Evolution of Numerical Softwarefor Dense Linear Algebra

Jack Dongarra *

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4801

Sven Hammarling

Numerical Algorithms Group Ltd.
Wilkinson House
Jordan Hill Road
Oxford OX2 8DR

.gsize+1

To the memory of Jim W lkinson for his inspiration and encouragement.

1. Introduction

We wish to trace the development of numerical software for dense linear algebra from the early days
of computers through to work in progress for modern high-performance machines.

Jim Wilkinson was a great influence on the development of algorithms for numerical linear algebra
and we highlight his influence, as well as those things that influenced his ideas, particularly in the early
days. We believe that there are still lessons to be learned, or remembered, by looking at the historical
development.

2. Early Days

Up to the 1950s the principal aid to computation was the mechanical calculator. The art of computa-
tion and numerical analysis in the first half of the Century is epitomized by such classic books as Whit-
taker and Watson [1927], Whittaker and Robinson [1924] and Southwell [1940]. Indeed Ledlie Fox,
Wilkinson's great friend and early colleague at NPL, was a student of Southwell and can still demonstrate
aremarkable skill in the relaxation method.

Wilkinson joined NPL in 1946 working jointly for the Desk Machine Section and for Alan Turing
on aproject to build an Automatic Computing Engine. In hiswork for the Desk Machine Section, Wilkin-
son often used a Brunsvigafor his calculation and this was an important influence on his understanding of
machine arithmetic and his expectations of machine arithmetic for two reasons. Firstly and most

* Work supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.

Typeset on 25 October 2018.

-2-

importantly, a hand calculator readily gives one the ability to watch the calculations proceed, something
which Wilkinson certainly thought valuable:

"But in my experience, many people who do computing are reluctant to look at numbers.

| certainly do not want to suggest that the way to acquire the habit is to serve an apprenticeship
on hand desk calculators, but we have yet to learn how to instill the relevant knowledge."

Froman interview in BYTE, February, 1985, pp 177 - 194.

MATLAB, which we shall mention again later, is one example of a system that attempts to give this
experience.

A second feature of the Brunsviga (and other similar calculators), which influenced Wilkinson is the
ability to perform extended precision arithmetic, a feature that in particular alows one to perform accu-
mulated inner products (see Figure 1).

operand T Y Y I

operand [Y (I A
result register T Y Y O B

Schematic of a hand cal cul ator
Figure 1

The poor arithmetic on many modern computers was a disappointment to Wilkinson (see for exam-
ple, p.146 of [Wilkinson, 1971]) and he, like us believed that we al owe a debt of gratitude to Velvel
Kahan for histireless crusade to put things right.

During his time at the Armament Research Department, Wilkinson had been asked to solve a system
of twelve linear equations and, soon after joining NPL, a system of eighteen equations arose on which a
joint operation with Fox, Goodwin, Turing and Wilkinson (a rather awesome set of processors) was
mounted. The experience of solving these two systems of equations is described in Wilkinson's 1970 Tur-
ing Lecture [Wilkinson, 1971] and was undoubtably a fundamental ingredient in forming his ideas on
backward error analysis.

The equations were solved using Gaussian elimination with pivoting. In both cases the equations
were mildly ill-conditioned and figures were slowly lost during the elimination process until in the final
equation

-3-
un,an = ﬂnv

u,n, and g, had lost about four figures relative to u; ; and ;. Wilkinson realized that the solution must
surely have lost about four figures in accuracy, but in substituting back into the original equations (using
accumulated inner products) it was found that the left-hand side agreed with the right-hand side to the full
ten figures of working accuracy.

The significance of the results was that, although the solution was almost certainly not accurate, it
was the solution of a closely neighboring problem. That is, if X denotes the computed solution of the
equations

Ax=b 2.1)
then X satisfied

AX=Db+r, with [[r]l=c]| Al x|
where ¢ is of the order of machine accuracy.

To express thisin the more familiar form used later by Wilkinson, if welet E be the matrix

so that

Il

— =g
I %[l

IElle = I Al

r=Ex and (A+ E)X=Dh.

Since [v [[= I E I Xl I E lle =1l /Il X [l and it follows that

(A+E)X=b, with | E || =]| Allr. (2.2)

So again X is expressed as the solution of a closely neighboring problem. Wilkinson attributes the
experience of solving the eighteen equations as a strong stimulus to Turing to write his famous paper on
rounding errors [Turing, 1948], which with the paper by von Neumann and Goldstine [1947] helped pave
the way to an understanding of Gaussian elimination.

-4

As mentioned earlier, Wilkinson was involved in the project to design and build the ACE and this
project soon absorbed all his time. The Pilot ACE machine first worked in May 1950. It had mercury
delay lines each with a capacity of 32, 32-bit words and instructions that could perform operations on all
32 numbersin adelay line. By the standards of the time it had fast floating point arithmetic with one word
allocated for the mantissa and one word for the exponent, and accumulated inner products. Background
information to Wilkinson's involvement in building Pilot ACE can be found in [Wilkinson, 1971; Wilkin-
son, 1980 and Fox, 1987]. We mention the machine here because it had a profound effect on numerical
linear algebra and software for numerical linear algebra due to the work of Wilkinson, who had an inti-
mate knowledge of Pilot ACE through his work on the design, building, operation and programming of
the machine.

"Snce the use of the punched-card equipment required the use of an operator, it encouraged user
participation generally, and this was a distinctive feature of Pilot ACE operation.

Foeaking for myself | gained a great deal of experience from user participation, and it was this
that led to my own conversion to backward error analysis."

[Wilkinson, 1980.]

This background with the Desk Machine Section and Pilot ACE, together with his education in Pure
Mathematics enabled Wilkinson to take the fundamental step of developing analytic methods for explain-
ing stability and for giving precise error bounds.

As an example of the result of a backward error analysis, Wilkinson showed that with Gaussian
elimination for solving equation (2.1) the computed solution X satisfies (2.2) and ¢ satisfies a bound of the
form ¢ < gf,u, where g is the "growth factor”, f, is amodest function of n (the order of A) and u isthe
unit rounding error, or relative machine precision. Of course, in general, pivoting is needed to control the
sizeof g, but g =1 for positive definite A, or if orthogonal transformations are used in place of elemen-
tary transformations. Wilkinson gave similar details for many classes of agorithms of numerical linear
algebra [Wilkinson, 1963; Wilkinson, 1965]. Although he gave precise bounds, for example an explicit
expression for f,, above, his aim always was to expose the strengths and weaknesses of algorithms and to
aid our understanding of numerical stability.

