
MAGMA Batched Computations:
Approaches and Applications	

Innovative Computing Laboratory
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

Workshop on Batched, Reproducible, and Reduced Precision BLAS
Georgia Tech Computational Science and Engineering
Atlanta, GA
February 23—25, 2017
	

Stan	 Tomov	

Outline
•  Motivation
•  MAGMA Batched computations

–  Coverage
–  Interfaces
–  Applications
–  Design and optimizations for batched computations
–  Performance results

•  Conclusions and future directions

Key Features of MAGMA 2.2
TASK-BASED ALGORITHMS
MAGMA uses task-based algorithms where the computation is split into tasks of
varying granularity and their execution scheduled over the hardware components.
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,
often on the critical path, are scheduled on the CPU, and larger more parallelizable
ones, often Level 3 BLAS, are scheduled on the GPUs.

PERFORMANCE & ENERGY EFFICIENCY

GF
LO

Ps
 / W

at
t

B
LA

S
ta

sk
in

g
+

hy

br
id

 s
ch

ed
ul

in
g

Matrix size N x N

Pe
rfo

rm
an

ce
 G

FL
OP

/s

0
500

1000
1500
2000
2500
3000
3500
4000

2k

4k

6k

8k

10
k

12
k

14
k

16
k

18
k

20
k

22
k

24
k

26
k

28
k

30
k

32
k

34
k

36
k

P100

2 K40

1 K40

CPU

MAGMA LU factorization in double precision arithmetic

K40 CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

NVIDIA K40 GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz

0
2
4
6
8

10
12
14

CPU K40 P100

CPU K40 P100

Without Batched routines with Batched routines

Linear Algebra on Small Matrices

Large matrices
Linear Algebra on small problems
are needed in many applications:

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,

•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc.

DLA 2016 Survey
•  Dominant matrices to solve

O(10) 18%
O(100) 37%
O(1000) 61%
O(1000)-by-O(10) 28%

•  One or many at a time
one 62%
many 38%

Without Batched routines with Batched routines

Linear Algebra on Small Matrices

Large matrices
Linear Algebra on small problems
are needed in many applications:

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,

•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc.

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	

16
	

64
	

11
2	

16
0	

20
8	

25
6	

30
4	

35
2	

40
0	

44
8	

49
6	

GPU	 batched	
GPU	 nonbatched	

DGEMM (NN), batch_count = 500, 1 Tesla K40c GPU

G
flo

p/
s

Matrix size M = N, K = 32

REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on

current hardware
is becoming challenging

Draft Reports
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0

Batched BLAS Poster:
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0

Batched BLAS Slides:
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0

Webpage on ReproBLAS:
http://bebop.cs.berkeley.edu/reproblas/

Efficient Reproducible Floating Point Summation and BLAS:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf

Workshop on Batched, Reproducible, And Reduced Precision BLAS Innovative Computing Laboratory University of Tennessee May 18th – 19th, 2016 http://bit.ly/Batch-BLAS-2016

Batched routines released in MAGMA

API for Batched BLAS in MAGMA

Batch of fixed-size problems:

Batch of variable-size problems:

API for Batched LAPACK in MAGMA

Batch of fixed-size problems:

Batch of variable-size problems:

Batched BLAS Usage

 MAGMA
BATCHED

•  Batched routines can be developed efficiently using Batched BLAS
•  Use and calling sequence of Batched BLAS is similar to BLAS

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

����������������������
���
��������������������
����������
����
��������������
�������������������������������
���������������������������
�����������	�����
����������
�����������������
���������	�����
����������������
�����
���������������������������
���
������
���������������������

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Level 1 BLAS

Level 3 BLAS

PBLAS

 BLAS on tiles +
DAG scheduling

BLAS tasking +
(CPU / GPU / Xeon Phi)
hybrid scheduling

// factor a panel
// sequential LAPACK
DGETRF2(…);

// backward swap
// sequential LAPACK
DLASWP(…);

// forward swap
// sequential LAPACK
DLASWP(…);

// triangular solve
// parallel BLAS
DTRSM(…);

// matrix multiply
// Parallel BLAS
DGEMM(…);

for(int i = 0; …) {

}

Algorithms
expressed
in terms of
various
BLAS calls

Applications – Tensor contractions
The goal is to design a:

•  High-performance package for Tensor
algebra;

•  Built-in architecture-awareness
(GPU, Xeon Phi, multicore);

•  User-friendly interface.

Numerous important applications:
•  High-order FEM simulations (with LLNL)
•  Signal Processing, Numerical Linear

Algebra, Numerical Analysis, Data Mining,
Deep Learning, Graph Analysis,
Neuroscience, and more

can be expressed through tensors.

Example: Relational Data

Item ó scalar (0)
Items ó vector (1)
Relations of pairs ó matrix (2)
Relations of 3-tuple ó 3-D array (3)
…
Relations of N-tuplesó N-D array (N)

tensors

�

��

��

��

��

���

���

���

���

���

���

� � � � � �� �� �� ��

�
��
��
�

������ ���� ���

����� �����
������� �
������� �
������� �
������� �
������
��� �����

Performance comparison of tensor contraction versions using
batched C = αAB + βC on 100,000 square matrices of size n on a
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs.

