
A	Proposal	for	a
Next-Generation	BLAS

Jim	Demmel,	UC	Berkeley
Greg	Henry,	Intel
Xiaoye Li,	LBL

Jason	Riedy,	Georgia	Tech
Peter	Tang,	Intel

bit.ly/Batch-BLAS-2017

Outline

• Goals	of	Next	Gen	BLAS
• Proposed	Naming	Scheme
• Reproducible	BLAS
• Mixed/Extended	Precision	BLAS	(nee	XBLAS)
• Batch	BLAS
• Fixed	Point	BLAS
• Error	handling
• Questions	for	audience

Goals	of	Next	Gen	BLAS	(1/2)

• One	interface	to	accommodate	current	and	
future	needs	for	BLAS
– Standard,	mixed	and	new	precisions,	batched,	
reproducible,	and	combinations

– Support	current	and	future	versions	of	Sca/LAPACK	
(eg reproducible,	batched)

–Would	be	wrapper	around	existing	BLAS	when	
semantics	match

Goals	of	Next	Gen	BLAS	(2/2)

• Straightforward	but	detailed	naming	scheme
– “F77”	level,	makes	semantics	clear
– Overloading	can	greatly	decrease	the	number	and	
lengths	of	names	in	higher	level	languages

• We	only	recommend	implementing,	or	
optimizing,	the	(small)	useful	subset
– This	subset	may	grow	or	shrink	over	time	

• Not	all	details	settled
– Comments	and	discussion	welcome!

Proposed	Naming	Scheme	(1/3)

• BLAS_<blasFunction>_<typeSequence>[_<other>]
– blasFunction {gemm,	symv,	dot,	rotg,	gemm_batch…}
– typeSequence =	one	or	more	types
• type	=	<mathType><length>[<multiplier>]
• mathType {R,C},	possibly	{I,	QI,	…}
• length				{8,16,32,64,80,	...}
– Examples:	R32	(old	S),	C64	(old	Z)

• [optional]	multiplier:
– x2		...		R64x2		is	double-double
– Repro3	...	R64Repro3	is	reproducible	accumulator	of	3	bins

∈

∈

∈

Proposed	Naming	Scheme	(2/3)
• BLAS_<blasFunction>_<typeSequence>[_<other>]
– blasFunction {gemm,	symv,	dot,	rotg,	gemm_batch…}
– typeSequence =	one	or	more	types
– How	many	types?

• 1	type	
– All	arguments	the	same	(excluding	N,	LDA	etc),	usual	case
– Ex:	BLAS_GEMM_R64:	usual	DGEMM,		C	=	ALPHA*A*B	+	BETA*C

• #arrays	types
– All	array	types	specified
– Use	max	length	for	internal	precision	(default)
– Scalar	types	inferred,	to	be	“max”	mathType and	length,	ok	for	XBLAS
– Ex:	BLAS_GEMM_R32R32R64:	A and	B are	R32;	C,	ALPHA and	BETA are	R64

• #arrays	+	#scalars	types
– All	array	and	scalar	types	specified;	rare!
– Ex:	BLAS_ROTG_C32C32R32C32(CA,CB,C,S)	is	CROTG(CA,CB,C,S),		CROT	too

• Inferable,	so	BLAS_GEMM	enough

∈

Proposed	Naming	Scheme	(3/3)

• BLAS_<blasFunction>_<typeSequence>[_<other>]
– blasFunction {gemm,	symv,	dot,	rotg,	gemm_batch…}
– typeSequence =	one	or	more	types,	eg C32,	R64x2
– [optional]	other,	could	be
• <length><multiplier>,	to	indicate	internal	precision

– Ex:	_64x2,	for	double-double,	used	for	XBLAS

• _Repro3,	to	indicate	reproducible	summation,	with	a	3	bin	
reproducible	accumulator
• Combinations,	extensions	possible

∈

Examples
• BLAS_GEMM_R64(…,	ALPHA,	A,…,B,..,	BETA,	C,…)
– Usual DGEMM,	R64	inferable	by	overloading

• BLAS_GEMM_R64_64x2(…,	ALPHA,	A,…,B,..,	BETA,	C,…)
– Use	double-double	internally,	_R64	inferable,	not	_64x2

• BLAS_GEMM_OUT_R64(…,	ALPHA,A,…,B,…,BETA,	C_in,	C_out,…)
– separate	input	and	output	C	matrices,	_R64	inferable

