
Evolution of Numerical Software for Dense Linear Algebra

Jack Dongarra *

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4801

Sven Hammarling

Numerical Algorithms Group Ltd.
Wilkinson House
Jordan Hill Road
Oxford OX2 8DR

. gsize + 1

To the memory of Jim Wilkinson for his inspiration and encouragement.

1. Introduction

We wish to trace the development of numerical software for dense linear algebra from the early days

of computers through to work in progress for modern high-performance machines.

Jim Wilkinson was a great influence on the development of algorithms for numerical linear algebra

and we highlight his influence, as well as those things that influenced his ideas, particularly in the early

days. We believe that there are still lessons to be learned, or remembered, by looking at the historical

development.

2. Early Days

Up to the 1950s the principal aid to computation was the mechanical calculator. The art of computa-

tion and numerical analysis in the first half of the Century is epitomized by such classic books as Whit-

taker and Watson [1927], Whittaker and Robinson [1924] and Southwell [1940]. Indeed Leslie Fox,

Wilkinson’s great friend and early colleague at NPL, was a student of Southwell and can still demonstrate

a remarkable skill in the relaxation method.

Wilkinson joined NPL in 1946 working jointly for the Desk Machine Section and for Alan Turing

on a project to build an Automatic Computing Engine. In his work for the Desk Machine Section, Wilkin-

son often used a Brunsviga for his calculation and this was an important influence on his understanding of

machine arithmetic and his expectations of machine arithmetic for two reasons. Firstly and most

* Work supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.

Typeset on 25 October 2018.

-2-

importantly, a hand calculator readily gives one the ability to watch the calculations proceed, something

which Wilkinson certainly thought valuable:

"But in my experience, many people who do computing are reluctant to look at numbers.

...

I certainly do not want to suggest that the way to acquire the habit is to serve an apprenticeship

on hand desk calculators, but we have yet to learn how to instill the relevant knowledge."

Fr om an interview in BYTE, February, 1985, pp 177 - 194.

MATLAB, which we shall mention again later, is one example of a system that attempts to give this

experience.

A second feature of the Brunsviga (and other similar calculators), which influenced Wilkinson is the

ability to perform extended precision arithmetic, a feature that in particular allows one to perform accu-

mulated inner products (see Figure 1).

o p e r a n d | | | | | | | | | | | a

o p e r a n d | | | | | | | | | | | b

r e s u l t r e g i s t e r |

Schematic of a hand calculator

Figure 1

The poor arithmetic on many modern computers was a disappointment to Wilkinson (see for exam-

ple, p.146 of [Wilkinson, 1971]) and he, like us believed that we all owe a debt of gratitude to Velvel

Kahan for his tireless crusade to put things right.

During his time at the Armament Research Department, Wilkinson had been asked to solve a system

of twelve linear equations and, soon after joining NPL, a system of eighteen equations arose on which a

joint operation with Fox, Goodwin, Turing and Wilkinson (a rather awesome set of processors) was

mounted. The experience of solving these two systems of equations is described in Wilkinson’s 1970 Tur-

ing Lecture [Wilkinson, 1971] and was undoubtably a fundamental ingredient in forming his ideas on

backward error analysis.

The equations were solved using Gaussian elimination with pivoting. In both cases the equations

were mildly ill-conditioned and figures were slowly lost during the elimination process until in the final

equation

-3-

un,n xn = β n,

un,n and β n had lost about four figures relative to u1,1 and β1. Wilkinson realized that the solution must

surely have lost about four figures in accuracy, but in substituting back into the original equations (using

accumulated inner products) it was found that the left-hand side agreed with the right-hand side to the full

ten figures of working accuracy.

The significance of the results was that, although the solution was almost certainly not accurate, it

was the solution of a closely neighboring problem. That is, if x denotes the computed solution of the

equations

Ax = b (2.1)

then x satisfied

Ax = b + r, with || r || = ε || A || || x ||,

where ε is of the order of machine accuracy.

To express this in the more familiar form used later by Wilkinson, if we let E be the matrix

E =
r x T

x T x

so that

|| E ||F ≤
|| r ||2
|| x ||2

= ε || A ||F ,

r = E x and (A + E)x = b.

Since || r || ≤ || E || || x ||, || E ||F ≥ || r ||2/|| x ||2 and it follows that

(A + E)x = b, with || E ||F = ε || A ||F . (2.2)

So again x is expressed as the solution of a closely neighboring problem. Wilkinson attributes the

experience of solving the eighteen equations as a strong stimulus to Turing to write his famous paper on

rounding errors [Turing, 1948], which with the paper by von Neumann and Goldstine [1947] helped pave

the way to an understanding of Gaussian elimination.

-4-

As mentioned earlier, Wilkinson was involved in the project to design and build the ACE and this

project soon absorbed all his time. The Pilot ACE machine first worked in May 1950. It had mercury

delay lines each with a capacity of 32, 32-bit words and instructions that could perform operations on all

32 numbers in a delay line. By the standards of the time it had fast floating point arithmetic with one word

allocated for the mantissa and one word for the exponent, and accumulated inner products. Background

information to Wilkinson’s inv olvement in building Pilot ACE can be found in [Wilkinson, 1971; Wilkin-

son, 1980 and Fox, 1987]. We mention the machine here because it had a profound effect on numerical

linear algebra and software for numerical linear algebra due to the work of Wilkinson, who had an inti-

mate knowledge of Pilot ACE through his work on the design, building, operation and programming of

the machine.

"Since the use of the punched-card equipment required the use of an operator, it encouraged user

participation generally, and this was a distinctive feature of Pilot ACE operation.

...

Speaking for myself I gained a great deal of experience from user participation, and it was this

that led to my own conversion to backward error analysis."

[Wilkinson, 1980.]

This background with the Desk Machine Section and Pilot ACE, together with his education in Pure

Mathematics enabled Wilkinson to take the fundamental step of developing analytic methods for explain-

ing stability and for giving precise error bounds.

As an example of the result of a backward error analysis, Wilkinson showed that with Gaussian

elimination for solving equation (2.1) the computed solution x satisfies (2.2) and ε satisfies a bound of the

form ε ≤ gfnu, where g is the "growth factor", fn is a modest function of n (the order of A) and u is the

unit rounding error, or relative machine precision. Of course, in general, pivoting is needed to control the

size of g, but g = 1 for positive definite A, or if orthogonal transformations are used in place of elemen-

tary transformations. Wilkinson gav e similar details for many classes of algorithms of numerical linear

algebra [Wilkinson, 1963; Wilkinson, 1965]. Although he gav e precise bounds, for example an explicit

expression for fn above, his aim always was to expose the strengths and weaknesses of algorithms and to

aid our understanding of numerical stability.

This work, together of course with the work of many others, such as Wallace Givens, gav e a firm

foundation for the development of numerical software for linear algebra.

3. The Software Basis

The first published subroutine library was a set of machine code routines for EDSAC [Wilkes,

Wheeler and Gill, 1951], Cambridge University’s stored-program computer which began operation on 6th

May, 1949 [Wilkes, 1977]. This library contained just two linear algebra routines:

a) z ← x ± y,

-5-

b) y ← Ax, where A = A T stored in packed form.