This work, together of course with the work of many others, such as Wallace Givens, gave a firm
foundation for the development of numerical software for linear algebra.

3. The Software Basis

The first published subroutine library was a set of machine code routines for EDSAC [Wilkes,
Wheeler and Gill, 1951], Cambridge University’s stored-program computer which began operation on 6th
May, 1949 [Wilkes, 1977]. Thislibrary contained just two linear algebra routines:

a) z< XY,

-5

b) y < Ax, where A= AT stored in packed form.

During the 1960's a number of Algol procedures were developed and published in the journal
Numerische Mathematik. Wilkinson, together with Christian Reinsch edited a collection of these proce-
dures, together with background material, into a volume entitled Linear Algebra in the Handbook for
Automatic Computation series [Wilkinson and Reinsch, 1971]. The selected algorithms represented the
best available in terms of their generality, elegance, accuracy, speed and economy of storage. The volume
is now generaly referred to simply as "The Handbook" and represents a landmark in the development of
numerical software.

The Handbook contained 41 procedures associated with solving linear systems and 43 procedures
for the eigenvalue problem. Many of the procedures used accumulated inner products and all were accom-
panied by comprehensive documentation. The Handbook formed the basis for a number of software
projects including EISPACK, a number of linear algebra routines in the IMSL Library and the F chapters
of the NAG Libraries.

4, Softwar e Development

Wilkinson visited Nottingham University in 1968 to give advice about software for linear algebra
and in February 1970 the Nottingham Algorithms Group was formed. Mark 1 of the library was released
on October 1, 1971. In 1973 the Central Office moved to Oxford and NAG became the Numerical Algo-
rithms Group. In 1976 NAG became a non-profit company limited by guarantee and in 1980 the NAG Inc.
office opened in Downers Grove near Chicago. Throughout the development of NAG Wilkinson played an
active role in contributing to and commenting on the linear algebra chapters of the library. In 1984
Wilkinson gave an invited lecture at NAG's AGM [Wilkinson, 1985].

center; I nnnnn.

Mark 1 2 4 11 12 No.of Routines 11 75 99 142 239
F Chapter of NAG Fortran Library
We now move over the Atlantic to look at some important software devel opmentsin the USA.

Prior to the actual publication of the Handbook, V. Klema and others at Argonne National Labora-
tory had begun translating many of the Algol procedures into Fortran. Their work became the basis for
the subsequent development of EISPACK [Smith et a. 1976], a collection of Fortran subroutines that
compute the eigenvalues and eigenvectors of nine classes of matrices.

The first release of EISPACK in 1974 was available in five versions: IBM Systems 370 and 360,
CDC 6600 and 7600, Univac 1108, Honeywell 635, and PDP-10. Since that time, EISPACK has been
extended twice. In Section 6.1, we discuss these extensions briefly, and review two other software pack-
ages of linear algebra algorithms. Wilkinson also actively supported the EISPACK project and was a fre-
quent visitor at Argonne.

-6

In the next section we look at the linear algebraic approach to this software and other subsequent
software projects.

5. Decompositional Approach

Software for linear algebra is based on the decompositional approach to numerical linear algebra.
To understand this approach better, let us consider the problem of solving the linear system

Ax = b, 2.1)

where Aisanonsingular matrix of order n. In older textbooks this problem is treated by writing (2.1) asa
system of scalar equations and eliminating unknowns in such a way that the system becomes upper trian-
gular (Gaussian elimination) or even diagona (Gauss-Jordan elimination). This approach has the advan-
tage that it is easy to understand and that it leads to pretty computational tableaux suitable for hand calcu-
lation. However, it has the drawback that the level of detail obscures the very broad applicability of the
method.

In contrast, the decompositional approach begins with the observation that it is possible to factor A
in the form

A=LU, (2.2)

where L isalower triangular matrix with ones on its diagonal and U is upper triangular. * The solution to
(2.1) can then be written in the form

x=A'b=U"L"b=U"1y,

where y = L™tb. This suggests the following algorithm for solving (2.1).

1. Factor Ainthe form (2.2);
2. Solve the system Ly = b; (2.3)

3. Solve the system Ux = ;

Sinceboth L and U aretriangular, steps 2 and 3 are easily done.

* Thisis not strictly true. It may be necessary to permute the rows of A (a process called pivoting) in order to
ensure the existence of the factorization (2.2). In finite precision arithmetic, pivoting must , in general, be incor-
porated to ensure numerical stability.

-7-

The approach to matrix computations through decompositions has turned out to be very fruitful.
First, by dividing the computation into two stages (the computation of a decompoasition and the use of the
decomposition to solve the problem at hand), factorization is necessary only once, representing a poten-
tially large saving.

Second, the approach suggests ways of avoiding the explicit computation of matrix inverses or gen-
eralized inverses, which is always a computationally expensive and numerically risky procedure.

Third, the decompositional approach introduces flexibility into matrix computations. There are
many decompositions, and a knowledgeable person can select the one best suited to a given applications.

Fourth, if one is given a decomposition of a matrix A and a simple change is made in A (e.g. the
ateration of arow or column), one can frequently compute the decomposition of the altered matrix from
the original decomposition at far less cost than the ab initio computation of the decomposition. This gen-
eral idea of updating a decomposition has been an important theme during the past decade of numerical
linear algebra.

Finally, the decompositional approach provides theoretical simplification and unification. This is
true both inside and outside of numerical analysis. For example, the redlization that the Crout, Dooalittle,
and sguare root methods all compute LU decompositions enables one to recognize that they are al vari-
ants of Gaussian elimination. Outside of numerical analysis, the spectral decomposition has long been
used by statisticians as a canonical form for multivariate models.

In the next section we discuss three particular software packages for linear algebra algorithms that
exploit this approach to software development.

