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Key Features of MAGMA 2.2 
TASK-BASED ALGORITHMS 
MAGMA uses task-based algorithms where the computation is split into tasks of  
varying granularity and their execution scheduled over the hardware components. 
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,  
often on the critical path, are scheduled on the CPU, and larger more parallelizable 
ones, often Level 3 BLAS, are scheduled on the GPUs. 
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Without Batched routines       with Batched routines 

Linear Algebra on Small Matrices 

Large matrices 
Linear Algebra on small problems  
are needed in many applications: 
 
 
 
 
 

•  Machine learning, 
•  Data mining, 
•  High-order FEM,  
•  Numerical LA, 
•  Graph analysis, 

•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Multi-physics problems, 
•  Signal processing, etc. 

 

DLA 2016 Survey 
•  Dominant matrices to solve 

O(    10)                         18% 
O(  100)                         37% 
O(1000)                         61% 
O(1000)-by-O(10)          28% 

•  One or many at a time 
one                                 62% 
many                              38% 
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REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on  

current hardware 
is becoming challenging  

 

Draft Reports 
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0 
  
Batched BLAS Poster: 
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0 
  
Batched BLAS Slides: 
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0 
  
Webpage on ReproBLAS: 
http://bebop.cs.berkeley.edu/reproblas/ 
  
Efficient Reproducible Floating Point Summation and BLAS: 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf  

Workshop on Batched, Reproducible,    And Reduced Precision BLAS   Innovative Computing Laboratory   University of Tennessee   May 18th – 19th, 2016    http://bit.ly/Batch-BLAS-2016 



Batched routines released in MAGMA 



API for Batched BLAS in MAGMA 

Batch of fixed-size problems: 

Batch of variable-size problems: 



API for Batched LAPACK in MAGMA 

Batch of fixed-size problems: 

Batch of variable-size problems: 



Batched BLAS Usage 

 MAGMA 
BATCHED  

•  Batched routines can be developed efficiently using Batched BLAS 
•  Use and calling sequence of Batched BLAS is similar to BLAS 

Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 
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 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Level 1 BLAS 

Level 3 BLAS 

PBLAS 

 BLAS on tiles + 
DAG scheduling 

BLAS tasking + 
( CPU / GPU / Xeon Phi ) 
hybrid scheduling 

// factor a panel 
// sequential LAPACK 
DGETRF2(…); 

// backward swap 
// sequential LAPACK 
DLASWP( … ); 

// forward swap 
// sequential LAPACK 
DLASWP(…); 

// triangular solve 
// parallel BLAS 
DTRSM( … ); 

// matrix multiply 
// Parallel BLAS 
DGEMM( … ); 

for(int i = 0; …) { 

} 

Algorithms 
expressed 
in terms of 
various  
BLAS calls  



Applications – Tensor contractions 
The goal is to design a: 

•  High-performance package for Tensor 
algebra; 

•  Built-in architecture-awareness  
(GPU, Xeon Phi, multicore); 

•  User-friendly interface. 

Numerous important applications: 
•  High-order FEM simulations (with LLNL) 
•  Signal Processing, Numerical Linear 

Algebra, Numerical Analysis, Data Mining, 
Deep Learning, Graph Analysis, 
Neuroscience, and more 

can be expressed through tensors. 

Example: Relational Data 

Item                          ó scalar                                (0) 
Items                        ó vector                                (1) 
Relations of pairs     ó matrix                        (2) 
Relations of 3-tuple  ó 3-D array                   (3) 
… 
Relations of N-tuplesó N-D array                 (N) 

tensors 
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Performance comparison of tensor contraction versions using 
batched C = αAB + βC on 100,000 square matrices of size n on a 
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs. 



Applications – Tensor contractions 
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Reference:  A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov,  
                   High-Performance Tensor Contractions for GPUs,  
                   The International Conference on Computational Science (ICCS 2016), San Diego, CA, June 6—8, 2016. 

 

Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
generic versions are developed and parametrized for 
performance. The parameters are autotuned (empirically) to find 
“best” kernels for specific size.  

 

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          
Then,                                                       , or omitting the E subscript                       
                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 
dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 
structure, we can decompose dofs and quadrature point indices in 
logical coordinate axes
                   i = (i1, …, id),    j = (j1, …, jd),    k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below  
● Evaluations of M times V, referred as equations (3) & (4) below 

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Domain: High-order (HO) Finite Element (FE) methods, spectral-element (SE) 

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

For example: 

Can be written as  
Reshape(C)nd1×(nd2nd3) =  
                         AT Reshape(B)nq1×(nd2nd3)  

Need: 
•  Tensor contractions for multicore CPUs, GPUs, and 

Xeon Phi (very good results on all already published) 
•  Batched solvers (LU/Cholesky) and eigensolvers 
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Applications – Numerical LA 
Need of Batched routines for Numerical LA 
[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; ] 
[ collaboration with Tim Davis at al., Texas A&M University] 