During the 1960’s a number of Algol procedures were developed and published in the journal

Numerische Mathematik. Wilkinson, together with Christian Reinsch edited a collection of these proce-

dures, together with background material, into a volume entitled Linear Algebra in the Handbook for

Automatic Computation series [Wilkinson and Reinsch, 1971]. The selected algorithms represented the

best available in terms of their generality, elegance, accuracy, speed and economy of storage. The volume

is now generally referred to simply as "The Handbook" and represents a landmark in the development of

numerical software.

The Handbook contained 41 procedures associated with solving linear systems and 43 procedures

for the eigenvalue problem. Many of the procedures used accumulated inner products and all were accom-

panied by comprehensive documentation. The Handbook formed the basis for a number of software

projects including EISPACK, a number of linear algebra routines in the IMSL Library and the F chapters

of the NAG Libraries.

4. Software Dev elopment

Wilkinson visited Nottingham University in 1968 to give advice about software for linear algebra

and in February 1970 the Nottingham Algorithms Group was formed. Mark 1 of the library was released

on October 1, 1971. In 1973 the Central Office moved to Oxford and NAG became the Numerical Algo-

rithms Group. In 1976 NAG became a non-profit company limited by guarantee and in 1980 the NAG Inc.

office opened in Downers Grove near Chicago. Throughout the development of NAG Wilkinson played an

active role in contributing to and commenting on the linear algebra chapters of the library. In 1984

Wilkinson gav e an invited lecture at NAG’s AGM [Wilkinson, 1985].

center; l n n n n n.

Mark 1 2 4 11 12 No. of Routines 11 75 99 142 239

F Chapter of NAG Fortran Library

We now move over the Atlantic to look at some important software developments in the USA.

Prior to the actual publication of the Handbook, V. Klema and others at Argonne National Labora-

tory had begun translating many of the Algol procedures into Fortran. Their work became the basis for

the subsequent development of EISPACK [Smith et al. 1976], a collection of Fortran subroutines that

compute the eigenvalues and eigenvectors of nine classes of matrices.

The first release of EISPACK in 1974 was available in five versions: IBM Systems 370 and 360,

CDC 6600 and 7600, Univac 1108, Honeywell 635, and PDP-10. Since that time, EISPACK has been

extended twice. In Section 6.1, we discuss these extensions briefly, and review two other software pack-

ages of linear algebra algorithms. Wilkinson also actively supported the EISPACK project and was a fre-

quent visitor at Argonne.

-6-

In the next section we look at the linear algebraic approach to this software and other subsequent

software projects.

5. Decompositional Approach

Software for linear algebra is based on the decompositional approach to numerical linear algebra.

To understand this approach better, let us consider the problem of solving the linear system

Ax = b, (2.1)

where A is a nonsingular matrix of order n. In older textbooks this problem is treated by writing (2.1) as a

system of scalar equations and eliminating unknowns in such a way that the system becomes upper trian-

gular (Gaussian elimination) or even diagonal (Gauss-Jordan elimination). This approach has the advan-

tage that it is easy to understand and that it leads to pretty computational tableaux suitable for hand calcu-

lation. However, it has the drawback that the level of detail obscures the very broad applicability of the

method.

In contrast, the decompositional approach begins with the observation that it is possible to factor A

in the form

A = LU , (2.2)

where L is a lower triangular matrix with ones on its diagonal and U is upper triangular. * The solution to

(2.1) can then be written in the form

x = A−1b = U−1 L−1b = U−1 y,

where y = L−1b. This suggests the following algorithm for solving (2.1).

1: Factor A in the form (2. 2);

2: Solve the system Ly = b; (2.3)

3: Solve the system Ux = y;

Since both L and U are triangular, steps 2 and 3 are easily done.

* This is not strictly true. It may be necessary to permute the rows of A (a process called pivoting) in order to
ensure the existence of the factorization (2.2). In finite precision arithmetic, pivoting must , in general, be incor-
porated to ensure numerical stability.

-7-

The approach to matrix computations through decompositions has turned out to be very fruitful.

First, by dividing the computation into two stages (the computation of a decomposition and the use of the

decomposition to solve the problem at hand), factorization is necessary only once, representing a poten-

tially large saving.

Second, the approach suggests ways of avoiding the explicit computation of matrix inverses or gen-

eralized inverses, which is always a computationally expensive and numerically risky procedure.

Third, the decompositional approach introduces flexibility into matrix computations. There are

many decompositions, and a knowledgeable person can select the one best suited to a given applications.

Fourth, if one is given a decomposition of a matrix A and a simple change is made in A (e.g. the

alteration of a row or column), one can frequently compute the decomposition of the altered matrix from

the original decomposition at far less cost than the ab initio computation of the decomposition. This gen-

eral idea of updating a decomposition has been an important theme during the past decade of numerical

linear algebra.

Finally, the decompositional approach provides theoretical simplification and unification. This is

true both inside and outside of numerical analysis. For example, the realization that the Crout, Doolittle,

and square root methods all compute LU decompositions enables one to recognize that they are all vari-

ants of Gaussian elimination. Outside of numerical analysis, the spectral decomposition has long been

used by statisticians as a canonical form for multivariate models.

In the next section we discuss three particular software packages for linear algebra algorithms that

exploit this approach to software development.

6. Software Packages

6.1 EISPACK

EISPACK includes 13 drivers, each intended for matrices of various forms. Twelve of the drivers

provide two options: compute all eigenvalues, or compute all eigenvalues and eigenvectors. One of the

drivers provides for all the eigenvalues and some of the eigenvectors for a symmetric matrix. Seven of the

drivers are for the standard eigenvalue problem involving a single real matrix; two of the drivers solve the

standard eigenvalue problem for complex matrices; and four of the drivers solve the generalized eigenval-

ue problem involving two real matrices. These driver subroutines provide easy access to many of EIS-

PA CK’s capabilities. The user whose problems do not make heavy demands on computer time or storage

need not be concerned with any further details of EISPACK org anization.

In addition to the drivers, however, there are 58 subroutines in EISPACK. The modular organization

greatly reduces the amount of both source and object code that must be handled. It also provides opportu-

nities for using EISPACK facilities in computations not envisioned during the original development. But

it means that the user who desires to access these facilities is faced with a formidable list of subroutines.

EISPACK has been enhanced twice since its initial release [Garbow et al. 1977; Dongarra and Moler

1984]. The first revision, in 1976, offered the capability of handling generalized eigenvalue problems

-8-

directly. The current version, EISPACK 3, eliminates the need for machine-specific constants and reduces

the probability of underflow/overflow difficulties. The basic design, however, remains the same.

6.2 LINPACK

The success of EISPACK in 1974 motivated the development of a second package of high-quality

software for linear algebra problems. This package, called LINPACK, was designed for the solution of

linear equations and linear least-squares problems [Dongarra et al. 1979].