6. Softwar e Packages

6.1 EISPACK

EISPACK includes 13 drivers, each intended for matrices of various forms. Twelve of the drivers
provide two options. compute all eigenvalues, or compute al eigenvalues and eigenvectors. One of the
drivers provides for al the eigenvalues and some of the eigenvectors for a symmetric matrix. Seven of the
drivers are for the standard eigenvalue problem involving a single real matrix; two of the drivers solve the
standard eigenvalue problem for complex matrices; and four of the drivers solve the generalized eigenval-
ue problem involving two real matrices. These driver subroutines provide easy access to many of EIS
PACK’s capabilities. The user whose prablems do not make heavy demands on computer time or storage
need not be concerned with any further details of EISPACK organization.

In addition to the drivers, however, there are 58 subroutines in EISPACK. The modular organization
greatly reduces the amount of both source and object code that must be handled. It aso provides opportu-
nities for using EISPACK facilities in computations not envisioned during the original development. But
it means that the user who desires to access these facilities is faced with aformidable list of subroutines.

EISPACK has been enhanced twice sinceitsinitial release [Garbow et a. 1977; Dongarraand Moler
1984]. The first revision, in 1976, offered the capability of handling generalized eigenvalue problems

-8

directly. The current version, EISPACK 3, eliminates the need for machine-specific constants and reduces
the probability of underflow/overflow difficulties. The basic design, however, remains the same.

6.2 LINPACK

The success of EISPACK in 1974 motivated the development of a second package of high-quality
software for linear algebra problems. This package, called LINPACK, was designed for the solution of
linear equations and linear |east-sgquares problems [Dongarraet al. 1979].

When LINPACK was designed, one of its most distinctive features was efficiency. LINPACK
achieves this efficiency from two sources: the column orientation of the algorithm and the use of the Basic
Linear Algebra Subprograms (Level 1 BLAS). When LINPACK was designed in the late 1970's the state
of the art in scientific computers were the pipelined scalar processors, such as the CDC 7600 and the IBM
360/195. In light of todays advanced computers which use memory hierarchy, vector operations and par-
alel processing the situation has changed somewhat.

While advanced-computer architectures have generally speeded up performance, many modern
machines have also presented a new problem in coding matrix routines. This problem centers on the fea-
ture of hierarchical memory organization. Typically, a hierarchica memory structure involves a sequence
of computer memories, ranging from a small, but very fast memory at the bottom to a capacious, but slow
memory at the top. Since a particular memory in the hierarchy (call it M) is not as big as the memory at
the next level (M"), only part of the information in M’ will be contained in M. If a reference is made to
information that isin M, then it isretrieved as usual. However, if the information isnot in M, then it must
be retrieved from M’, with a loss of time. In order to avoid repeated retrieval, information is transferred
from M’ to M in blocks, the suppasition being that if a program references an item in a particular block,
the next reference is likely to be in the same block. Programs having this property are said to have locality
of reference. LINPACK uses column-oriented algorithms to preserve locality of reference. That is, the
LINPACK codes always reference arrays down columns, not across rows. This approach works because
FORTRAN stores arrays in column order. Thus, as one proceeds down a column of an array, the memory
references proceed sequentially in memory. On the other hand, as one proceeds across a row the memory
references jump across memory, the length of the jump being proportional to the length of a column. The
effects of column orientation are dramatic: on scalar systems with virtual or cache memories, the LIN-
PACK codes will significantly outperform codes that are not column oriented. However, the algorithmsin
LINPACK did not go far enough with the locality of reference. As we shall discuss later, expressing the
operations or algorithm in terms of vector operations does not achieve the locality of reference required to
attain full reuse of data and ultimate performance rates on today’s large scal e scientific computers.

On scalar computers LINPACK also gains efficiency from the use of the Level 1 BLAS when large
matrices (typically between n = 25 and n = 100) are involved. The BLAS improve the efficiency particu-
larly when the programs are run on nonoptimizing compilers. This is because doubly subscripted array
references in the inner loop of the algorithm are replaced by singly subscripted array references in the
appropriate BLAS. The effect can be seen in matrices of quite small order, and for large orders the sav-
ings are significant. Finally, improved efficiency can be achieved by coding a set of BLAS to take

-9

advantage of the special features of the computers on which LINPACK is being run—either by producing
machine language versions or taking advantage of features such as vector operations. (For further infor-
mation on the BLAS, see Section 8.)

In order to improve the performance of algorithms implemented on high-performance computers,
we must consider not only the total number of memory references, but also the pattern of memory refer-
ences. We would like our algorithms to observe the principle of locality of reference, so that the data can
be effectively utilized. A set of tools that aid in understanding a program’s locality of reference have been
designed by Brewer, Dongarra, and Sorensen [1988]. The tools help visualize the individual memory ref-
erences that were made to the one- and two-dimensional arraysin auser’s program. The goal of thiswork
isto assist in formulating correct algorithms for high-performance computers and to aid as much as possi-
ble the process of tranglating an algorithm into an efficient implementation on a specific machine.

6.3MATLAB

MATLAB is an interactive system whose basic data element is a matrix [Moler, et al., 1986]. The
system provides easy access to matrix software developed by the LINPACK and EISPACK projects. This
allows a user to solve many numerical problemsin afraction of the time it would take to write a program
in alanguage like Fortran or C. Furthermore, problem solutions are expressed in MATLAB amost exactly
asthey are written mathematically.

MATLAB has evolved over more than half a decade with suggestions and contributions from many
users. In university environments it has become the standard instrumental tool used in introductory cour-
sesin applied linear algebra, as well as advanced courses in other areas. In nonacademic settings, MAT-
LAB is used for research and for solving practical engineering and mathematical problems. Typical uses
include general-purpose numerical computation, algorithm prototyping, and the solution of the special-
purpose problems with matrix formulations that arise in disciplines such as automatic control theory, sta-
tistics, and digital signal processing.

Today MATLAB is distributed by MathWorks and available for a range of computer systems. They
have produced a version called PRO-MATLAB which has been completely rewritten in C and has inte-
grated graphics capability, programmable macros, |EEE arithmetic, a fast interpreter, and many new ana-
Iytical commands. The initial commercia version of MATLAB was done for the PC, and called PC-
MATLAB.

