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Some of my thoughts and observations 

• Reproducibility and reliability 
• Design: library v.s. paper 
• Design: standard v.s. interleaved 
• Methodology, Performance Model and 

Performance Counter Analysis 
• Small sizes results 
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Reproducibility and reliability  

• Working on MAGMA customized kernel for Deep 
Learning and tensor contraction 

• How a 2X speedup can be faster than 10X 
• Some of my observations on benchmark 

reporting  
•  I am not going to talk about accuracy 

reproducibility (Jim cover it) but rather I am 
going to talk benchmark reproducibility 
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The SCALAPACK SVD story 
LAPACK: it performs an QR(A) then SVD on R=UΣVT then U=Q*U 
Unfortunately Scalapack do not perform this and so comparing  
tall-skinny SVD against Scalapack is always a win-big. 
However a very simple 3 lines of codes can fix the issue 
pdgeqrf 
pdgesvd 
pdormqr 

SVD A 
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Design: library v.s. paper 

•  Library need to follow standard interface 
•  Which might add many overhead in particular for small matrices 

•  Library have to be used by developers, applications 
•  Library have to be generic and accommodate at least 

most practical cases 
•  A library (.a .so) cannot be 1 GB, so template 

instantiation should be limited 
•  Library have to reliable and robust 
• Maybe reproducible accuracy 
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Design: library v.s. paper 

•  A library should check argument error  
•  A Library should also check for numerical error and 

need to be conform with the standard (e.g., Cholesky, LU, and 
QR need to check for: diag error, singularity, overflow, underflow etc..) 

•  Papers, posters, proposals: 
•  I have seen code without any checking,  
•  Even sometimes without accuracy verification, or with self made error 

checking 
•  Most of the time compiled for every size for every run, 
•  Work only on a very particular case 
•  That’s fine when dealing with particular application but cannot be adopted 

in a library 
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Design: standard v.s. interleaved 
•  Interleaved is good but: 

•  gemm might work 
•  Cholesky, is easy to implement but when the matrix is larger than 16/32 

the matrices might not fit into the reg/sm of the SMX, and thus the matrix 
is going to be reloaded at every update. 

•  LU what is going to happen when every matrix has different pivot 
•  How to handle variable sizes (gemm, lu, QR LA) 
•  Iterative solvers working on different set of batched matrices might 

converge while the other set still iterating. 
•  Multifrontal solver where some data is runtime created and fill in occur 

•  Standard format showed very good performance and 
efficiency, but sure effort from analyzing, to modeling, 
to design to tuning  is needed to reach this 
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GPU Optimization Summary 
• Hardware concepts 

•  CUDA core 
•  Warp 
•  Half-warp 
•  Register file 
•  Shared memory 
•  Atomics 
•  Shuffles 
•  SMX 

•  Software concepts 
•  Stream 
•  Thread block 
•  Kernel 
•  Inlining 
•  Intrinsics 

• Algorithmic concepts 
•  Blocking 
•  Recursive blocking 
•  Kernel replacement 
•  Out-of-place operations 

Batched Computations 



Classical strategies design  

•  For large problems the strategy is to prioritize the  
    data-intensive operations to be executed by the  
    accelerator and keep the memory-bound ones for  
    the CPUs since the hierarchical caches are more  
    appropriate to handle it 

 
Challenges 

•  Cannot be used here since matrices are very small  
and communication becomes expensive 

Proposition 

•  Develop a GPU-only implementation 
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Hybrid CPU+GPU algorithms 
(small tasks for multicores and  
large tasks for GPUs) 

Batched Computations 



Classical strategies design  

•  For large problems performance is driven by the Level 3 BLAS (GEMM) 

 

Challenges 

•  For batched small matrices it is more complicated 

Proposition 

•  Rethink and Redesign both phases in a tuned efficient way 

Batched Computations 



Batched Computations 
Key observations and current situation: 

Classical strategies design  

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory,registers/TB – load it with data and reuse that data in computations 
as much as possible. 

 
Challenges 

•  Our study and experience shows that this procedure provides very good performance 
for classical GPU kernels but is not that appealing for batched algorithm for 
different reasons. 



Batched Computations 
Challenges 

•  Completely saturating the shared memory per SMX can decrease the 
performance of memory bound operations, since only one thread-block will be 
mapped to that SMX at a time (low occupancy)  

•  Due to the limited parallelism in the small matrices, the number of threads used 
in the thread block will be limited, resulting in low occupancy, and subsequently 
poor core utilization 

•  Shared memory is small (48KB/SMX) to fit the whole panel 

•  The panel involves Non-GPU friendly operations: 
•  Vectors column (find the max, scale, norm, reduction) 
•  Row interchanges (swap) 
•  Small number of vectors (apply)  

Proposition: custom design per operations type  
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ü  optimized kernel 	

ü  using sm/rg 	

ü  left v.s. right   looking	

ü  autotuned	

Performance metrics analysis 

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible. 

 

Batched Computations 
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Performance metrics analysis 

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible. 

 

Batched Computations 
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ü  optimized kernel 	

ü  using shared memory 	

ü  left v.s. right   looking	

ü  autotuned	

Performance metrics analysis 

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible. 

 

We should focus on the 
performance analysis 
and the design of a 

kernel 

Batched Computations 
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Performance metrics analysis 

•  A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible. 

 

Batched Computations 



               F 
Pmax =   
             Tmin 

Flops for the computation 

Fastest time to solution 

•  For square matrices  
                F ≈ 2n3,        Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C) ) 
 
•  Need to read/write 4 n2 elements, i.e., 32n2 Bytes in DP  

=> if max bandwidth is B, we can take Tmin = 32 n2 / B  in DP. Thus, 

•  With ECC on, peak on B on a K40c is ≈180 GB/s, so when n=16 for example, 
we expect  theoretical max performance of 180 Gflop/s in DP 
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Performance Counter Analysis 
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Future trending direction 
• Extended functionality and variable sizes 
• Customized batched routines for Deep Learning 
•  FP16 batched routines coming soon 
• Sparse components SpDMM, SpMM, SpMV, etc 
•  Introducing interleaved format 
• More Applications specific design 
• MAGMA Embedded 
• MAGMA DL 
•  I would encourage a framework for accuracy and 

performance benchmarking 
35 
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