When LINPACK was designed, one of its most distinctive features was efficiency. LINPACK

achieves this efficiency from two sources: the column orientation of the algorithm and the use of the Basic

Linear Algebra Subprograms (Level 1 BLAS). When LINPACK was designed in the late 1970’s the state

of the art in scientific computers were the pipelined scalar processors, such as the CDC 7600 and the IBM

360/195. In light of todays advanced computers which use memory hierarchy, vector operations and par-

allel processing the situation has changed somewhat.

While advanced-computer architectures have generally speeded up performance, many modern

machines have also presented a new problem in coding matrix routines. This problem centers on the fea-

ture of hierarchical memory organization. Typically, a hierarchical memory structure involves a sequence

of computer memories, ranging from a small, but very fast memory at the bottom to a capacious, but slow

memory at the top. Since a particular memory in the hierarchy (call it M) is not as big as the memory at

the next level (M ′), only part of the information in M ′ will be contained in M . If a reference is made to

information that is in M , then it is retrieved as usual. However, if the information is not in M , then it must

be retrieved from M ′, with a loss of time. In order to avoid repeated retrieval, information is transferred

from M ′ to M in blocks, the supposition being that if a program references an item in a particular block,

the next reference is likely to be in the same block. Programs having this property are said to have locality

of reference. LINPACK uses column-oriented algorithms to preserve locality of reference. That is, the

LINPACK codes always reference arrays down columns, not across rows. This approach works because

FORTRAN stores arrays in column order. Thus, as one proceeds down a column of an array, the memory

references proceed sequentially in memory. On the other hand, as one proceeds across a row the memory

references jump across memory, the length of the jump being proportional to the length of a column. The

effects of column orientation are dramatic: on scalar systems with virtual or cache memories, the LIN-

PA CK codes will significantly outperform codes that are not column oriented. However, the algorithms in

LINPACK did not go far enough with the locality of reference. As we shall discuss later, expressing the

operations or algorithm in terms of vector operations does not achieve the locality of reference required to

attain full reuse of data and ultimate performance rates on today’s large scale scientific computers.

On scalar computers LINPACK also gains efficiency from the use of the Level 1 BLAS when large

matrices (typically between n = 25 and n = 100) are involved. The BLAS improve the efficiency particu-

larly when the programs are run on nonoptimizing compilers. This is because doubly subscripted array

references in the inner loop of the algorithm are replaced by singly subscripted array references in the

appropriate BLAS. The effect can be seen in matrices of quite small order, and for large orders the sav-

ings are significant. Finally, improved efficiency can be achieved by coding a set of BLAS to take

-9-

advantage of the special features of the computers on which LINPACK is being run—either by producing

machine language versions or taking advantage of features such as vector operations. (For further infor-

mation on the BLAS, see Section 8.)

In order to improve the performance of algorithms implemented on high-performance computers,

we must consider not only the total number of memory references, but also the pattern of memory refer-

ences. We would like our algorithms to observe the principle of locality of reference, so that the data can

be effectively utilized. A set of tools that aid in understanding a program’s locality of reference have been

designed by Brewer, Dongarra, and Sorensen [1988]. The tools help visualize the individual memory ref-

erences that were made to the one- and two-dimensional arrays in a user’s program. The goal of this work

is to assist in formulating correct algorithms for high-performance computers and to aid as much as possi-

ble the process of translating an algorithm into an efficient implementation on a specific machine.

6.3 MATLAB

MATLAB is an interactive system whose basic data element is a matrix [Moler, et al., 1986]. The

system provides easy access to matrix software developed by the LINPACK and EISPACK projects. This

allows a user to solve many numerical problems in a fraction of the time it would take to write a program

in a language like Fortran or C. Furthermore, problem solutions are expressed in MATLAB almost exactly

as they are written mathematically.

MATLAB has evolved over more than half a decade with suggestions and contributions from many

users. In university environments it has become the standard instrumental tool used in introductory cour-

ses in applied linear algebra, as well as advanced courses in other areas. In nonacademic settings, MAT-

LAB is used for research and for solving practical engineering and mathematical problems. Typical uses

include general-purpose numerical computation, algorithm prototyping, and the solution of the special-

purpose problems with matrix formulations that arise in disciplines such as automatic control theory, sta-

tistics, and digital signal processing.

Today MATLAB is distributed by MathWorks and available for a range of computer systems. They

have produced a version called PRO-MATLAB which has been completely rewritten in C and has inte-

grated graphics capability, programmable macros, IEEE arithmetic, a fast interpreter, and many new ana-

lytical commands. The initial commercial version of MATLAB was done for the PC, and called PC-

MATLAB.

7. Architectural Features

The development of vector and parallel computers in the late 1970s led to a critical review of mathe-

matical software for the solution of linear algebra equations. Many of the sequential algorithms used sat-

isfactorily on traditional machines fail to exploit the architecture of advanced computers. In this section

we review the various features of these more advanced systems and discuss how the architecture affects

the potential performance of linear algebra algorithms. In Section 8 we consider recent techniques

devised for utilizing advanced architectures more fully, especially the design of the BLAS. In Section 9

-10-

we discuss a new proposal, LAPACK, which is intended to most fully exploit advanced computers.

Finally, in Section 10, we address the challenge facing designers of mathematical software in view of the

development of massively parallel computer systems.

We review some of the basic features of traditional and more advanced computers. This review is

not intended to be a complete discussion of the architecture of any particular machine. Rather, our focus

is on certain features that are especially relevant to the implementation of linear algebra algorithms.

7.1 Cache

The idea of introducing a high-speed buffer memory (or cache) between the slow main memory and

the arithmetic registers goes back at least to the ATLAS computer [Hockney and Jesshope 1981, p 14].

The technique was adopted by IBM for both the System 360 and the System 370 computers. In the IBM

System 360 Model 85, for example, the cache (32,768 words of 162-ns semiconductor memory in the

360/85) held the most recently used data blocks of 64 bytes. If the data required by an instruction were

not in the cache, the block containing it was obtained from the slower main memory (4 Mbytes of 756-ns

core storage, divided into 16 different banks) and replaced the least-frequently-used block in the cache.

Cache memory is still used in many large-scale calculations in which memory references tend to concen-

trate around limited regions of the address space. In such cases, most references will be to data in the fast

cache memory, and the performance of the slow memory will be effectively that of the faster cache mem-

ory.

7.2 Pipelining

Pipeline concurrency is the name given to a system of multiple functional units, each of which is

responsible for partial interpretation and execution of the instruction stream. A pipeline processor has sev-

eral partially completed instructions in process at one time. Each processor stage operates on a specific

part of the instruction (e.g., instruction fetch, effective address calculation, operand fetch, execution of

operation specified by the instruction, and results storing).

Pipelining is analogous to an industrial assembly line where a product moves through a sequence of

stations. Each station carries out one step in the manufacturing process, and each of the stations works

simultaneously on different units in different phases of completion.

The goal of pipelined functional units is clearly performance. After some initial startup time, which

depends on the number of stages (called the length of the pipeline, or pipe length), the functional unit can

turn out one result per clock period as long as a new pair of operands is supplied to the first stage every

clock period. Thus, the rate is independent of the length of the pipeline and depends only on the rate at

which operands are fed into the pipeline. Therefore, if two vectors of length k are to be added, and if the

floating-point adder requires 3 clock periods to complete, it would take 3 + k clock periods to add the two

vectors together, as opposed to 3 * k clock periods in a conventional computer [Dongarra, Gustavson, and

Karp 1984].

