
High Performance Design of Batched Tensor
Computations: Performance Analysis,

Modeling, Tuning and Optimization

Azzam Haidar
Ahmad Abdelfattah, Jack Dongarra, Stan Tomov

MAGMA team @ ICL . UTK . EDU
MAGMA: Batched, Tensor, Deep Learning, Embedded, LA

Some of my thoughts and observations

• Reproducibility and reliability
• Design: library v.s. paper
• Design: standard v.s. interleaved
• Methodology, Performance Model and

Performance Counter Analysis
• Small sizes results

2

Reproducibility and reliability

Reproducibility and reliability

• Working on MAGMA customized kernel for Deep
Learning and tensor contraction

• How a 2X speedup can be faster than 10X
• Some of my observations on benchmark

reporting
•  I am not going to talk about accuracy

reproducibility (Jim cover it) but rather I am
going to talk benchmark reproducibility

3

Reproducibility and reliability

4

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

20

40

60

80

100

120

140

160

180

200
Intel Xeon E5-2650 v3 (Haswell) 20 cores

batch 400
initialize (A, B, C);
start_timer
call mydgemm_batched
end_timer

DRAM

L2 cache

Reproducibility and reliability

5

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

20

40

60

80

100

120

140

160

180

200
Intel Xeon E5-2650 v3 (Haswell) 20 cores

batch 400
batch 10000

initialize (A, B, C);
start_timer
call mydgemm_batched
end_timer

DRAM

L2 cache

Reproducibility and reliability

6

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

20

40

60

80

100

120

140

160

180

200
Intel Xeon E5-2650 v3 (Haswell) 20 cores

batch 400
batch 10000
flushing any batch

initialize (A, B, C);
flush cache large data
start_timer
call mydgemm_batched
end_timer

DRAM

L2 cache

Reproducibility and reliability

7

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400
Intel Xeon E5-2650 v3 (Haswell) 20 cores

batch 400
batch 10000
flushing any batch
loop maxiter batch 400
loop maxiter batch 10000

initialize (A, B, C);
flush cache large data
start_timer
for (i=0; i<maxiter; i++)
 call mydgemm_batched
end_timer

DRAM

L2 cache

Reproducibility and reliability

8

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400

450
Intel Xeon Phi 7250 KNL 68 cores

flushing batch 400
flushing batch 10000
loop maxiter batch 400
loop maxiter batch 10000

initialize (A, B, C);
flush cache large data
start_timer
for (i=0; i<maxiter; i++)
 call mydgemm_batched
end_timer

DRAM

L2 cache

Reproducibility and reliability

9

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400

450
Intel Xeon Phi 7250 KNL 68 cores

flushing batch 400
flushing batch 10000
loop maxiter batch 400
loop maxiter batch 10000

initialize (A, B, C);
flush cache large data
start_timer
for (i=0; i<maxiter; i++)
 call mydgemm_batched
end_timer

DRAM

L2 cache

The SCALAPACK SVD story
LAPACK: it performs an QR(A) then SVD on R=UΣVT then U=Q*U
Unfortunately Scalapack do not perform this and so comparing
tall-skinny SVD against Scalapack is always a win-big.
However a very simple 3 lines of codes can fix the issue
pdgeqrf
pdgesvd
pdormqr

SVD A

Some of my thoughts and observations

• Reproducibility and reliability
• Design: library v.s. paper
• Design: standard v.s. interleaved
• Methodology, Performance Model and

Performance Counter Analysis
• Small sizes results

10

Design: library v.s. paper

Design: library v.s. paper

•  Library need to follow standard interface
•  Which might add many overhead in particular for small matrices

•  Library have to be used by developers, applications
•  Library have to be generic and accommodate at least

most practical cases
•  A library (.a .so) cannot be 1 GB, so template

instantiation should be limited
•  Library have to reliable and robust
• Maybe reproducible accuracy

11

Design: library v.s. paper

•  A library should check argument error
•  A Library should also check for numerical error and

need to be conform with the standard (e.g., Cholesky, LU, and
QR need to check for: diag error, singularity, overflow, underflow etc..)