7. Architectural Features

The development of vector and parallel computersin the late 1970s led to a critical review of mathe-
matical software for the solution of linear algebra equations. Many of the sequential algorithms used sat-
isfactorily on traditional machines fail to exploit the architecture of advanced computers. In this section
we review the various features of these more advanced systems and discuss how the architecture affects
the potential performance of linear algebra algorithms. In Section 8 we consider recent techniques
devised for utilizing advanced architectures more fully, especially the design of the BLAS. In Section 9

-10-

we discuss a new proposal, LAPACK, which is intended to most fully exploit advanced computers.
Finaly, in Section 10, we address the challenge facing designers of mathematical software in view of the
development of massively parallel computer systems.

We review some of the basic features of traditional and more advanced computers. This review is
not intended to be a complete discussion of the architecture of any particular machine. Rather, our focus
is on certain features that are especially relevant to the implementation of linear algebra agorithms.

7.1 Cache

The idea of introducing a high-speed buffer memory (or cache) between the low main memory and
the arithmetic registers goes back at least to the ATLAS computer [Hockney and Jesshope 1981, p 14].
The technique was adopted by IBM for both the System 360 and the System 370 computers. In the IBM
System 360 Model 85, for example, the cache (32,768 words of 162-ns semiconductor memory in the
360/85) held the most recently used data blocks of 64 bytes. If the data required by an instruction were
not in the cache, the block containing it was obtained from the slower main memory (4 Mbytes of 756-ns
core storage, divided into 16 different banks) and replaced the least-frequently-used block in the cache.
Cache memory is still used in many large-scale calculations in which memory references tend to concen-
trate around limited regions of the address space. In such cases, most references will be to datain the fast
cache memory, and the performance of the dow memory will be effectively that of the faster cache mem-
ory.

7.2 Pipelining

Pipeline concurrency is the name given to a system of multiple functional units, each of which is
responsible for partial interpretation and execution of the instruction stream. A pipeline processor has sev-
eral partially completed instructions in process at one time. Each processor stage operates on a specific
part of the instruction (e.g., instruction fetch, effective address calculation, operand fetch, execution of
operation specified by the instruction, and results storing).

Pipelining is analogous to an industrial assembly line where a product moves through a sequence of
stations. Each station carries out one step in the manufacturing process, and each of the stations works
simultaneously on different unitsin different phases of completion.

The goal of pipelined functiona unitsis clearly performance. After some initia startup time, which
depends on the number of stages (called the length of the pipeline, or pipe length), the functional unit can
turn out one result per clock period as long as a new pair of operands is supplied to the first stage every
clock period. Thus, the rate is independent of the length of the pipeline and depends only on the rate at
which operands are fed into the pipeline. Therefore, if two vectors of length k are to be added, and if the
floating-point adder requires 3 clock periods to complete, it would take 3 + k clock periods to add the two
vectors together, as opposed to 3 * k clock periods in a conventional computer [Dongarra, Gustavson, and
Karp 1984].

Pipelining was used by a number of machines in the 1960s, including the CDC 7600 and the IBM
System 360/195. Later CDC introduced the STAR 100 (subsequently called the CYBER 200 series),

-11-

which also used pipelining to gain a speedup in instruction execution.

7.3 Vector Instructions

One of the most obvious concepts for achieving high performance is the use of vector instructions.
By means of a single instruction, al elementwise operations that make up the total vector operation are
carried out. Theinstructions are performed in vector registers. The machine may have k such elementsin
a vector register in addition to having a conventional set of registers for scalar operations. A typical
sequence of instructions would be as follows:

center; |. Load a scalar register from memory Load a vector register from memory Perform a scalar-vec-
tor multiplication Load a vector register from memory Perform a vector-vector addition Store the results
in memory.

These six instructions would correspond to perhaps 6k + 1 instructions on a conventional computer,
where k instructions are necessary for loop branching. Clearly, then, the time to interpret the instructions
has been reduced by almost afactor of k, resulting in asignificant savings in overhead.

7.4 Chaining

Another feature that is used to achieve high rates of execution is chaining. Chaining is atechnique
whereby the output register of one vector instruction is the same as one of the input registers for the next
vector instruction. If the instructions use separate functional units, the hardware will start the second vec-
tor operation during the clock period when the first result from the first operation is just leaving its func-
tional unit. A copy of the result is forwarded directly to the second functional unit and the first execution
of the second vector is started. The net result is that the execution of both vector operations takes only the
second functional unit startup time longer than the first vector operation. The effect is that of having a
new instruction which performs the same operation as that of the two functional units that have been
chained together. On the CRAY, in addition to the arithmetic operations, vector loads from memory to
vector registers can be chained with other arithmetic operations.

For example, let us consider a case involving a scalar-vector multiplication, followed by a vector-
vector addition, where the addition operation depends on the results of the multiplication. Without chain-
ing, but with pipelined functional units, the operation would take a + k + m + k clock periods, where a is
the time to start the vector addition (Iength of the vector addition pipeline) and misthetimeto start a vec-
tor multiplication (length of the vector multiplication pipeline). With chaining, as soon as aresult is pro-
duced from the adder, it is fed directly into the multiplication unit, so thetotal timeisa + m + k. We may
represent this process graphically as follows:

-12-

Chained Load and Arithmetic

a v
LD |- f--mmmmee - |
a A
LD |- |
b v
- |- |
c v
+ R |
d v
ST [--]-----------
memory path busy
a startup time for memory load operations
b startup time for floating point addition operations
¢ startup time for floating point multiplication operations
d startup time for memory store operations

memory busy

6.5 Overlapping

It is also possible to overlap operations if the two operations are independent. |f a vector addition
and an independent vector multiplication are to be processed, the resulting timing graph might look like
the following:

-13-

Overlapped Load with Chained Operations

a v
LD |- f--mmmmee - |
a A
R R EREEEEEEEE |
b v
- |- |
c v
+ R |
d v
ST |- |
=============== memory path 1 busy
—=============== memory path 2 busy
S========D======= memory path 3 busy
a startup time for memory load operations
b startup time for floating point addition operations
c startup time for floating point multiplication operations
d startup time for memory store operations

memory busy

To describe the time to complete a vector operation, we use the concept of a chime [Fong and Jor-
dan 1977]. A chime (for chaining time) is a measure of the time needed to complete a sequence of vector
operations. To compute the number of chimes necessary for a sequence of operations, one divides the
total time to complete the operations by the vector length. Overhead of startup and scalar work are usu-
aly ignored in counting chimes, and only the integer part is reported. For example, in the graph for
unchained operations above there are two chimes, whereas in the graph for the chained operation there is
one chime.