Pipelining was used by a number of machines in the 1960s, including the CDC 7600 and the IBM

System 360/195. Later CDC introduced the STAR 100 (subsequently called the CYBER 200 series),

-11-

which also used pipelining to gain a speedup in instruction execution.

7.3 Vector Instructions

One of the most obvious concepts for achieving high performance is the use of vector instructions.

By means of a single instruction, all elementwise operations that make up the total vector operation are

carried out. The instructions are performed in vector registers. The machine may have k such elements in

a vector register in addition to having a conventional set of registers for scalar operations. A typical

sequence of instructions would be as follows:

center; l. Load a scalar register from memory Load a vector register from memory Perform a scalar-vec-

tor multiplication Load a vector register from memory Perform a vector-vector addition Store the results

in memory.

These six instructions would correspond to perhaps 6k + 1 instructions on a conventional computer,

where k instructions are necessary for loop branching. Clearly, then, the time to interpret the instructions

has been reduced by almost a factor of k, resulting in a significant savings in overhead.

7.4 Chaining

Another feature that is used to achieve high rates of execution is chaining. Chaining is a technique

whereby the output register of one vector instruction is the same as one of the input registers for the next

vector instruction. If the instructions use separate functional units, the hardware will start the second vec-

tor operation during the clock period when the first result from the first operation is just leaving its func-

tional unit. A copy of the result is forwarded directly to the second functional unit and the first execution

of the second vector is started. The net result is that the execution of both vector operations takes only the

second functional unit startup time longer than the first vector operation. The effect is that of having a

new instruction which performs the same operation as that of the two functional units that have been

chained together. On the CRAY, in addition to the arithmetic operations, vector loads from memory to

vector registers can be chained with other arithmetic operations.

For example, let us consider a case involving a scalar-vector multiplication, followed by a vector-

vector addition, where the addition operation depends on the results of the multiplication. Without chain-

ing, but with pipelined functional units, the operation would take a + k + m + k clock periods, where a is

the time to start the vector addition (length of the vector addition pipeline) and m is the time to start a vec-

tor multiplication (length of the vector multiplication pipeline). With chaining, as soon as a result is pro-

duced from the adder, it is fed directly into the multiplication unit, so the total time is a + m + k. We may

represent this process graphically as follows:

-12-

Ch a i n e d Lo a d a n d A r i t hm e t i c

a v l

LD | - - | - - - - - - - - - - - |

a v l

LD | - - | - - - - - - - - - - - |

b v l

* | - - | - - - - - - - - - - - |

c v l

+ | - - | - - - - - - - - - - - |

d v l

ST | - - | - - - - - - - - - - - |

me mo r y p a t h b u s y

============================== ================

a s t a r t u p t i me f o r memo r y l o a d o p e r a t i o n s

b s t a r t u p t i me f o r fl o a t i n g p o i n t a d d i t i o n o p e r a t i o n s

c s t a r t u p t i me f o r fl o a t i n g p o i n t mu l t i p l i c a t i o n o p e r a t i o n s

d s t a r t u p t i me f o r memo r y s t o r e o p e r a t i o n s

= memo r y b u s y

6.5 Overlapping

It is also possible to overlap operations if the two operations are independent. If a vector addition

and an independent vector multiplication are to be processed, the resulting timing graph might look like

the following:

-13-

Ov e r l a p p e d Lo a d w i t h Ch a i n e d Op e r a t i o n s

a v l

LD | - - | - - - - - - - - - - - |

a v l

LD | - - | - - - - - - - - - - - |

b v l

* | - - | - - - - - - - - - - - |

c v l

+ | - - | - - - - - - - - - - - |

d v l

ST | - - | - - - - - - - - - - - |

=============== memo r y p a t h 1 b u s y

================ memo r y p a t h 2 b u s y

================ memo r y p a t h 3 b u s y

a s t a r t u p t i me f o r memo r y l o a d o p e r a t i o n s

b s t a r t u p t i me f o r fl o a t i n g p o i n t a d d i t i o n o p e r a t i o n s

c s t a r t u p t i me f o r fl o a t i n g p o i n t mu l t i p l i c a t i o n o p e r a t i o n s

d s t a r t u p t i me f o r memo r y s t o r e o p e r a t i o n s

= memo r y b u s y

To describe the time to complete a vector operation, we use the concept of a chime [Fong and Jor-

dan 1977]. A chime (for chaining time) is a measure of the time needed to complete a sequence of vector

operations. To compute the number of chimes necessary for a sequence of operations, one divides the

total time to complete the operations by the vector length. Overhead of startup and scalar work are usu-

ally ignored in counting chimes, and only the integer part is reported. For example, in the graph for

unchained operations above there are two chimes, whereas in the graph for the chained operation there is

one chime.

As Fong and Jordan [1977] have pointed out, there are three performance levels for algorithms on

the CRAY. The two obvious ones are scalar and vector performance. Scalar performance is achieved when

operations are carried out on scalar quantities, with no use of the vector functional units. Vector perfor-

mance is achieved when vectors are loaded from memory into registers, operations such as multiplication

or addition are performed, and the results are stored into memory. The third performance level is called

supervector. This level is achieved when vectors are retained in registers, operations are performed using

chaining, and the results are stored in registers. Thereby using the memory hierarchy of the machine

architecture to the fullest.

Dramatic improvements in rates of execution are realized in going from scalar to vector and from

vector to supervector speeds. We show below a graph of the execution rate in MFLOPS (million floating

point operations per second) for LU decomposition of a matrix of order n as performed on the CRAY-1.

-14-

7.6 Loop Unrolling

When data references and the memory hierarchy are used efficiently, the hardware is being driven at

close to its highest potential. Theoretically, this situation can be shown by the following example, which

adds the product of a matrix and a vector to another vector:

center; l l. SUBROUTINE SMXPY (N1,Y,N2,LDM,X,M) REAL Y(∗), X(∗),

M(LDM,∗) DO 20 J = 1, N2 DO 10 I = 1, N1 Y(I) = Y(I) +

X(J)∗M(I,J) 10 CONTINUE 20 CONTINUE RETURN END

The innermost loop is a SAXPY (adding a multiple of one vector to another) and would be detected by a

good vectorizing compiler. Thus, the CRAY Fortran compiler generates vector code of the general form

center; l. Load vector Y Load scalar X(J) Load vector M(∗,J) Multiply scalar X(J) times vector M(∗,J)

Add result to vector Y Store result in Y

Note that there are three vector memory references for each two vector floating-point operations.

Since there is only one path to and from memory and the memory bandwidth is 80 million words per sec-

ond, the rate of execution cannot exceed ∼53 1/3 MFLOPS (less than 50 MFLOPS when vector startup

time is taken into account) — vector performance.