• BLAS_GEMM_OUT_R64R64R64R64x2(…,	ALPHA_hi,	ALPHA_lo,			
A,…,	B,…,	BETA_hi,	BETA_lo,C_in,	C_out_hi,	C_out_lo,…)
– C_out is	double-double,	so	the	scalars	ALPHA,	BETA	are	too,	and	the	

internal	precision
– Code	can	optimize	if	ALPHA_lo=0	or	BETA_lo=0,	else	specify	types	of	

ALPHA	and	BETA	to	be	R64
– C_out_hi and	C_out_lo each	has	its	own	leading	dimension

Examples
• BLAS_GEMM_R64(…,	ALPHA,	A,…,B,..,	BETA,	C,…)
– Usual DGEMM,	R64	inferable	by	overloading

• BLAS_GEMM_R64_64x2(…,	ALPHA,	A,…,B,..,	BETA,	C,…)
– Use	double-double	internally,	_R64	inferable,	not	_64x2

• BLAS_GEMM_OUT_R64(…,	ALPHA,A,…,B,…,BETA,	C_in,	C_out,…)
– separate	input	and	output	C	matrices,	_R64	inferable

• BLAS_GEMM_OUT_R64R64R64R64x2(…,	ALPHA_hi,	ALPHA_lo,			
A,…,	B,…,	BETA_hi,	BETA_lo,C_in,	C_out_hi,	C_out_lo,…)
– C_out is	double-double,	so	the	scalars	ALPHA,	BETA	are	too,	and	the	

internal	precision
– Code	can	optimize	if	ALPHA_lo=0	or	BETA_lo=0,	else	specify	types	of	

ALPHA	and	BETA	to	be	R64
– C_out_hi and	C_out_lo each	has	its	own	leading	dimension

Reproducibility

• Outline
– Recall	definition	and	design	goals
• Algorithm	sketch,	error	bounds

– Summarize	Design	Space	for	Interface
• Questions	for	audience

–Making	Sca/LAPACK	reproducible
• Paper	with	details,	software	at	
bebop.cs.berkeley.edu/reproblas
– Joint	work	with	Hong	Diep Nguyen,	Peter	Ahrens

Defining	reproducibility	(1/2)

• Get	bitwise	identical	answers	on	any	computer,	
no	matter	what	hardware	resources	are	available,	
or	how	they	are	scheduled,	for	any	size	and	
ordering	of	inputs,	that	would	get	identical	
results	in	exact	arithmetic.

• Assumptions
– Sum	at	most	233 singles	or	264 doubles
– Limited	subset	of	IEEE	754	available
– If	double-double	used	for	any	intermediate	results,	
must	always	be	same	algorithm

Defining	reproducibility	(2/2)

• Other	design	goals
– Accuracy	at	least	as	good	as	conventional,	and	tunable
– Handle	exceptions	reproducibly
– One	read-only	pass	over	summands
– One	reduction
– Use	as	little	memory	as	possible,	to	enable	tiling	BLAS

12

Algorithm	sketch
• Take	floating	point	exponent	range,	divide	it	into	
intervals	of	some	fixed	width	(eg w=40	bits)

• For	each	summand
– Break	its	mantissa	into	intervals
– Sum	all	bits	in	each	interval	exactly	(call	the	accumulator	
for	an	interval	a	bin;	each	bin	represented	by	2	floats)

– Only	keep	the	topmost	k	bins,	where	k	chosen	by	user
• Ex:	Repro3	means	k=3

• After	summing,	round	bins	to	1	float
• Call	k	bins	(2k	floats)	a	reproducible	accumulator
• See	100+	page	report	for	details

Error	bound	for	Reproducible	Sum

• Notation
– S	=	exact	sum	of	x1,…,xn
– Srepro =	computed	sum
– k	=	#bins,	w	=	bin	width,	ε =	machine	epsilon

• |S	– Srepro	|	≤	n*2(1-k)w *max	|xi|	+	7*ε*|S|
• Ex:	for	double	precision,	ε =	2-53,	w=40,	k=3
|S	– Srepro	|	≤	n*2-80 *max	|xi|	+	7*2-53*|S|

• May	be	108	times	smaller	than	usual	bound,	
depending	on	cancellation

Reproducible	GEMM	(1/3)

• C_out =	ALPHA*A*B	+	BETA*C_in
• Which	variables	can	be	Reprok?
– No	algorithms	(or	use	cases)	for	multiplying	a	
reproducible	accumulator	by	a	general	scalar,										i.e.	
other	than	{±1,0}
• Only	C_out and/or	C_in may	be	Reprok
• If	C_in is	Reprok,	then	BETA	 {±1,0}
• Needed	to	support	parallel	reductions	(ScaLAPACK)