As Fong and Jordan [1977] have pointed out, there are three performance levels for agorithms on
the CRAY. The two obvious ones are scalar and vector performance. Scalar performance is achieved when
operations are carried out on scalar quantities, with no use of the vector functional units. Vector perfor-
mance is achieved when vectors are loaded from memory into registers, operations such as multiplication
or addition are performed, and the results are stored into memory. The third performance level is called
supervector. This level is achieved when vectors are retained in registers, operations are performed using
chaining, and the results are stored in registers. Thereby using the memory hierarchy of the machine
architecture to the fullest.

Dramatic improvements in rates of execution are realized in going from scalar to vector and from
vector to supervector speeds. We show below a graph of the execution rate in MFLOPS (million floating
point operations per second) for LU decomposition of a matrix of order n as performed on the CRAY-1.

-14-

7.6 Loop Unroalling

When data references and the memory hierarchy are used efficiently, the hardware is being driven at
closeto its highest potential. Theoretically, this situation can be shown by the following example, which
adds the product of a matrix and a vector to another vector:

center; | I. SUBROUTINE SMXPY (NLY,N2,LDM X,M) REAL Y(x), X(%),
M(LDM,*) DO 20 J=1, N2 DO 10 | = 1, N1 Y() = Y() +
X(J=M(1,J) 10 CONTINUE20 CONTINUE RETURN END

The innermost loop is a SAXPY (adding a multiple of one vector to another) and would be detected by a
good vectorizing compiler. Thus, the CRAY Fortran compiler generates vector code of the general form

center; |. Load vector Y Load scalar X(J) Load vector M(x,J) Multiply scalar X(J) times vector M(x,J)
Add result to vector Y StoreresultinY

Note that there are three vector memory references for each two vector floating-point operations.
Since there is only one path to and from memory and the memory bandwidth is 80 million words per sec-
ond, the rate of execution cannot exceed ~53 1/3 MFLOPS (less than 50 MFLOPS when vector startup
time is taken into account) — vector performance.

Thus to attain supervector performance, it is necessary to expand the scope of the vectorizing
process to more than just simple vector operations. In this case, a closer inspection reveals that the vector
Y is stored and then reloaded in successive SAXPY’s. If instead one accumulates Y in a vector register
(up to 64 words at atime) until all of the columns of M have been processed, it is possible to avoid two of
the three vector memory references in the innermost loop. The maximum rate of execution is then 160
MFLOPS (~148 MFLOPS when vector startup time is taken into account) — supervector performance.

Unfortunately, the CRAY CFT compiler does not detect the fact that the result can be accumulated
in aregister (and not stored between successive vector operations). Thus, the rate of execution is limited
to vector speeds. In fact, al of todays compilers for vector machines follow the same action of transfer-
ring the vector to memory and immediately reload the same vector to aregister.

But if the outer loop is unrolled [Dongarra and Eisenstat, 1986] in this case to a depth of four, and
parentheses are inserted to force the arithmetic operations to be performed in the most efficient order, then
the innermost loop becomes

1. DO 10 1 =1, N1 Y (1) = ((((Y (1)) + X(3-3)=M(1,3-3)) + X(3-2)=M(1,3-2))
$ +X(1)=M(1,3-1)) + X(J) =M(1,J) 10 CONTINUE

Now the code generated by CFT has six vector memory references for each eight vector floating-point
operations. Thus the maximum rate of execution is ~106 2/3 MFLOPS (~100 MFLOPS when vector
startup time is taken into account) and the actua rate is ~77 MFLOPS — supervector performance from
Fortran.

With this approach a collection of procedures from linear algebra can be developed. The key ideais
to use the kernel — SGEMV (add a vector times a matrix to another vector) to do the bulk of the work.

-15-

Since this kernel can be unrolled to give supervector performance, the procedures themselves are capable
of supervector performance.

Many processes that involve elementary transformations can be described in these terms, eqg.,
matrix multiplication, Cholesky decomposition, and LU factorization (see [Dongarra and Eisenstat
1986]). However, the formulation is often not the natural one, which may be based on outer-products of
vectors or accumulating variable-length vectors, neither of which can be super-vectorized in Fortran.

Tables 1-3 summarize the results obtained for these procedures on a CRAY 1-S (as well as on the
CRAY 1-M and CRAY X-MP) when the subroutines SMXPY and SXMPY were unrolled to the specified
depth. All runs used the CFT 1.11 Fortran compiler.

Table 1: 300 x 300 Matrix Multiplication

box center; c|c s sc|c s sc|c|c|cc|c|c|cn|n|n]|n Unrolled MFLOPS _
DepthCRAY 1-M CRAY 1-S CRAY X-mMp 1 39 40 106
2 60 53 1514 83 72 1618 101 8 17016 111 96 177

Table 2: 300 x 300 Cholesky Decomposition

box center; c|c s sc|c s sc|c|c|cc|c|c|cn|n|n]|n Unrolled MFLOPS _
DepthCRAY 1-M CRAY 1-S CRAY X-MP _ 1 31 33 68

2 48 45 994 67 60 1188 81 70 13116 86 78 139

Table 3a: 300 x 300 LU Decomposition with Pivoting

box center; c|c s sc|c s sc|c|c|cc|c|c|cn|n|n]|n Unrolled MFLOPS
DepthCRAY 1-M CRAY 1-S CRAY X-MP _ 1 28 29 56

2 42 39 784 56 52 938 66 60 10316 69 66 108

Table 3b: 300 x 300 LU Decomposition with Pivoting
(Using an Assembler Language Implementation of ISAMAX)

box center; c|c s sc|c s sc|c|c|cc|c|c|cn|n|n]|n Unrolled MFLOPS
DepthCRAY 1-M CRAY 1-S CRAY X-MP _ _ 1 30 32 62

2 46 43 964 64 59 1178 78 68 12916 83 76 136

By contrast, 30 MFLOPS is often cited as a good rate for Fortran on the CRAY 1-S and 100 MFLOPS as
a good rate for CAL (Cray Assembler Language) (e.g., Fong and Jordan [1977] report 107 MFLOPS for
an assembler language implementation of LU decomposition with pivaoting).