Thus to attain supervector performance, it is necessary to expand the scope of the vectorizing

process to more than just simple vector operations. In this case, a closer inspection reveals that the vector

Y is stored and then reloaded in successive SAXPY’s. If instead one accumulates Y in a vector register

(up to 64 words at a time) until all of the columns of M have been processed, it is possible to avoid two of

the three vector memory references in the innermost loop. The maximum rate of execution is then 160

MFLOPS (∼148 MFLOPS when vector startup time is taken into account) — supervector performance.

Unfortunately, the CRAY CFT compiler does not detect the fact that the result can be accumulated

in a register (and not stored between successive vector operations). Thus, the rate of execution is limited

to vector speeds. In fact, all of todays compilers for vector machines follow the same action of transfer-

ring the vector to memory and immediately reload the same vector to a register.

But if the outer loop is unrolled [Dongarra and Eisenstat, 1986] in this case to a depth of four, and

parentheses are inserted to force the arithmetic operations to be performed in the most efficient order, then

the innermost loop becomes

l l. DO 10 I = 1, N1 Y(I) = ((((Y(I)) + X(J−3)∗M(I,J−3)) + X(J−2)∗M(I,J−2))

$ + X(J−1)∗M(I,J−1)) + X(J) ∗M(I,J) 10 CONTINUE

Now the code generated by CFT has six vector memory references for each eight vector floating-point

operations. Thus the maximum rate of execution is ∼106 2/3 MFLOPS (∼100 MFLOPS when vector

startup time is taken into account) and the actual rate is ∼77 MFLOPS — supervector performance from

Fortran.

With this approach a collection of procedures from linear algebra can be developed. The key idea is

to use the kernel — SGEMV (add a vector times a matrix to another vector) to do the bulk of the work.

-15-

Since this kernel can be unrolled to give supervector performance, the procedures themselves are capable

of supervector performance.

Many processes that involve elementary transformations can be described in these terms, e.g.,

matrix multiplication, Cholesky decomposition, and LU factorization (see [Dongarra and Eisenstat

1986]). However, the formulation is often not the natural one, which may be based on outer-products of

vectors or accumulating variable-length vectors, neither of which can be super-vectorized in Fortran.

Tables 1-3 summarize the results obtained for these procedures on a CRAY 1-S (as well as on the

CRAY 1-M and CRAY X-MP) when the subroutines SMXPY and SXMPY were unrolled to the specified

depth. All runs used the CFT 1.11 Fortran compiler.

Table 1: 300 × 300 Matrix Multiplication

box center; c | c s s c | c s s c | c | c | c c | c | c | c n | n | n | n. Unrolled MFLOPS _

Depth CRAY 1-M CRAY 1-S CRAY X-MP _ _ _ _ 1 39 40 106

2 60 53 151 4 83 72 161 8 101 86 170 16 111 96 177

Table 2: 300 × 300 Cholesky Decomposition

box center; c | c s s c | c s s c | c | c | c c | c | c | c n | n | n | n. Unrolled MFLOPS _

Depth CRAY 1-M CRAY 1-S CRAY X-MP _ _ _ _ 1 31 33 68

2 48 45 99 4 67 60 118 8 81 70 131 16 86 78 139

Table 3a: 300 × 300 LU Decomposition with Pivoting

box center; c | c s s c | c s s c | c | c | c c | c | c | c n | n | n | n. Unrolled MFLOPS _

Depth CRAY 1-M CRAY 1-S CRAY X-MP _ _ _ _ 1 28 29 56

2 42 39 78 4 56 52 93 8 66 60 103 16 69 66 108

Table 3b: 300 × 300 LU Decomposition with Pivoting

(Using an Assembler Language Implementation of ISAMAX)

box center; c | c s s c | c s s c | c | c | c c | c | c | c n | n | n | n. Unrolled MFLOPS _

Depth CRAY 1-M CRAY 1-S CRAY X-MP _ _ _ _ 1 30 32 62

2 46 43 96 4 64 59 117 8 78 68 129 16 83 76 136

By contrast, 30 MFLOPS is often cited as a good rate for Fortran on the CRAY 1-S and 100 MFLOPS as

a good rate for CAL (Cray Assembler Language) (e.g., Fong and Jordan [1977] report 107 MFLOPS for

an assembler language implementation of LU decomposition with pivoting).

Similar techniques have been used by Dongarra, Kaufman, and Hammarling [1985] to modify many

of the standard algorithms used in computing eigenvalues and eigenvectors of matrices. Not only do the

-16-

techniques dramatically increase the performance without resorting to assembly language, but they are

beneficial in a variety of architectural settings.

7.7 Summary of Techniques

In summary, then, vector machines rely on a number of techniques to enhance their performance

over conventional computers:

• vector instructions to reduce the number of instructions interpreted,

• pipelining to utilize a functional unit fully and to deliver one result per cycle,

• chaining to overlap functional unit execution,

• overlapping to execute more than one independent vector instruction concurrently, and

• loop unrolling to force arithmetic operations to be performed efficiently.

Programs that use these features properly will fully exploit the potential of the vector machine.

8. Basic Linear Algebra Subprograms

One way of achieving efficiency in the solution of linear algebra problems is through the use of the

Basic Linear Algebra Subprograms. In 1973 Hanson, Krogh, and Lawson [1973] described the advan-

tages of adopting a set of basic routines for problems in linear algebra. The BLAS, as they are now com-

monly called [Lawson et al. 1979], have been very successful and have been used in a wide range of soft-

ware, including LINPACK and many of the algorithms published by the ACM Transactions on Mathemat-

ical Software. They are an aid to clarity, portability, modularity, and maintenance of software, and they

have become a de facto standard for the elementary vector operations. The BLAS are fully described in

[Lawson, Hanson, Kincaid, and Krogh 1979] and by Dodson and Lewis [1985]. Here we review their

purpose and their advantages. We also discuss two recent enhancements to the BLAS.

8.1 Level 1 BLAS

The original set of BLAS perform low-level operations such as dot-product and the adding of the

multiple of one vector to another. The BLAS promote efficiency by identifying frequently occurring

operations of linear algebra that can be optimized on various computers, perhaps by coding them in

assembly language or otherwise taking advantage of special machine properties. Use of these optimized

operations can yield dramatic reductions in computation time on some computers. The BLAS also offer

several other benefits:

• Robustness of linear algebra computations is enhanced by the BLAS since they take into consideration

-17-

algorithmic and implementation subtleties that are likely to be ignored in a typical application program-

ming environment.

• Program portability is improved through standardization of computational kernels without giving up

efficiency, since optimized versions of the BLAS can be used on those computers for which they exist, yet

compatible standard Fortran is available for use elsewhere.

• Program readability is enhanced. The BLAS are a design tool; that is, they are a conceptual aid in cod-

ing, allowing one to visualize mathematical operations rather than the particular detailed coding required

to implement the operations. By associating widely recognized mnemonic names with mathematical

operations, the BLAS improve the self-documenting quality of code.

8.2 Level 2 BLAS

Special versions of the BLAS, in some cases machine code versions, have been implemented on a

number of computers, thus improving the efficiency of the BLAS. However, with some of the modern

machine architectures, the use of the BLAS is not the best way to improve the efficiency of higher level

codes. On vector machines, for example, one needs to optimize at least at the level of matrix-vector oper-

ations in order to approach the potential efficiency of the machine; the use of the BLAS inhibits this opti-

mization because they hide the matrix-vector nature of the operations from the compiler.

