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Performance GFLOP/s

Key Features of MAGMA 2.2

TASK-BASED ALGORITHMS

MAGMA uses task-based algorithms where the computation is split into tasks of
varying granularity and their execution scheduled over the hardware components.
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,
often on the critical path, are scheduled on the CPU, and larger more parallelizable
ones, often Level 3 BLAS, are scheduled on the GPUs.

PERFORMANCE & ENERGY EFFICIENCY

MAGMA LU factorization in double precision arithmetic
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Linear Algebra on Small Matrices

Linear Algebra on small problems

are needed in many applications:

Neuroscience,
Astrophysics,
Quantum chemistry,

* Machine learning,
« Data mining, .
* High-order FEM,
* Numerical LA,

* Graph analysis,

Multi-physics problems,
Signal processing, etc.

DLA 2016 Survey

« Dominant matrices to solve

o( 10) 18%

O( 100)
0(1000)

0(1000)-by-O(10)
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* One or many at a time
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many
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Without Batched routines
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Linear Algebra on Small Matrices

* Machine learning,
« Data mining,

* High-order FEM,
* Numerical LA,

* Graph analysis,

Linear Algebra on small problems
are needed in many applications:

Neuroscience,
Astrophysics,
Quantum chemistry,

Multi-physics problems,

Signal processing, etc.

DGEMM (NN), batch_count = 500, 1 Tesla K40c GPU
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Haswell KNL 7250

Implementation on ) ] E5-2650v3  DDRS5|MCDRAM ARM Lt P100
_ current hardware ~ Memory hierarchies 155M 56 SM
is becommg cha"engmg 10 cores 68 cores 4 cores o cor:s 64 core);

reairers

L1 cack & GPU SHARED MEMORYL L1

L2 cACHE

PCl EXPRESS GEN3 X16 16 GB/s 16 GB/s 16 GB/s 16 GB/s 16 GB/s
INTERCO
CRAY GEMI

Memory hierarchies for different type of architect

. Draft Reports
Workshop on Batched, Reproducible,  gaicheqd BLAS Draft Reports:
And Reduced Precision BLAS https://www.dropbox.com/s/olocmipyxfvcaui/batched api 03 30 2016.pdf?dI=0
Innovative Cgmputlng Laboratory Batched BLAS Poster:
Unlver3|ty of Tennessee https://www.dropbox.com/s/ddkym?76fapddf5c/Batched%20BLAS %20Poster%2012.pdf?dI=0
May 18th — 19th, 2016 Batched BLAS Slides:
http //bit. |y/ Batch-BLAS-2016 https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dI=0

Webpage on ReproBLAS:
http://bebop.cs.berkeley.edu/reproblas/

Efficient Reproducible Floating Point Summation and BLAS:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf




Batched routines released in MAGMA

MAGMA BATCHED
N
BATCHED FACTORIZATION OF A SET OF SMAALL MATRICES IN PARALLEL
Numerous applications require APPLICATIONS / LIBRARIES
factorization of many small matrices &y
e Deep learning e Sparse direct solvers
e Structural mechanics e High-order FEM MAGMA Batched
o Astrophysics simulations Framework & Abstractions
ey | s | amavein || Aot
ROUTINES
Coprocessors
LU, QR, and Cholesky 4 p L T
Solvers and matrix inversion v/ ' . _
All BLAS 3 (fixed + variable) v AR sy
SYMV, GEMV (fixed + variable) ¢ DEVICES
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API for Batched BLAS in MAGMA

Batch of fixed-size problems:

extern "C" void

magmablas_dgemm_batched( magma_trans_t transA, magma_trans_t transB,
magma_int_t m, magma_int_t n, magma_int_t Kk,
double alpha,
double const * const * dA_array, magma_int_t ldda,
double const * const * dB_array, magma_int_t 1ddb,

[] double beta,

double *xdC_array, magma_int_t lddc,
magma_int_t batchCount, magma_queue_t queue )