•  Papers, posters, proposals:
•  I have seen code without any checking,
•  Even sometimes without accuracy verification, or with self made error

checking
•  Most of the time compiled for every size for every run,
•  Work only on a very particular case
•  That’s fine when dealing with particular application but cannot be adopted

in a library

12

Design: library v.s. paper

13

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

2n
3 /3

0

50

100

150

200
Nvidia P100

LU instantiation for every size
LU generic any size

Design: library v.s. paper

14

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

2n
3 /3

0

50

100

150

200
Nvidia P100

LU instantiation for every size
LU generic any size
what we would like to have

Design: library v.s. paper

15

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

100

200

300

400

500

600

700

800

900

1000

1100
Nvidia P100

Magma tensor dgemm predefined size at compile time
Magma batched dgemm generic small
cuBLAS v8.0

Some of my thoughts and observations

• Reproducibility and reliability
• Design: library v.s. paper
• Design: standard v.s. interleaved
• Methodology, Performance Model and

Performance Counter Analysis
• Small sizes results

16

Design: standard v.s. interleaved

Design: standard v.s. interleaved
•  Interleaved is good but:

•  gemm might work
•  Cholesky, is easy to implement but when the matrix is larger than 16/32

the matrices might not fit into the reg/sm of the SMX, and thus the matrix
is going to be reloaded at every update.

•  LU what is going to happen when every matrix has different pivot
•  How to handle variable sizes (gemm, lu, QR LA)
•  Iterative solvers working on different set of batched matrices might

converge while the other set still iterating.
•  Multifrontal solver where some data is runtime created and fill in occur

•  Standard format showed very good performance and
efficiency, but sure effort from analyzing, to modeling,
to design to tuning is needed to reach this

17

Some of my thoughts and observations

• Reproducibility and reliability
• Design: library v.s. paper
• Design: standard v.s. interleaved
• Methodology, Performance Model and

Performance Counter Analysis
• Small sizes results

18

Methodology, Performance Model and
Performance Counter Analysis

GPU Optimization Summary
• Hardware concepts

•  CUDA core
•  Warp
•  Half-warp
•  Register file
•  Shared memory
•  Atomics
•  Shuffles
•  SMX

•  Software concepts
•  Stream
•  Thread block
•  Kernel
•  Inlining
•  Intrinsics

• Algorithmic concepts
•  Blocking
•  Recursive blocking
•  Kernel replacement
•  Out-of-place operations

Batched Computations

Classical strategies design

•  For large problems the strategy is to prioritize the
 data-intensive operations to be executed by the
 accelerator and keep the memory-bound ones for
 the CPUs since the hierarchical caches are more
 appropriate to handle it

Challenges

•  Cannot be used here since matrices are very small
and communication becomes expensive

Proposition

•  Develop a GPU-only implementation

������

��	���

�������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����� ���� � ���! "����� "����� "����� "����� "����� "�����

������

��	���

�������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����� ���� � ���! "����� "����� "����� "����� "����� "�����

Hybrid CPU+GPU algorithms
(small tasks for multicores and
large tasks for GPUs)

Batched Computations

Classical strategies design

•  For large problems performance is driven by the Level 3 BLAS (GEMM)

Challenges

•  For batched small matrices it is more complicated

Proposition

•  Rethink and Redesign both phases in a tuned efficient way

Batched Computations

Batched Computations
Key observations and current situation:

Classical strategies design

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s
shared memory,registers/TB – load it with data and reuse that data in computations
as much as possible.

Challenges

•  Our study and experience shows that this procedure provides very good performance
for classical GPU kernels but is not that appealing for batched algorithm for
different reasons.

Batched Computations
Challenges

•  Completely saturating the shared memory per SMX can decrease the
performance of memory bound operations, since only one thread-block will be
mapped to that SMX at a time (low occupancy)

•  Due to the limited parallelism in the small matrices, the number of threads used
in the thread block will be limited, resulting in low occupancy, and subsequently
poor core utilization

•  Shared memory is small (48KB/SMX) to fit the whole panel

•  The panel involves Non-GPU friendly operations:
•  Vectors column (find the max, scale, norm, reduction)
•  Row interchanges (swap)
•  Small number of vectors (apply)

Proposition: custom design per operations type

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

��	
�� � �

���� ���� �	
���� ��
�� ����������� �	
������
 � ����� � ���� !"

���� ���� ���� �����

ü  optimized kernel 	

ü  using sm/rg 	

ü  left v.s. right looking	

ü  autotuned	

Performance metrics analysis

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s
shared memory, registers/TB – load it with data and reuse that data in computations
as much as possible.

Batched Computations

of Thread-block
0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 G

B
/s

0

20

40

60

80

100

120

140

160

180

200

220
Achievable bandwidth using Thread-block of size 512 threads each

Performance metrics analysis

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s
shared memory, registers/TB – load it with data and reuse that data in computations
as much as possible.