Thus, an additional set of BLAS, called the Level 2 BLAS, was designed for a small set of matrix-

vector operations that occur frequently in the implementation of many of the most common algorithms in

linear algebra [Dongarra et al. 1986].

The Level 2 BLAS involve O(mn) scalar operations where m and n are the dimensions of the matrix

involved.

The following three types of basic operation are performed by the Level 2 BLAS:

1. Matrix-vector products of the form

y ← α Ax + β y, y ← α A T x + β y, and y ← α A T x + β y

where α and β are scalars, x and y are vectors and A is a matrix, and

x ← Tx, x ← T T x, and x ← T T x,

where x is a vector and T is an upper or lower triangular matrix.

2. Rank-one and rank-two updates of the form

A ← α xy T + A, A ← α x y T + A, H ← α x x T + H , and H ← α x y T + α yx T + H ,

where H is a Hermitian matrix.

3. Solution of triangular equations of the form

-18-

x ← T −1 x, x ← T −T x, and x ← T −T x,

where T is a non-singular upper or lower triangular matrix.

Where appropriate, the operations are applied to general, general band, Hermitian, Hermitian band,

triangular, and triangular band matrices in both real and complex arithmetic, and in single and double pre-

cision.

8.3 Level 3 BLAS

Many of the frequently used algorithms of numerical linear algebra can be coded so that the bulk of

the computation is performed by calls to Level 2 BLAS routines; efficiency can then be obtained by utiliz-

ing tailored implementations of the Level 2 BLAS routines. On vector-processing machines one of the

aims of such implementations is to keep the vector lengths as long as possible, and in most algorithms the

results are computed one vector (row or column) at a time. In addition, on vector register machines per-

formance is increased by reusing the results of a vector register, and not storing the vector back into mem-

ory.

Unfortunately, this approach to software construction is often not well suited to computers with a

hierarchy of memory (such as global memory, cache or local memory, and vector registers) and true paral-

lel-processing computers. For those architectures it is often preferable to partition the matrix or matrices

into blocks and to perform the computation by matrix-matrix operations on the blocks. By organizing the

computation in this fashion we provide for full reuse of data while the block is held in the cache or local

memory. This approach avoids excessive movement of data to and from memory and gives a surface-to-

volume effect for the ratio of operations to data movement. In addition, on architectures that provide for

parallel processing, parallelism can be exploited in two ways: (1) operations on distinct blocks may be

performed in parallel; and (2) within the operations on each block, scalar or vector operations may be per-

formed in parallel.

The Level 3 BLAS proposed by Dongarra et al. [1987] are targeted at the matrix-matrix operations

required for these purposes. The routines proposed are derived in a fairly obvious manner from some of

the Level 2 BLAS, by replacing the vectors x and y with matrices B and C. The advantage in keeping the

design of the software as consistent as possible with that of the Level 2 BLAS is that it will be easier for

users to remember the calling sequences and parameter conventions.

In real arithmetic the operations proposed for the Level 3 BLAS have the following forms:

-19-

a) Matrix-matrix products

C ← α AB + βC

C ← α AT B + βC

C ← α ABT + βC

C ← α AT BT + βC

These operations are more accurately described as matrix-matrix multiply-and-add operations; they

include rank-k updates of a general matrix.

b) Rank-k updates of a symmetric matrix:

C ← α AAT + βC

C ← α AT A + βC

C ← α AT B + α BT A + βC

c) Multiplying a matrix by a triangular matrix:

B ← αTB

B ← αT T B

B ← α BT

B ← α BT T

d) Solving triangular systems of equations with multiple right-hand sides:

B ← αT −1 B

B ← αT −T B

B ← α BT −1

B ← α BT −T

Here α and β are scalars, A, B and C are rectangular matrices (in some cases square and symmet-

ric), and T is an upper or lower triangular matrix (and non-singular in (d)).

-20-

Analogous operations are proposed in complex arithmetic: conjugate transposition is specified

instead of simple transposition and in (b) C is Hermitian and α and β are real.

The results of using the different levels of BLAS on the Alliant FX/8, IBM 3090 with Vector Facility, and

the CRAY-2 are shown in the figures below.

center; l c l n. Alliant FX/8 (8 Processors) MFLOPS _

Peak Performance 94 LINPACK Benchmark 7.6 Level 1 BLAS (y ← y + α x) 14 Lev el 2 BLAS

(y ← β y + α Ax) 26 Lev el 3 BLAS (C ← βC + α AB) 43

center; l c l n. IBM 3090/VF (1 Processor) MFLOPS _

Peak Performance 108 LINPACK Benchmark 12 Level 1 BLAS (y ← y + α x) 26 Lev el 2 BLAS

(y ← β y + α Ax) 60 Lev el 3 BLAS (C ← βC + α AB) 80

center; l c l n. CRAY-2 (1 processor) MFLOPS _

Peak Performance 488 LINPACK Benchmark 15 Level 1 BLAS (y ← y + α x) 121 Level 2 BLAS

(y ← β y + α Ax) 350 Level 3 BLAS (C ← βC + α AB) 437

The following figure illustrates the advantage of the Level 3 BLAS:

center; l|l l l. BLAS Mem Ref Ops Ratio Ref:Ops

n = m = k _

Level 1 SAXPY 3n 2n 3 : 2 y ← y + α x

Level 2 SGEMV mn + n + 2m 2mn 1 : 2 y ← β y + α Ax

Level 3 SGEMM 2mn + mk + kn 2mnk 2 : n C ← βC + α AB

8.4 Matrix-Matrix Level Algorithms

As computer architectures become more sophisticated in their organization we are required to sup-

ply an even higher level of granularity in our algorithms to take full advantage of the highest levels of per-

formance. A primary source of performance problems on todays advanced scientific computers is the

-21-

result of handling of data traffic in the memory hierarchy of the computer. The next level of modularity

we naturally focus on is at the matrix-matrix level. The advantage here is obvious, O(n2) data to undergo

O(n3) operations.

Defining the methods in terms of these modules requires us to express the algorithms in terms of

applying groups of transformations to a submatrix during a step. We will sometimes perform slightly

more floating point operations in these formulation, but the performance increase gained by the matrix-

matrix operations will far out-weigh the additional arithmetic. As we have done earlier, we will describe

formulations for Gaussian elimination terms of matrix-matrix operations.

The algorithm can be viewed at the kth stage as decomposing the matrix in the form:





L11

L21

L31

I

I










U11 U12

A(k)
22

A(k)
32

U13

A(k)
23

A(k)
33






At this stage we have decomposed part of the matrix and produced pieces of the final L and U factors L11,

L21, L31, U11, U12, and U13. These parts will undergo no further changes. The k stage of the algorithm

will modify the submatrix





A(k)
22

A(k)
32

A(k)
23

A(k)
33





and produce:




L22/U22

U23

L32

Â
(k)
33

The steps are as follows:

Step 1 (Construct parts of L and U)

P




A(k)
22

A(k)
32




= 


L22

L32



(U22)

This step performs an LU factorization on the rectangular matrix




A(k)
22

A(k)
32




. Partial pivoting is performed

and each interchange of rows is carried out across the entire rectangular matrix and a record made to

apply to the rest of the matrix in the next step.