Batch of variable-size problems:

extern "C" void

magmablas_dgemm_vbatched(
magma_trans_t transA, magma_trans_t transB,
magma_int_tx m, magma_int_t* n, magma_int_t* k,
double alpha,jj
double const * const * dA_array, magma_int_t* ldda,
double const * const * dB_array, magma_int_t* lddb,
double beta,
double *xdC_array, magma_int_t* lddc,
magma_int_t batchCount, magma_queue_t queue )
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API for Batched LAPACK in MAGMA

Batch of fixed-size problems:

extern "C" magma_int_t

magma_zpotrf_batched(
magma_uplo_t uplo, magma_int_t n,
magmaDoubleComplex **xdA_array, magma_int_t ldda,
magma_int_t *xinfo_array, magma_int_t batchCount,
magma_queue_t queue)

Batch of variable-size problems:

extern "C" magma_int_t

magma_zpotrf_vbatched(
magma_uplo_t uplo, magma_int_t *n,
magmaDoubleComplex **xdA_array, magma_int_t xldda,
magma_int_t *info_array, magma_int_t batchCount,
magma_queue_t queue)
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Batched BLAS Usage

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScalLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)
New Algorithms
(many-core friendly)

MAGMA

Hybrid Algorithms
(heterogeneity friendly)

MAGMA
BATCHED

Level 1 BLAS

Level 3 BLAS
PBLAS

BLAS on tiles +

DAG scheduling

BLAS tasking +
(CPU/GPU / Xeon Phi )
hybrid scheduling

Algorithms
expressed
in terms of
various

BLAS calls

for(inti=0;...){
/[ factor a panel

Il sequential LAPACK

DGETRF2(...);

/I backward swap
Il sequential LAPACK
DLASWP(...);

/I forward swap
Il sequential LAPACK
DLASWP(...);

/I triangular solve
/I parallel BLAS
DTRSM( ... );

/I matrix multiply
Il Parallel BLAS
DGEMM( ... );

Batched routines can be developed efficiently using Batched BLAS
Use and calling sequence of Batched BLAS is similar to BLAS
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Applications - Tensor contractions

Numerous important applications:
» High-order FEM simulations (with LLNL)
» Signal Processing, Numerical Linear
Algebra, Numerical Analysis, Data Mining,
Deep Learning, Graph Analysis,
Neuroscience, and more
can be expressed through tensors.

Performance comparison of tensor contraction versions using
batched C = aAB + BC on 100,000 square matrices of size non a

K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs.
200

upperbound
180 || version 1
160 || version 2
version 3
140 | version 4
cublas
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The goal is to design a:
 High-performance package for Tensor
algebra;
 Built-in architecture-awareness
(GPU, Xeon Phi, multicore);
» User-friendly interface.

Example: Relational Data

user e M @ §:r@, g
e e 1? O
QE) r; L ’b“ 2
=& 3 e |1
R |1 L& 3
(4 1
matrix 3 order tensor
ltem <> scalar (0)
ltems < vector (1)
Relations of pairs < matrix ¢ (2)
Relations of 3-tuple <> 3-D array [ '€NSOrS (3
Relations of N-tuples< N-D array (N)
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Applications - Tensor contractions
Domain: High-order (HO) Finite Element (FE) methods. spectral-element (SE)

Lagrangian Hydrodynamics in the BLAST code!"

On semi-discrete level our method can be written as

Momentum Conservation:

Energy Conservation:

Equation of Motion:

where v, e, and x are the unknown velocity, specific internal energy, and grid
position, respectively; M, and M, are independent of time velocity and en-
ergy mass matrices; and F is the generalized corner force matrix depending on

dv

=-M;F-1
dt
de

=M, 1IFT .y
dt
dx
—_— =V
dt

(v, e, x) that needs to be evaluated at every time step.

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian

hydrodynamics. SIAM J.Sci.Comp.34(5), B606-B641. (36 pages)

Need:

» Tensor contractions for multicore CPUs, GPUs, and
Xeon Phi (very good results on all already published)

- Batched solvers (LU/Cholesky) and eigensolvers

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

ndy Xxndzxndy xndz __ ndxnd __ nd? nd?
[u i2,71,J2 \1 ‘[l‘n(l] - \[zl’ndltg~nd(j|+ndug)

,i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd? without changing the storage. We can define

o (\MLX XM ey X XNy
Reshape(T);, . ;. =T\ 70

aslongasn,.n =m,. m, and for every

+nt+ .tn.n nt—j1+m,]2+ +tmm, m,]q

Ly s v

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm 4, B -> A"B.