Similar techniques have been used by Dongarra, Kaufman, and Hammarling [1985] to modify many
of the standard algorithms used in computing eigenvalues and eigenvectors of matrices. Not only do the

-16-

techniques dramatically increase the performance without resorting to assembly language, but they are
beneficial in avariety of architectural settings.

7.7 Summary of Techniques

In summary, then, vector machines rely on a number of techniques to enhance their performance
over conventional computers:

« vector instructions to reduce the number of instructions interpreted,

« pipelining to utilize afunctional unit fully and to deliver one result per cycle,

« chaining to overlap functional unit execution,

* overlapping to execute more than one independent vector instruction concurrently, and
* loop unralling to force arithmetic operations to be performed efficiently.

Programs that use these features properly will fully exploit the potential of the vector machine.

8. Basic Linear Algebra Subprograms

One way of achieving efficiency in the solution of linear algebra problems is through the use of the
Basic Linear Algebra Subprograms. In 1973 Hanson, Krogh, and Lawson [1973] described the advan-
tages of adopting a set of basic routines for problemsin linear algebra. The BLAS, as they are now com-
monly called [Lawson et al. 1979], have been very successful and have been used in a wide range of soft-
ware, including LINPACK and many of the algorithms published by the ACM Transactions on Mathemat-
ical Software. They are an aid to clarity, portability, modularity, and maintenance of software, and they
have become a de facto standard for the elementary vector operations. The BLAS are fully described in
[Lawson, Hanson, Kincaid, and Krogh 1979] and by Dodson and Lewis [1985]. Here we review their
purpose and their advantages. We also discuss two recent enhancements to the BLAS.

8.1Level 1BLAS

The origina set of BLAS perform low-level operations such as dot-product and the adding of the
multiple of one vector to another. The BLAS promote efficiency by identifying frequently occurring
operations of linear algebra that can be optimized on various computers, perhaps by coding them in
assembly language or otherwise taking advantage of special machine properties. Use of these optimized
operations can yield dramatic reductions in computation time on some computers. The BLAS also offer
several other benefits:

» Robustness of linear algebra computations is enhanced by the BLAS since they take into consideration

-17-

algorithmic and implementation subtleties that are likely to be ignored in a typical application program-
ming environment.

» Program portability is improved through standardization of computational kernels without giving up
efficiency, since optimized versions of the BLAS can be used on those computers for which they exist, yet
compatible standard Fortran is available for use el sewhere.

» Program readability is enhanced. The BLAS are a design toal; that is, they are a conceptual aid in cod-
ing, allowing one to visualize mathematical operations rather than the particular detailed coding required
to implement the operations. By associating widely recognized mnemonic names with mathematical
operations, the BLAS improve the self-documenting quality of code.

8.2Level 2BLAS

Special versions of the BLAS, in some cases machine code versions, have been implemented on a
number of computers, thus improving the efficiency of the BLAS. However, with some of the modern
machine architectures, the use of the BLAS is not the best way to improve the efficiency of higher level
codes. On vector machines, for example, one needs to optimize at least at the level of matrix-vector oper-
ations in order to approach the potential efficiency of the machine; the use of the BLAS inhibits this opti-
mi zation because they hide the matrix-vector nature of the operations from the compiler.

Thus, an additional set of BLAS, called the Level 2 BLAS, was designed for a small set of matrix-
vector operations that occur frequently in the implementation of many of the most common algorithmsin
linear algebra[Dongarraet al. 1986].

The Level 2 BLAS involve O(mn) scalar operations where m and n are the dimensions of the matrix
involved.

The following three types of basic operation are performed by the Level 2 BLAS:

1. Matrix-vector products of the form
y<—aAX+ By, y<— aATx+ 8y, and y< aATx+ By
where ¢ and g are scalars, X and y are vectorsand A is amatrix, and
X<—Tx, x<TTx, and x<T Tx,

where x isavector and T is an upper or lower triangular matrix.

2. Rank-one and rank-two updates of the form
A—axy " +A A<axy'+A H<axx"+H, andH < axy " +ayx " +H,

where H isaHermitian matrix.

3. Solution of triangular equations of the form

-18-

X<—TIx,x<T Tx, and x<T T,
where T isanon-singular upper or lower triangular matrix.

Where appropriate, the operations are applied to general, general band, Hermitian, Hermitian band,
triangular, and triangular band matrices in both real and complex arithmetic, and in single and double pre-
cision.

8.3Level 3BLAS

Many of the frequently used algorithms of numerical linear algebra can be coded so that the bulk of
the computation is performed by callsto Level 2 BLAS routines; efficiency can then be obtained by utiliz-
ing tailored implementations of the Level 2 BLAS routines. On vector-processing machines one of the
aims of such implementations is to keep the vector lengths as long as possible, and in most algorithms the
results are computed one vector (row or column) at atime. In addition, on vector register machines per-
formance isincreased by reusing the results of a vector register, and not storing the vector back into mem-
ory.

Unfortunately, this approach to software construction is often not well suited to computers with a
hierarchy of memory (such as global memory, cache or local memory, and vector registers) and true paral-
lel-processing computers. For those architectures it is often preferable to partition the matrix or matrices
into blocks and to perform the computation by matrix-matrix operations on the blocks. By organizing the
computation in this fashion we provide for full reuse of data while the block is held in the cache or local
memory. This approach avoids excessive movement of data to and from memory and gives a surface-to-
volume effect for the ratio of operations to data movement. In addition, on architectures that provide for
paralel processing, paralelism can be exploited in two ways: (1) operations on distinct blocks may be
performed in parallel; and (2) within the operations on each block, scalar or vector operations may be per-
formed in parallel.