Step 2 (Interchange rows in the remaining blocks)

-22-






A(k)
23

A(k)
33






← P






A(k)
23

A(k)
33






The pivot information from Step 1 is applied to the remainder of the matrix as listed above.

Step 3 (Apply L−1
22)

U23 ≡ A(k)
23 ← L−1

22 A(k)
23

A triangular solve is performed to update part of the matrix with the transformations.

Step 4 (Update remaining submatrix)

Â
(k)
33 ← A(k)

33 − L32U23

A matrix-matrix multiply is performed to update the last block of the matrix with the transformations.

The value of such a reorganization is particularly important when the memory bandwidth of a

machine is not well matched to the speed of the processors. An example of such a machine is the Alliant

FX/8 computer. This computer is a globally shared memory machine with eight processors called CE’s.

Each of these CE’s has vector capability. The memory path is from global memory through a bus to a

cache which then feeds the CE’s. When data comes from this cache the vector processors can produce

results at a peak rate of eight floating point (64-bit) results every 170 nanoseconds. This gives a peak

megaflop rate of around 45 megaflops. However, when there are memory references to data not resident

in cache, the computation rate is degraded. The cache is designed to be effective when many references

are made to the same area of an array. During an LU Decomposition of a large matrix the advantage of

such a cache is negated because the memory references sweep through the array over and over again.

Even though certain columns of the matrix have been referenced previously, they are unlikely to remain in

the cache during a full step of the decomposition. This difficulty may be overcome through efficient use

of vector registers.

In order to make efficient use of the vector registers one may choose the column dimension of A(k)
22

to conform to the number of vector registers available. On the Alliant there are eight vector registers and

seven of these may be used to hold columns of L32. The remaining register must be used to accumulate

results. There are three steps in the above algorithm that may be parallelized. In Step 2 we partition

A(k)
23 = (M21 , M22 , . . . , M2 p)

and

A(k)
33 = (M31 , M32 , . . . , M3 p)

with p chosen to conform to the number of processors. Since the pivoting sequence has been recorded in

P it may be applied to the matrices

-23-




M2 j

M3 j



← P


M2 j

M3 j




, j = 1, . . . , p

independently. Then the products

M2 j ← L−1
22 M2 j , j = 1, . . . , p

are computed independently in place to form blocks of U23 . Finally, in Step 4 we may form the matrix

matrix products

M3 j ← L23 M2 j j = 1, . . . , p

which form the block columns of A(k)
33 . This step makes full use of the vector registers since the columns

of L23 may be held in these registers and re-used repeatedly while the columns of M2 j are multiplied.

The following table illustrates the effectiveness of this technique. In the table we compare the

results of the matrix-vector and matrix-matrix techniques. In both cases the modules have been coded in

assembly language to assure full use of the vector registers. We also show results from the Fortran equiv-

alent matrix-vector formulation.

LU Decomposition with partial pivoting

Alliant FX/8 (8 Processors)

center; c|c s s s s s c|c s s s s s c|c c c c c c c|n n n n n n. MFLOPS Order Implementa-

tion 100 200 300 400 500 600 _ Fortran Matrix-vector 2.8 4.7 5.4 5.7 5.7 5.8

Assembler Matrix-vector 8.2 9.8 11.2 10.7 11.6 11.3

Assembler Matrix-matrix 6.6 11.8 15.3 17.2 18.7 19.8

This table shows that the matrix-matrix modules can be very effective. Moreover, while this tech-

nique appears to be tuned to a particular situation, it is equally effective in a non-cache situation as long as

there are a significant number of vector registers available. Finally, blocks of cache may be used in place

of vector registers when (as with the Alliant) the memory access from cache matches the memory access

from registers.

9. The LAPACK Project

The development of the higher level BLAS, as well as the large and growing variety of machine

architectures available to the scientific programmer, has underscored the need for a new and transportable

linear algebra library. To address this need, Demmel et al. [1987] have proposed to design and implement

a package called LAPACK, based on the successful EISPACK and LINPACK projects, with the following

provisions.

-24-

1. Integration of the two sets of algorithms into a unified library, with a systematic design. The new

library will provide approximately the same functionality as LINPACK and EISPACK together, namely,

solution of systems of simultaneous linear equations, least squares solution of overdetermined systems of

equations, and solution of matrix eigenvalue problems (standard and generalized). The associated matrix

factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) will also be provided, as will related

computations such as reordering of the factorizations and condition numbers (or estimates thereof).

Dense and band matrices will be provided for, but not general sparse matrices. In all areas, similar func-

tionality will be provided for real and complex matrices. Some algorithms may be dated, especially

where there is duplication or overlap in functionality between the contents of the two packages or if they

are no longer thought to be useful, in which case the algorithms will be omitted or replaced.

2. Incorporation of recent algorithmic improvements. Where the state of the art is sufficiently clear, new

algorithms will be added. In some cases, the relative merits of competing algorithms will be reexamined

in the light of their performance on modern high-performance computers.

3. Restructuring of the algorithms to make as much use as possible of the Basic Linear Algebra Subpro-

grams. The scope for using Level 2 or Lev el 3 BLAS varies among the different algorithms that are pro-

posed. Many authors have demonstrated the effectiveness of block algorithms on many of our modern

computers. Block algorithms generally require an unblocked version of the same algorithm to be avail-

able to operate on a single block. Therefore, the development of the software for LAPACK is planned in

two phases: (1) develop unblocked versions of the routines, calling the Level 2 BLAS, and (2) develop

blocked versions where possible, calling the Level 3 BLAS.

The proposers intend that the new package also serve as a benchmark for supercomputer perfor-

mance evaluation. A report from the Committee on Supercomputer Performance and Development to the

US National Research Council has recommended [1986] using a range of routines from program kernels

(like the BLAS) and basic routines (like LINPACK and EISPACK) to large application codes for bench-

marks.

10. Parallel Processing, Algorithm Design, and the Future

Parallelism has become a major contributor in increasing performance in recent years, and it is now

clear that in the future supercomputers will involve many processors working together in parallel on a sin-

gle problem. Typically, a parallel processor with globally shared memory must employ some sort of inter-

connection network so that all processors may access all of the shared memory. There must also be an

arbitration mechanism within this memory access scheme to handle cases where two processors attempt

to access the same memory location at the same time. These two requirements obviously have the effect

of increasing the memory access time over that of a single processor accessing a dedicated memory of the

same type. Usually this increase is substantial, especially if the processor and memory in question are at

the high end of the performance spectrum. Achieving near peak performance on such computers requires

algorithms that minimize data movement and reuse data that has been moved from globally shared

-25-

memory to local processor memory.