For example:
Cil,iz,i3 - EAk,ilBk,iZ,B
k

Can be written as
Reshape(C)nd1x nd2nd3) =
AT Reshape(B)na!x(nd2nd3)

Reference: A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, |. Masliah, S. Tomoy,

High-Performance Tensor Contractions for GPUSs,
The International Conference on Computational Science (ICCS 2016), San Diego, CA, June 6—8, 2016.




Applications — Numerical LA

Need of Batched routines for Numerical LA

[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; ]
[ collaboration with Tim Davis at al., Texas A&M University]

Sparse / Dense Matrix

System

.l o gy 3
1 119 233 348 464 589 707 837 950
nz = 6716

To capture main LA patterns needed in a
DAG-based factorization numerical library for Batched LA

E=) e LU, QR, or Cholesky
on small diagonal matrices

|:> e TRSMs, QRs, or LUs

|::> e TRSMs, TRMMs

Updates (Schur complement)
GEMMs, SYRKs, TRMMs

Example matrix from Quantum chromodynamics
Reordered and ready for sparse direct multifrontal solver
Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations
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Applications - Machine Learning

Need of Batched and/or Tensor contraction routines in machine learning

e.g., Convolutional Neural Networks (CNNs) used in computer vision
Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

OUtQUt (0) Connected Connected
O

Data D

n
dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Convolution operation:
 Forevery filter F, and every channel, the computation for every
pixel value O, is a tensor contraction:

On,k - EDk,iFn,i

 Plenty of parallelism; small operations that must be batched

« With data “reshape” the computation can be transformed
into a batched GEMM (and hence, efficiently implemented;
among other approaches)
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Applications — Multi-physics simulations

Fluid Dynamics Plus Kinetics

Approximation

Many physical systems can be modeled by a fluid dynamics
plus kinetics approximation.

Complex
many-body . Fqu + KTe’nck
system ynamics networ

Reference: A.Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Applications — Multi-physics simulations

Integrating Stiff Equations Numerically

(e.g., N coupled ODESs)

To advance the solution from time T_O advance th_e solutiqn from
t tot ,,, only information already time ¢ to f ,,, information at the
available at t_is required. new point f , . is required,

implying an iterative solution.

Thus, for numerical integration

. Explicit methods are inherently simple, but
potentially unstable.

. Implicit methods are inherently complicated, but
stable.

Reference: A.Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Applications — Multi-physics simulations

Fundamental Sources of Stiffness

- Negative populations

D __ Macroscopic equilibration | Network of species
y,e.qg. i=1.150
/ t [, )i+ S f. ),
. . L / j denotes reactions,
Microscopic equilibration e.g.,j=1.1604

The key to stabilizing explicit integration is to understand the three
basic sources of stiffness for a typical reaction network:

-Negative populations,
«Macroscopic equilibration
«Microscopic equilibration.

(f,); are fluxes
between species

Reference: A.Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Applications — Multi-physics simulations

Multi-physics problems need Batched LA on small problems
Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

» Many physical systems can be modeled by a fluid dynamics plus kinetic approximation
e.g., in astrophysics, stiff equations must be integrated numerically:
 Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)
» Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration
need batched tensor contractions of variable sizes

Speedup of the solver for matrix size 150 Additional acceleration achieved through MAGMA Batched
T T T 8

Batched 150-isotope
7 Titan Kepler K20 GPU

Brock et al
(2015)

CUDA streams

Batched
computation

Time per integration step (ms)
'

Haidar et al
(2015)

0 100 200 300 400 500 600 700 800

0 Concurrent networks

MKL MA48 MAGMA .
An additional 7x speedup

Reference: A.Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Design and optimization strategies

* Multiple algorithmic versions/designs

« Parallel swapping, panel blocking, recursion, left/right/top-looking, etc.
* Data Access Optimizations and Loop Transformation Techniques
* Register Data Reuse and Locality
* A Cache-based Approach
* A Shared Memory based Approach
* Instruction Mix
* TB-level Concurrency