∈

Reproducible	GEMM	(2/3)

• C_out =	ALPHA*A*B	+	BETA*C_in
• Dealing	with	general	ALPHA	and	BETA
• Where	to	put	parentheses	in	ALPHA*A*B?
– (ALPHA*A)*B	or	A*(ALPHA*B):	up	to	user,	may	
require	workspace	for	As=ALPHA*A	or	Bs=ALPHA*B,	
which	we	want	to	avoid	if	possible

– Σk (ALPHA*(A(i,k)*B(k,j))	– doubles	#multiplies
– ALPHA*(A*B)	– may	lose	reproducibility	if	C_in or	
C_out are	Reprok,	i.e.	part	of	reduction	

Reproducible	GEMM	(3/3)
• C_out =	ALPHA*A*B	+	BETA*C_in
• Interface	#1	(recommended)

– If	C_in and	C_out are	both	floats,	ALPHA	and	BETA	can	be	general
• Simplest	for	reproducible	LAPACK

– If	either	C_in or	C_out are	Reprok,	ALPHA	&	BETA		restricted	to	{±1,0}
• Interface	#2	(more	restrictive)

– C_in and	C_out can	be	floats	or	Reprok
– ALPHA	and	BETA	restricted	to	{±1,0}

• Interface	#3	(most	restrictive)
– C_in and	C_out must	both	be	float	or	both	be	Reprok
– ALPHA	and	BETA	restricted	to	{±1,0}
– Still	enough	for	reproducible	Sca/LAPACK,	with	some	small	algorithmic	

changes,	no	interface	changes	or	extra	workspace	(in	LAPACK/SRC)
• Comments	welcome!	

Reproducible	Sca/LAPACK
• Only	address	sources	of	nonreproducibility in	BLAS

– Ex:	If	compilers	use	FMA	differently,	not	our	problem
• Proposed	Interface	#1	allows	us	to	replace	BLAS	calls
• What	about	Interfaces	#2,3	with	ALPHA,BETA					{±1,0}	?

• Goal:	Don’t	change	interfaces,	including	workspace	needed
• Ex:	Replacing				C	=	ALPHA*A*B+BETA*C				by																																												Ctmp

=	A*B,	C	=	ALPHA*Ctmp +	BETA*C				requires	Ctmp
• Used	parser	(thanks	to	Ben	Mehne)	to	extract	all	BLAS	calls	and	

their	ALPHA,	BETA	arguments	in	Sca/LAPACK
– Few	did	not	have	ALPHA,BETA					{±1,0}	
– Most	handled	by	simple	transformations,	like	replacing																																	

y	=	1*A*x+BETA*y					by				y	=	BETA*y,	y	=	1*A*x+1*y
– A	few	were	more	complicated

• Ex:	replace	GEMM	by	C=(BETA/ALPHA)*C,	C	=	A*B+C,	C	=	ALPHA*C
– Some	interface	changes	needed	in	LAPACK/TESTING,	not	SRC
– Details	in	report	on	webpage,	or	in	(very	detailed!)	spreadsheets

• ScaLAPACK simpler	than	LAPACK	(less	functionality)

∈

∈

Mixed/Extended	Precision	BLAS	(nee	XBLAS)

• Proposed	naming	scheme	supports	mixed	precision
– Ex:	BLAS_GEMM_R32R64R64	:	A	is	32	bit,	B	and	C	are	64	bit	(ALPHA	

&	BETA	too)
• Output	C_out may	be	higher	precision	than	inputs

– Useful	for	distributed	memory	algorithms
– Missing	functionality	in	current	XBLAS	
– Ex:	BLAS_GEMM_OUT_R64R64R64R64x2:	A,	B,	C_in are	64	bit,	

C_out is	double-double
• Mostly	XBLAS	is	used	by	LAPACK	in	28	cases	of	matrix-vector	

product,	for	iterative	refinement	
– Hundreds	of	cases	unused
– Not	all	cases	should	be	implemented/tuned

• R64x2	outputs	can	be	“normalized”:
• (double)	(high+low)	=	high,		i.e.	low	can	be	ignored

Batch	GEMM
• Using	the	same	naming	scheme,	only	implement	useful	subset
• Batching	using	groups,	as	in	MKL