The Level 3 BLAS proposed by Dongarra et al. [1987] are targeted at the matrix-matrix operations
required for these purposes. The routines proposed are derived in a fairly obvious manner from some of
the Level 2 BLAS, by replacing the vectors x and y with matrices B and C. The advantage in keeping the
design of the software as consistent as possible with that of the Level 2 BLAS is that it will be easier for
users to remember the calling sequences and parameter conventions.

In real arithmetic the operations proposed for the Level 3 BLAS have the following forms:

-19-
a) Matrix-matrix products

C < aAB+ 8C

C< aA"B+ 8C
C < aAB" + gC
C < aA'B" + 8C

These operations are more accurately described as matrix-matrix multiply-and-add operations; they
include rank-k updates of a general matrix.

b) Rank-k updates of a symmetric matrix:
C < aAAT + gC

C< aA"A+ BC
C<—aA'B+aB"A+ pC

¢) Multiplying amatrix by atriangular matrix:
B< aTB
B<aT'B
B < aBT

B < aBT'

d) Solving triangular systems of equations with multiple right-hand sides:
B< oT!B

B<—aT 'B
B < BT
B< oBT'

Here a and g are scalars, A, B and C are rectangular matrices (in some cases square and symmet-
ric), and T isan upper or lower triangular matrix (and non-singular in (d)).

-20-

Analogous operations are proposed in complex arithmetic: conjugate transposition is specified
instead of ssmple transposition and in (b) C isHermitian and « and B areredl.
The results of using the different levels of BLAS on the Alliant FX/8, IBM 3090 with Vector Facility, and
the CRAY-2 are shown in the figures below.

center; | ¢l n. Alliant FX/8 (8 Processors) MFLOPS _

Peak Performance94 LINPACK Benchmark 7.6 Level 1 BLAS (y< y+ aXx) 14 Level 2 BLAS
(y< By + aAX) 26 Level 3BLAS(C <~ pC + «AB) 43

center; | ¢l n. IBM 3090/VF (1 Processor) MFLOPS _

Peak Performance108 LINPACK Benchmark 12 Level 1 BLAS (y<—y+ aX) 26 Level 2 BLAS
(Yy< BY + aAX) 60 Level 3BLAS(C <~ pC + «AB) 80

center; | cl n. CRAY-2 (1 processor) MFLOPS _

Peak Performance488 LINPACK Benchmark 15 Level 1 BLAS (y < y+ aXx) 121 Level 2 BLAS
(y < By + aAx) 350 Level 3BLAS(C <- sC + ¢ AB) 437

The following figure illustrates the advantage of the Level 3 BLAS:

center; I I l. BLAS Mem Ref Ops Ratio Ref:Ops

Level LSAXPY 3n 2n 3:2y<y+aX

Level 2SGEMV mn+ n+2m 2mn 1:2y < By + a AX

Level 3SGEMM 2mn+mk+kn 2mnk2:nC < gC + « AB

8.4 Matrix-Matrix Level Algorithms

As computer architectures become more sophisticated in their organization we are required to sup-
ply an even higher level of granularity in our algorithms to take full advantage of the highest levels of per-
formance. A primary source of performance problems on todays advanced scientific computers is the

-21-

result of handling of data traffic in the memory hierarchy of the computer. The next level of modularity
we naturally focus on is at the matrix-matrix level. The advantage here is obvious, O(n?) data to undergo
O(n®) operations.

Defining the methods in terms of these modules requires us to express the algorithms in terms of
applying groups of transformations to a submatrix during a step. We will sometimes perform dlightly
more floating point operations in these formulation, but the performance increase gained by the matrix-
matrix operations will far out-weigh the additional arithmetic. As we have done earlier, we will describe
formulations for Gaussian elimination terms of matrix-matrix operations.

The algorithm can be viewed at the k™ stage as decomposing the matrix in the form:

(L11 \ (Uyg Up Usgg)
K K
k Ly | J A(Zkz) A(zkg)
Ly | AY AR

At this stage we have decomposed part of the matrix and produced pieces of thefinal L and U factors Lq;,
Lo, L1, Uqq, Ugp, and Uqs. These parts will undergo no further changes. The k stage of the algorithm
will modify the submatrix

(A9 A9
(AR A
and produce:

(L22/U 22 L?kz)
\ Ux Agp

The steps are as follows:

Sep 1 (Construct partsof L andU)

((kz)\ [L22)

PL Aé"z’J |\ |—32/(U22)

()
This step performs an LU factorization on the rectangular matrix kA(z'f)) Partial pivoting is performed
32

and each interchange of rows is carried out across the entire rectangular matrix and a record made to
apply to the rest of the matrix in the next step.

Sep 2 (Interchange rows in the remaining blocks)

-22-

[a0))
IR
Ags Ags

The pivot information from Step 1 is applied to the remainder of the matrix as listed above.

Step 3 (Apply L33

K 1 A(K
Uy = A(za) -~ LzzlA(zs’)

A triangular solve is performed to update part of the matrix with the transformations.

Sep 4 (Update remaining submatrix)

~(K) K
Agz < A(33) - LUy

A matrix-matrix multiply is performed to update the last block of the matrix with the transformations.

The value of such a reorganization is particularly important when the memory bandwidth of a
machine is not well matched to the speed of the processors. An example of such a machine is the Alliant
FX/8 computer. This computer is a globally shared memory machine with eight processors called CE's.
Each of these CE’s has vector capability. The memory path is from global memory through a bus to a
cache which then feeds the CE's. When data comes from this cache the vector processors can produce
results at a peak rate of eight floating point (64-bit) results every 170 nanoseconds. This gives a peak
megaflop rate of around 45 megaflops. However, when there are memory references to data not resident
in cache, the computation rate is degraded. The cache is designed to be effective when many references
are made to the same area of an array. During an LU Decomposition of a large matrix the advantage of
such a cache is negated because the memory references sweep through the array over and over again.
Even though certain columns of the matrix have been referenced previoudly, they are unlikely to remainin
the cache during a full step of the decomposition. This difficulty may be overcome through efficient use
of vector registers.