* Template code based and autogeneration
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MAGMA Batched Computations
Comparison to CPUs

Batched dgeqrf count = 2000)  pf=1gl=l 45 e l=lqic)y
350 — T T T T I

—8— GPU: Magma ]
—»— GPU: CUBLAS
300/ —2— CPU v2: 16 parallel facto using sequential MKL z |
—¥— CPU v1: each matrix uses MKL multithread_16 -

250 = |
200 .
»
@
o
o
O 1501 -
100 2 A 2 _
50 S .
i — » —— * % * x
= \ \ \ \ \ \ \
3264 128 256 384 512 640 768 896 1024
matrix size
+ 2x8-core Intel Xeon E5-2670 Sandy Bridge socket
* NVIDIA Kepler K40 GPU e JNIVERSITYof
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Design and optimization strategies ...

Overall design
POTRF

A

—— — ——————— -

POTF2

crossover point

N>N

c

.| POTF2

(e.9.8)

—— — — ——————y

___________

___________

! 1.FusedKernels
1 2.Left-looking

1 3.No allocation/initialization ,:

__________________________

large nb
(e.g. 128)

TRSM

SYRK

.........................

E 1.Separate Kernels
1 2.Right-looking '
3. Allocate/init workspaces |

_________________________

Recursive multi-level blocking for the panels
Data storage, e.g., standard vs. interleaved

Kernel fusion and optimizations for data reuse
» Loop-inclusive
(results in 1 GPU kernel)
» Loop-exclusive
(outer loop launched from CPU)

TB-level concurrency
 For small matrices may need more than
one matrix on a Thread Block (TB)

Performance tuning
 To handle complexity, must be done
through an autotuning framework
mElUNIVERSITYof
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Variable size techniques

Early Termination Mechanisms (ETMs) and scheduling

« Kernels are launched to accommodate the largest matrix

 ETMs terminate TBs that may not do work for smaller matrices
 Classic vs. Aggressive (terminate entire TBs vs. TBs + individual threads)
* Greedy vs. Lazy (all matrix factorizations start vs. delaying small ones)

* Used in GEMM, and consequently, TRSM and SYRK

vbatched kernel (CPU)
(3, 3, 3) grid configuration

4 A
3x3 subgrid 3x3 subgrid 3x3 subgrid
(:, =, 0) (:, :, 1) (:/, =, 2)
A A A
r ~ N\ N\ N\

X X X
X X X X
X X X X X X
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Performance results (variable sizes)

ETM and scheduling techniques

200

Tuning on K40c GPU, batchCount = 3,000,

double precision

K. ; -0 00 ®
; lazy-aggressive ——
Y SVl . lazy-classic -x- |
AL greedy-aggressive —x—
2 greedy-classic -@-

0 100 200 300 400 500

Maximum matrix size in the batch

Paper also includes:
 Results with various matrix-size distributions (shown is Gaussian)
 Multicore CPU algorithms (using OpenMP) and optimization techniques
 Padding, static and dynamic scheduling effects

200

0 100 200 300 400 500

Performance on different GPUs
batchCount = 1,000,
double precision

Kepler K40c e
Kepler K20c -A-
Fermi S2050  ——

Maximum matrix size in the batch
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MAGMA Batched Computations

Summary

Batched computation can give a boost in performance for problem with very small sizes
Traditional algorithmic design might not be the best direction

we need a new way of thinking

revisit and redesign algorithm to take advantage of the hardware specifics
Performance modeling can help analyzing algorithm and their implementation, for example

An optimized GPU function cannot be efficient for all kind of computation, it depend on the
context used for

Small computation are delicate and requires specific kernels (building block or fused).

Low level APl is required to avoid overhead and context switching
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Future Directions

- Extended functionality
— Variable sizes (work in progress)
— Mixed-precision techniques
— Sparse direct multifrontal solvers & preconditioners
— Applications

* Further tuning

— autotuning
* GPU-only algorithms and implementations
* MAGMA Embedded
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Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

<A NVIDIA.
PLASMA team
http:/licl.cs.utk.edu/plasma
4\The MathWorks
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