When vector rather than serial processors are used to construct a parallel computer, a new type of

parallelism is encountered. These machines are able to execute independent loop bodies which employ

vector instructions. The most powerful computers that exist today are of this type. They include the

CRAY X-MP line and the mini-supercomputer Alliant FX/8. A major problem with using such comput-

ers efficiently is synchronization overhead. Blocking loops to exploit outer level parallelism, for example,

may conflict with vector length.

Finally, a third level of complication is added when parallel-vector machines are interconnected to

achieve yet another level of parallelism. This is the case for the CEDAR architecture being developed at

the Center for Super Computing Research and Development at the University of Illinois at Urbana. Such

a computer is intended to solve large applications problems which naturally split up into loosely coupled

parts which may be solved efficiently on the cluster of parallel-vector processors [Berry et al. 1986].

The different approaches to parallelism underscore the need for a more careful selection of algo-

rithms. In addition to restructuring algorithms to take advantage of memory hierarchy, as in the case of

linear algorithm algorithms discussed above, a divide and conquer scheme can be used. The divide and

conquer paradigm involves breaking a problem up into smaller subproblems that can be treated indepen-

dently. Frequently, the degree of independence is a measure of the effectiveness of the algorithm since it

determines the amount and frequency of communication and synchronization.

A method to find the eigenvalues of a tridiagonal matrix based upon a divide and conquer scheme

was suggested by Cuppen. A fundamental tool used to implement this algorithm is a method that was

developed by Bunch, Nielsen, and Sorensen for updating the eigensystem of a symmetric matrix after

modification by a rank one change. This rank-one updating method was inspired by some earlier work of

Golub[19] on modified eigenvalue problems. The basic idea of the new method is to use rank-one modifi-

cations to tear out selected off-diagonal elements of the tridiagonal problem in order to introduce a num-

ber of independent subproblems of smaller size. The subproblems are solved at the lowest level using the

subroutine TQL2 from EISPACK and then results of these problems are successively glued together using

the rank-one modification routine developed by Dongarra and Sorensen.

A surprising result of that parallel algorithm is that even when run in serial mode, the divide and

conquer approach can be significantly faster than the previously best sequential algorithm on large prob-

lems, and is effective on moderate size (order ≥ 30) problems when run in serial mode.

Projects like LAPACK lay the groundwork for much needed research.

References

An Agenda for Improved Evaluation of Supercomputer Performance, US National Research Council,

1986.

-26-

M. Berry, F. Gallivan, W. Harrod, W. Jalby, S. Lo, U. Meier, B. Philippe, and A. Sameh, Parallel Algo-

rithms on the CEDAR System, CSRD Report No. 581, 1986.

Hillis W.D, The Connection Machine, MIT Press, 1985.

J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen, Prospectus for

the Development of a Linear Algebra Library for High-Performance Computers, Argonne National Labo-

ratory Report MCS-TM-97, September, 1987.

D. Dodson and J. Lewis, Issues relating to extension of the Basic Linear Algebra Subprograms, ACM

SIGNUM Newsletter 20, 2-18, 1985.

J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users’ Guide, SIAM Pub., Philadelphia,

1979.

J. J. Dongarra, L. Kaufman, and S. Hammarling, Squeezing the Most out of Eigenvalue Solvers, Linear

Algebra and Its Applications, 77, 113-136, 1986.

J. J. Dongarra and C. B. Moler, EISPACK—A Package for Solving Matrix Eigenvalue Problems, in:

Sources and Development of Mathematical Software, ed. W. R. Cowell, Prentice-Hall, Englewood Cliffs,

N.J., 1985.

J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, An Extended Set of Basic Linear Algebra Sub-

programs, ACM Trans. Math. Software, 14,1, p 1-17, March 1988.

J. J. Dongarra and T. Hewitt, Implementing Linear Algebra Algorithms Using Multitasking on the CRAY

X-MP-4, SIAM J. Sci Stat. Comp., 7, 347-350, 1986.

J. J. Dongarra et al. A Proposal for a Set of Level 3 Basic Linear Algebra Subprograms, Argonne

National Laboratory Report MCS-TM-88, April.

J.J. Dongarra and S. C. Eisenstat, Squeezing the Most out of an Algorithm in Cray Fortran ACM Trans.

Math. Software, 10, 3, 221-230, 1984.

K. Fong and T. L. Jordan, Some Linear Algebra Algorithms and Their Performance on the CRAY-1, Los

Alamos Scientific Laboratory Report UC-32, June 1977.

L. Fox, James Hardy Wilkinson (1919-1986), Biographical Memoirs of Fellows of the Royal Society, Vol.

33, 1987.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines—EISPACK

-27-

Guide Extension, in: Lecture Notes in Computer Science, Vol. 51, Springer-Verlag, Berlin, 1977.

R. Hanson, C. Lawson, and F. Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Trans-

actions on Mathematical Software, 5, 308-323, 1979.

R. W. Hockney and C. R. Jesshope, Parallel Computers, J. W. Arrowsmith Ltd., Bristol, Great Britain,

1981.

C. Lawson et al. 1979. Basic Linear Algebra Subprograms for Fortran usage, ACM Trans. on Math. Soft.

5, 153-165

C. Moler, J. Little, S. Bangert, and S. Kleiman, PC-MATLAB for MS-DOS Personal Computers Users’

Guide The MathWorks Inc., Massachusetts, 1986.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix

Eigensystem Routines—EISPACK Guide, in: Lecture Notes in Computer Science, Vol. 6, 2nd ed.,

Springer-Verlag, Berlin, 1976.

R. V. Southwell, Relaxation Methods in Engineering Science and Theoretical Physics, Clarendon Press,

Oxford, 1940.

A. M. Turing, Rounding-off Errors in Matrix Processes, Quart. J. Mech, 1, pp 287-308, 1948.

J. von Neumann and H. H. Goldstine, Numerical Inverting of Matrices of High Order, Bull. Amer. Math.

Soc., 53, pp 1021-1099, 1947.

E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, The University Press, Cambridge, 1927.

E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics,

Blackie and Son, London, 1924.

M. V. Wilkes, The EDSAC, NPL Report COM 90, National Physical Laboratory, Teddington, Middlesex

TW11 0LW, UK, 1977.

M. V. Wilkes, D. J. Wheeler and S. Gill, The Preparation of Programs for an Electronic Digital Com-

puter, Addison-Wesley, Cambridge, Mass., 1951.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

J. H. Wilkinson and C. Reinsch, eds., Linear Algebra, in: Handbook for Automatic Computation, Vol. 2,

Springer-Verlag, New York, 1971.

-28-

J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Science No.32, HMSO, Lon-

don, 1963.

J. H. Wilkinson, Some Comments from a Numerical Analyst, J. ACM, 18, pp 137-147, 1971.

J. H. Wilkinson, Turing’s Work at the National Physical Laboratory and the Construction of Pilot ACE,

DEUCE, and ACE, In A History of Computing in the Twentieth Century, Ed. N Metropolis, J. Howlett

and Gian-Carlo Rota, Academic Press, New York, pp 101-114, 1980.

J. H. Wilkinson, The State of the Art in Error Analysis, NAG Newsletter 2/85, NAG Ltd., Wilkinson

House, Jordan Hill Road, Oxford, OX2 8DR, UK, 1985.