Batched Computations

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

��	
�� � �

���� ���� �	
���� ��
�� ����������� �	
������
 � ����� � ���� !"

���� ���� ���� �����

ü  optimized kernel 	

ü  using shared memory 	

ü  left v.s. right looking	

ü  autotuned	

Performance metrics analysis

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s
shared memory, registers/TB – load it with data and reuse that data in computations
as much as possible.

We should focus on the
performance analysis
and the design of a

kernel

Batched Computations

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

��	
�� � �

���� ���� �	
���� ��
�� ����������� �	
������
 � ����� � � �� !"#

���� ���� ���� �����

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

��	
�� � �

���� ���� �	
���� ��
�� ����������� �	
������
 � ����� � ���� !"

���� ���� ���� �����

Performance metrics analysis

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s
shared memory, registers/TB – load it with data and reuse that data in computations
as much as possible.

Batched Computations

 F
Pmax =
 Tmin

Flops for the computation

Fastest time to solution

•  For square matrices
 F ≈ 2n3, Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C))

•  Need to read/write 4 n2 elements, i.e., 32n2 Bytes in DP

=> if max bandwidth is B, we can take Tmin = 32 n2 / B in DP. Thus,

•  With ECC on, peak on B on a K40c is ≈180 GB/s, so when n=16 for example,
we expect theoretical max performance of 180 Gflop/s in DP

Methodology, Performance Model and
Performance Counter Analysis

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Ac
hi

ev
ed

 O
cc

up
an

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Nvidia K40

Our design MAGMA K40
Cublas K40
Rocache design

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
lo

ba
l M

em
or

y
Lo

ad
 E

ffi
ci

en
cy

(%
)

0

10

20

30

40

50

60

70

80

90

100

110
Nvidia K40

Our design MAGMA K40
Cublas K40
Rocache design

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Sh
ar

ed
 M

em
or

y
Lo

ad
 T

hr
ou

gh
pu

t T
B/

s

0

0.5

1

1.5

2

2.5

3
Nvidia K40

Our design MAGMA K40
Cublas K40
Rocache design

Methodology, Performance Model and Performance Counter Analysis

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400
Nvidia K40 / Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design MAGMA K40
Cublas K40
Rocache design
MKL+openMP on CPU
Roofline bound

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Nu
m

be
r o

f l
oa

ds

104

105

106

107

108 Intel Xeon E5-2650 v3 (Haswell) 10 cores
Our design
MKL
ijk loop
ikj loop

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Nu
m

be
r o

f s
to

re
s

104

105

106

107

108 Intel Xeon E5-2650 v3 (Haswell) 10 cores
Our design
MKL
ijk loop
ikj loop

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90
Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design 10 cores
Our design 8 cores
Our design 6 cores
Our design 2 cores
Our design 1 core

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90
Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design intrinsic
MKL+openM
Simple ikj loop
Simple ijk loop
Roofline bound

Methodology, Performance Model and Performance Counter Analysis

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

u

p

p

e

r

b

o

u

n

d

Matrix Size

G
fl
o
p
/
s

magma

openblas

ijk loop

ikj loop

Tegra ARM

�

���

���

���

���

����

����

� � �� �� �� �� �� ��

���
��

���
��

�
��
��
�

	
��� ���

�
��

����
�
��������	�

Nvidia P100

Methodology, Performance Model and Performance Counter Analysis

Methodology, Performance Model and Performance Counter Analysis

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

 n
3 /3

0

50

100

150

200

250

300

350
Nvidia P100 batchcount 40K

Magma Cholesky DPOTRF

Methodology, Performance Model and Performance Counter Analysis

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

 n
3 /3

0

50

100

150

200

250

300

350

400
Nvidia P100 batchcount 40K

Magma LU DGETRF

Methodology, Performance Model and Performance Counter Analysis

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

 2
n3

0

100

200

300

400

500

600
Nvidia P100 batchcount 40K

Magma matrix inversion DGETRI (LU+solve)
Gauss Jordan Inversion

Future trending direction
• Extended functionality and variable sizes
• Customized batched routines for Deep Learning
•  FP16 batched routines coming soon
• Sparse components SpDMM, SpMM, SpMV, etc
•  Introducing interleaved format
• More Applications specific design
• MAGMA Embedded
• MAGMA DL
•  I would encourage a framework for accuracy and

performance benchmarking
35

Collaborators and Support
MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory,
 Livermore, CA
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