�  LU, QR, or Cholesky  
on small diagonal matrices 

Sparse / Dense Matrix 
System 

�  TRSMs, QRs, or LUs   

�  TRSMs, TRMMs 

�  Updates (Schur complement)  
GEMMs, SYRKs, TRMMs 

DAG-based factorization 
To capture main LA patterns needed in a 

numerical library for Batched LA  

•  Example matrix from Quantum chromodynamics 
•  Reordered and ready for sparse direct multifrontal solver 
•  Diagonal blocks can be handled in parallel through batched 

LU, QR, or Cholesky factorizations  



Convolution operation: 
•  For every filter Fn and every channel, the computation for every  

pixel value On,k  is a tensor contraction: 

•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed 

into a batched GEMM (and hence, efficiently implemented; 
among other approaches)      

Applications – Machine Learning 
Need of Batched and/or Tensor contraction routines in machine learning 

Dk 

e.g., Convolutional Neural Networks (CNNs) used in computer vision  
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):     

Filters F 

Data D 

Fn 

     On 

n,kO

n,kO = k,iD
i
∑ n,iF

Output O 



Applications – Multi-physics simulations 
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Reference:  A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.
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Reference:  A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.
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Reference:  A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Applications – Multi-physics simulations 
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Multi-physics problems need Batched LA on small problems  

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation 
e.g., in astrophysics, stiff equations must be integrated numerically:  

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library) 
•  Explicitly; a new way to stabilize them with  Macro- plus Microscopic equilibration 
                         need batched tensor contractions of variable sizes 

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)      

Additional acceleration achieved through MAGMA Batched 

An additional 7x speedup 
MKL MA48 MAGMA

0
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4
Speedup of the solver for matrix size 150

S
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e

d
u

p CUDA streams

Batched 
computation

Reference:  A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Design and optimization strategies 

•  Multiple algorithmic versions/designs
•  Parallel swapping,  panel blocking, recursion, left/right/top-looking, etc. 

•  Data Access Optimizations and Loop Transformation Techniques

•  Register Data Reuse and Locality 

•  A Cache-based Approach

•  A Shared Memory based Approach

•  Instruction Mix

•  TB-level Concurrency 

•  Template code based and autogeneration
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GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 

MAGMA Batched Computations 
  Comparison to CPUs 



Overall design 
POTRF 

•  Recursive multi-level blocking for the panels 

•  Data storage, e.g., standard vs. interleaved 
 
•  Kernel fusion and optimizations for data reuse 

•  Loop-inclusive   
(results in 1 GPU kernel) 

•  Loop-exclusive  
(outer loop launched from CPU) 
 

•  TB-level concurrency 
•  For small matrices may need more than 

one matrix on a Thread Block (TB) 
 

•  Performance tuning 
•  To handle complexity, must be done  

through an autotuning framework 

Design and optimization strategies … 



Variable size techniques 
Early Termination Mechanisms (ETMs) and scheduling 
•  Kernels are launched to accommodate the largest matrix 
•  ETMs terminate TBs that may not do work for smaller matrices 

•  Classic vs. Aggressive (terminate entire TBs vs. TBs + individual threads)  
•  Greedy vs. Lazy  (all matrix factorizations start vs. delaying small ones) 

•  Used in GEMM, and consequently, TRSM and SYRK 

×	  

×	  

×	   ×	   ×	  

×	  

×	  

×	  

×	  

×	   ×	   ×	  

×	  

3×3 subgrid 
(:, :, 0) 

3×3 subgrid 
(:, :, 1) 

3×3 subgrid 
(:, :, 2) 

vbatched kernel(CPU)  
(3, 3, 3) grid configuration   



Performance results (variable sizes) 
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ETM and scheduling techniques 
Tuning on K40c GPU, batchCount = 3,000, 

double precision  

Performance on different GPUs 
batchCount = 1,000, 

double precision 

Paper also includes:   
•  Results with various matrix-size distributions (shown is Gaussian) 
•  Multicore CPU algorithms (using OpenMP) and optimization techniques 

•  Padding, static and dynamic scheduling effects 



MAGMA Batched Computations 

Summary 

Ø  Batched computation can give a boost in performance for problem with very small sizes 

Ø  Traditional algorithmic design might not be the best direction 

Ø  we need a new way of thinking 

Ø  revisit and redesign algorithm to take advantage of the hardware specifics 

Ø  Performance modeling can help analyzing algorithm and their implementation, for example 

Ø  An optimized GPU function cannot be efficient for all kind of computation, it depend on the 
context used for 

Ø  Small computation are delicate and requires specific kernels (building block or fused). 

Ø  Low level API is required to avoid overhead and context switching 



Future Directions 

•  Extended functionality 
–  Variable sizes (work in progress) 
–  Mixed-precision techniques 
–  Sparse direct multifrontal solvers & preconditioners 
–  Applications 

•  Further tuning 
–  autotuning   

•  GPU-only algorithms and implementations 
•  MAGMA Embedded 
 



Collaborators and Support 

MAGMA team 
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PLASMA team 
http://icl.cs.utk.edu/plasma 

Collaborating partners 
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Lawrence Livermore National Laboratory, 
    Livermore, CA 
University of California, Berkeley 
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INRIA, France (StarPU team) 
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