Applications – Tensor contractions

12 / 51

Reference: A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov,
 High-Performance Tensor Contractions for GPUs,
 The International Conference on Computational Science (ICCS 2016), San Diego, CA, June 6—8, 2016.

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Domain: High-order (HO) Finite Element (FE) methods, spectral-element (SE)

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

For example:

Can be written as
Reshape(C)nd1×(nd2nd3) =
 AT Reshape(B)nq1×(nd2nd3)

Need:
•  Tensor contractions for multicore CPUs, GPUs, and

Xeon Phi (very good results on all already published)
•  Batched solvers (LU/Cholesky) and eigensolvers

1 119 233 348 464 589 707 837 950

1

119

233

348

464

589

707

837

950

nz = 6716

Applications – Numerical LA
Need of Batched routines for Numerical LA
[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]
[collaboration with Tim Davis at al., Texas A&M University]

�  LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

�  TRSMs, QRs, or LUs

�  TRSMs, TRMMs

�  Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

•  Example matrix from Quantum chromodynamics
•  Reordered and ready for sparse direct multifrontal solver
•  Diagonal blocks can be handled in parallel through batched

LU, QR, or Cholesky factorizations

Convolution operation:
•  For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;
among other approaches)

Applications – Machine Learning
Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

 On

n,kO

n,kO = k,iD
i
∑ n,iF

Output O

Applications – Multi-physics simulations

15 / 51

Reference: A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.

Applications – Multi-physics simulations

16 / 51

Reference: A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.

Applications – Multi-physics simulations

17 / 51

Reference: A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.

Applications – Multi-physics simulations

18 / 51

Multi-physics problems need Batched LA on small problems

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation
e.g., in astrophysics, stiff equations must be integrated numerically:

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)
•  Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration
 need batched tensor contractions of variable sizes

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

Additional acceleration achieved through MAGMA Batched

An additional 7x speedup
MKL MA48 MAGMA

0

1

2

3

4
Speedup of the solver for matrix size 150

S
p

e
e

d
u

p CUDA streams

Batched
computation

Reference: A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.

Design and optimization strategies

•  Multiple algorithmic versions/designs
•  Parallel swapping, panel blocking, recursion, left/right/top-looking, etc.

•  Data Access Optimizations and Loop Transformation Techniques

•  Register Data Reuse and Locality

•  A Cache-based Approach

•  A Shared Memory based Approach

•  Instruction Mix

•  TB-level Concurrency

•  Template code based and autogeneration

32 64 128 256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

matrix size

G
flo

ps
/s

Batched dgeqrf count = 2000

GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

Higher is better

MAGMA Batched Computations
 Comparison to CPUs

Overall design
POTRF

•  Recursive multi-level blocking for the panels

•  Data storage, e.g., standard vs. interleaved

•  Kernel fusion and optimizations for data reuse

•  Loop-inclusive
(results in 1 GPU kernel)

•  Loop-exclusive
(outer loop launched from CPU)

•  TB-level concurrency
•  For small matrices may need more than

one matrix on a Thread Block (TB)

•  Performance tuning
•  To handle complexity, must be done

through an autotuning framework

Design and optimization strategies …

Variable size techniques
Early Termination Mechanisms (ETMs) and scheduling
•  Kernels are launched to accommodate the largest matrix
•  ETMs terminate TBs that may not do work for smaller matrices

•  Classic vs. Aggressive (terminate entire TBs vs. TBs + individual threads)
•  Greedy vs. Lazy (all matrix factorizations start vs. delaying small ones)

•  Used in GEMM, and consequently, TRSM and SYRK

×	

×	

×	 ×	 ×	

×	

×	

×	

×	

×	 ×	 ×	

×	

3×3 subgrid
(:, :, 0)

3×3 subgrid
(:, :, 1)

3×3 subgrid
(:, :, 2)

vbatched kernel(CPU)
(3, 3, 3) grid configuration

Performance results (variable sizes)

�

��

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

���������������
������������
�����������������
��������������

�

��

���

���

���

� ��� ��� ��� ��� ���
�
��
��
�

������� ������ ���� �� ��� �����

������ ����
������ ����
����� �����

ETM and scheduling techniques
Tuning on K40c GPU, batchCount = 3,000,

double precision

Performance on different GPUs
batchCount = 1,000,

double precision

Paper also includes:
•  Results with various matrix-size distributions (shown is Gaussian)
•  Multicore CPU algorithms (using OpenMP) and optimization techniques

•  Padding, static and dynamic scheduling effects

MAGMA Batched Computations

Summary

Ø  Batched computation can give a boost in performance for problem with very small sizes

Ø  Traditional algorithmic design might not be the best direction

Ø  we need a new way of thinking

Ø  revisit and redesign algorithm to take advantage of the hardware specifics

Ø  Performance modeling can help analyzing algorithm and their implementation, for example

Ø  An optimized GPU function cannot be efficient for all kind of computation, it depend on the
context used for

Ø  Small computation are delicate and requires specific kernels (building block or fused).

Ø  Low level API is required to avoid overhead and context switching

Future Directions

•  Extended functionality
–  Variable sizes (work in progress)
–  Mixed-precision techniques
–  Sparse direct multifrontal solvers & preconditioners
–  Applications

•  Further tuning
–  autotuning

•  GPU-only algorithms and implementations
•  MAGMA Embedded

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory,
 Livermore, CA
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

