver where some data is runtime created and fill in occur
- Standard format showed very good performance and efficiency, but sure effort from analyzing, to modeling, to design to tuning is needed to reach this

Some of my thoughts and observations

- Reproducibility and reliability
- Design: library v.s. paper
- Design: standard v.s. interleaved
- Methodology, Performance Model and Performance Counter Analysis
- Small sizes results

GPU Optimization Summary

- Hardware concepts
 - CUDA core
 - Warp
 - Half-warp
 - Register file
 - Shared memory
 - Atomics
 - Shuffles
 - SMX

Software concepts

- Stream
- Thread block
- Kernel
- Inlining
- Intrinsics

Algorithmic concepts

- Blocking
- Recursive blocking
- Kernel replacement
- Out-of-place operations

Classical strategies design

 For large problems the strategy is to prioritize the data-intensive operations to be executed by the accelerator and keep the memory-bound ones for the CPUs since the hierarchical caches are more appropriate to handle it

Challenges

 Cannot be used here since matrices are very small and communication becomes expensive

Proposition

Develop a GPU-only implementation

Classical strategies design

• For large problems performance is driven by the Level 3 BLAS (GEMM)

Challenges

• For batched small matrices it is more complicated

Proposition

Rethink and Redesign both phases in a tuned efficient way

Key observations and current situation:

Classical strategies design

 A recommended way of writing efficient GPU kernels is to use the whole GPU's shared memory,registers/TB – load it with data and reuse that data in computations as much as possible.

Challenges

 Our study and experience shows that this procedure provides very good performance for classical GPU kernels but is **not that appealing for batched algorithm** for different reasons.

Challenges

- Completely saturating the shared memory per SMX can decrease the performance of memory bound operations, since only one thread-block will be mapped to that SMX at a time (low occupancy)
- Due to the **limited parallelism** in the small matrices, the number of threads used in the thread block will be limited, resulting in low occupancy, and subsequently poor core utilization
- Shared memory is small (48KB/SMX) to fit the whole panel
- The panel involves Non-GPU friendly operations:
 - Vectors column (find the max, scale, norm, reduction)
 - Row interchanges (swap)
 - Small number of vectors (apply)

Proposition: custom design per operations type

Performance metrics analysis

 A recommended way of writing efficient GPU kernels is to use the whole GPU's shared memory, registers/TB – load it with data and reuse that data in computations as much as possible.

fixed size batched dpotrf (kernel-1), batchCount = 3000, 1 K40c GPU

Performance metrics analysis

 A recommended way of writing efficient GPU kernels is to use the whole GPU's shared memory, registers/TB – load it with data and reuse that data in computations as much as possible.

Performance metrics analysis

A recommended way of writing efficient GPU kernels is to use the whole GPU's shared memory, registers/TB – load it with data and reuse that data in computations as much as possible.
 We should focus on the

Performance metrics analysis

 A recommended way of writing efficient GPU kernels is to use the whole GPU's shared memory, registers/TB – load it with data and reuse that data in computations as much as possible.

• For square matrices $F \approx 2n^3$, $T_{min} = min_T (T_{Read(A,B,C)} + T_{Compute(C)} + T_{Write(C)})$

Need to read/write 4 n² elements, i.e., 32n² Bytes in DP
 => if max bandwidth is B, we can take T_{min} = 32 n² / B in DP. Thus,

$$P_{max} = \frac{2n^3B}{32n^2} = \frac{nB}{16}$$
 in DP.

 With ECC on, peak on B on a K40c is ≈180 GB/s, so when n=16 for example, we expect theoretical max performance of 180 Gflop/s in DP

Nvidia P100

Tegra ARM

�iCl

Future trending direction

- Extended functionality and variable sizes
- Customized batched routines for Deep Learning
- FP16 batched routines coming soon
- Sparse components SpDMM, SpMM, SpMV, etc
- Introducing interleaved format
- More Applications specific design
- MAGMA Embedded
- MAGMA DL
- I would encourage a framework for accuracy and performance benchmarking

Collaborators and Support

MAGMA team http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville Lawrence Livermore National Laboratory, Livermore, CA University of California, Berkeley University of Colorado, Denver INRIA, France (StarPU team) KAUST, Saudi Arabia

Fhe MathWorks

University

INRIA

Rutherford Appleton Laboratory

University of Manchester

ΔΜD

intel