– Inputs	divided	into	groups	(#	=	group_count)
– Group	i contains	size_per_group(i)	sets	of	inputs/outputs
– Group	shares	common	values	of	TRANSA,	TRANSB,	M,	N,	K,	LDA,	LDB,	LDC,	ALPHA,	BETA
– If	group_count =	1,	standard	approach

• Alternate	data	structures	possible	(eg cuBLAS,	Kokkos)	- Beyond	scope	
• BLAS_GEMM_Batch_R64	(

TRANSA,	TRANSB,	M,	N,	K,	ALPHA,	A,	LDA,	B,	LDB,	BETA,	C, LDA,	
group_count,	size_per_group)

– Dimension	of	green	arrays	is	group_count
– Dimension	of	blue	arrays	is	Σi size_per_group(i),	contain	pointers	to	matrices

• Ex:	group_count =	2	
– Group	1:	TRANSA	=	TRANSB=T,	M=N=N=LDA=LDB=LDC=5,	ALPHA=BETA=1.0	with	3	matrices.	
– Group	2:	TRANSA	=	TRANSB=N,	M=N=K=LDA=LDB=LDC=4,	ALPHA=BETA=3.0	with	2	matrices.	
– There	are	3+2 =	5	matrix	pointers	in	A,	B,	C

Fixed	Point	– Quantized	Integer	(QI)

• A	QI	is	encoded	by	an	integer	pair	(I,	Q)	which	represents	the	value	I/2^Q.	
• Ex:	BLAS_GEMM_QI32(…	ALPHA,	ALPHAQ,	A,	AQ,	…,	B,	BQ,	BETA,	BETAQ,	C,	CQ,	

…)
– If	(ALPHA,ALPHAQ)	=	(100,8),	 the	value	represented	is	100/2^8	=	0.390625	
– All	entries	of	the	A	matrix	share	a	single	Q	value,	so	AQ	is	one	integer.	

• Use	integer	arithmetic
– Ex:	(ALPHA,ALPHAQ)	=	(BETA,BETAQ)	=		(1,0),	AQ	=	BQ	=	CQ	=	8	
– C	=	A*B	+	C,	all	matrices	with	8	bits	to	the	right	of	the	binary	point
– The	integer	value	of	Σk A(i,k)*B(k,j)	is	right	shifted	8	bits	and	and	rounded	to	an	

integer	before	adding	to	C(i,j).
• We	can	also	use	[_<other>]	to	specify	specific	rounding	methods	

– Default:	truncation	/	round-toward-zero	?
– Use	extra	internal	width,	eg BLAS_GEMM_QI32_64(…)	uses	32-bit	inputs		&	

outputs	and	64	bits	internally

Error	Handling	(1/2)
XERBLA	and	Functional	Returns

• We	propose	deprecating	XERBLA.	
• Each	BLAS	subroutine	has	an	integer	return	value	for	
parameter	checking	like	INFO	in	LAPACK
• 0	means	success
• -K	means	the	Kth parameter	was	an	illegal	input
• +K	could	be	used	for	other	“error”	conditions

• Ex:	Zero	on	diagonal	in	TRSV,	NaN checking

• Old	BLAS	functions,	eg DOT,	will	now	be	subroutines	
with	the	answer	as	a	final	new	parameter

Error	handling	(2/2)
Consistent	Exception	Handling

• Guaranteed	by	reproducible	summation
– Always	(or	never)	get	same	±Inf or	NaN

• Should	we	target	consistent	exception	
handling	in	general?

• Ex:	Reference	TRSV	propagates	NaNs
differently	in	solving	U*x=b	with	TRANS=‘N’	
and	LT*x=b	with	L=UT and	TRANS=‘T’

• Ex:	Reference	ISAMAX([0,NaN,2])	returns	3,	
and	ISAMAX([NaN,0,2])	returns	1

Discussion/Questions	for	Audience
• Lots	of	details	omitted,	see	posted	document	at

– bit.ly/Batch-BLAS-2017
• Which	of	3	interfaces	for	Reproducible	BLAS	to	use?
• Which	batch	functionality	should	we	include?
• Which	fixed	point	formats	should	we	include?
• All	BLAS	are	integer	functions	returning	an	error	flag,	like	INFO?
• Target	consistent	exception	handling?	Report	other	errors?

• Is	recommended	subset	of	BLAS	to	be	implemented	ok?
• Add	any	matrix	formats,	like	RFP	=	Rectangular	Full	Packed?

“One	string	to	rule	them	all”

Backup	Slides

RFP	=	Rectangular	Full	Packed