In order to make efficient use of the vector registers one may choose the column dimension of A%
to conform to the number of vector registers available. On the Alliant there are eight vector registers and
seven of these may be used to hold columns of Lg,. The remaining register must be used to accumulate
results. There are three stepsin the above agorithm that may be parallelized. In Step 2 we partition

A(2|§)=(M21’M221""M2p)
and

AY = (Mg, Mgy, -+, M3y)

33 31, Mgz, -+-, Mgy

with p chosen to conform to the number of processors. Since the pivoting sequence has been recorded in
P it may be applied to the matrices

-23-

([Maj\ _ of Maj)

UMy) T Mgy J P

independently. Then the products

Myj < LzzMy;, j=1,...,p

are computed independently in place to form blocks of U,; . Finadly, in Step 4 we may form the matrix
matrix products

M3j<—L23M2j j=1,...,p

which form the block columns of A%). This step makes full use of the vector registers since the columns
of L,3 may be held in these registers and re-used repeatedly while the columns of M,; are multiplied.

The following table illustrates the effectiveness of this technique. In the table we compare the
results of the matrix-vector and matrix-matrix techniques. In both cases the modules have been coded in
assembly language to assure full use of the vector registers. We also show results from the Fortran equiv-
alent matrix-vector formulation.

LU Decomposition with partial pivoting

Alliant FX/8 (8 Processors)

center; clcsssssclcsssssccccecccennnnnn. MFLOPS Order Implementa-
tion 100 200 300 400 500 600 _ Fortran Matrix-vector 28 47 54 57 57 58

Assembler Matrix-vector 82 98 112 107 116 113

Assembler Matrix-matrix 6.6 118 153 17.2 187 19.8

This table shows that the matrix-matrix modules can be very effective. Moreover, while this tech-
nique appears to be tuned to a particular situation, it is equally effective in a non-cache situation as long as
there are a significant number of vector registers available. Finally, blocks of cache may be used in place
of vector registers when (as with the Alliant) the memory access from cache matches the memory access
from registers.

9. The LAPACK Project

The development of the higher level BLAS, as well as the large and growing variety of machine
architectures available to the scientific programmer, has underscored the need for a new and transportable
linear algebralibrary. To address this need, Demmel et al. [1987] have proposed to design and implement
a package called LAPACK, based on the successful EISPACK and LINPACK projects, with the following
provisions.

-24-

1. Integration of the two sets of algorithms into a unified library, with a systematic design. The new
library will provide approximately the same functionality as LINPACK and EISPACK together, namely,
solution of systems of simultaneous linear equations, least squares solution of overdetermined systems of
equations, and solution of matrix eigenvalue problems (standard and generalized). The associated matrix
factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) will also be provided, as will related
computations such as reordering of the factorizations and condition numbers (or estimates thereof).
Dense and band matrices will be provided for, but not general sparse matrices. In al areas, similar func-
tionality will be provided for real and complex matrices. Some algorithms may be dated, especially
where there is duplication or overlap in functionality between the contents of the two packages or if they
are no longer thought to be useful, in which case the algorithms will be omitted or replaced.

2. Incorporation of recent algorithmic improvements. Where the state of the art is sufficiently clear, new
algorithms will be added. In some cases, the relative merits of competing algorithms will be reexamined
in the light of their performance on modern high-performance computers.

3. Restructuring of the algorithms to make as much use as possible of the Basic Linear Algebra Subpro-
grams. The scope for using Level 2 or Level 3 BLAS varies among the different algorithms that are pro-
posed. Many authors have demonstrated the effectiveness of block algorithms on many of our modern
computers. Block algorithms generally require an unblocked version of the same algorithm to be avail-
able to operate on a single block. Therefore, the development of the software for LAPACK is planned in
two phases: (1) develop unblocked versions of the routines, calling the Level 2 BLAS, and (2) develop
blocked versions where possible, calling the Level 3BLAS.

The proposers intend that the new package also serve as a benchmark for supercomputer perfor-
mance evaluation. A report from the Committee on Supercomputer Performance and Development to the
US National Research Council has recommended [1986] using a range of routines from program kernels
(like the BLAS) and basic routines (like LINPACK and EISPACK) to large application codes for bench-
marks.

10. Parallel Processing, Algorithm Design, and the Future

Parallelism has become a major contributor in increasing performance in recent years, and it is now
clear that in the future supercomputers will involve many processors working together in parallel on asin-
gle problem. Typically, aparallel processor with globally shared memory must employ some sort of inter-
connection network so that al processors may access all of the shared memory. There must also be an
arbitration mechanism within this memory access scheme to handle cases where two processors attempt
to access the same memory location at the same time. These two requirements obviously have the effect
of increasing the memory access time over that of a single processor accessing a dedicated memory of the
same type. Usually this increase is substantial, especially if the processor and memory in question are at
the high end of the performance spectrum. Achieving near peak performance on such computers requires
algorithms that minimize data movement and reuse data that has been moved from globally shared

-25-

memory to local processor memory.

When vector rather than serial processors are used to construct a parallel computer, a new type of
parallelism is encountered. These machines are able to execute independent loop bodies which employ
vector instructions. The most powerful computers that exist today are of this type. They include the
CRAY X-MP line and the mini-supercomputer Alliant FX/8. A major problem with using such comput-
ers efficiently is synchronization overhead. Blocking loops to exploit outer level parallelism, for example,
may conflict with vector length.

Finally, a third level of complication is added when parallel-vector machines are interconnected to
achieve yet another level of paralelism. Thisis the case for the CEDAR architecture being developed at
the Center for Super Computing Research and Development at the University of Illinois at Urbana. Such
a computer is intended to solve large applications problems which naturally split up into loosely coupled
parts which may be solved efficiently on the cluster of parallel-vector processors [Berry et al. 1986].

The different approaches to parallelism underscore the need for a more careful selection of algo-
rithms. In addition to restructuring algorithms to take advantage of memory hierarchy, as in the case of
linear algorithm algorithms discussed above, a divide and conquer scheme can be used. The divide and
conguer paradigm involves breaking a problem up into smaller subproblems that can be treated indepen-
dently. Frequently, the degree of independence is a measure of the effectiveness of the algorithm since it
determines the amount and frequency of communication and synchronization.

A method to find the eigenvalues of a tridiagonal matrix based upon a divide and conquer scheme
was suggested by Cuppen. A fundamental tool used to implement this algorithm is a method that was
developed by Bunch, Nielsen, and Sorensen for updating the eigensystem of a symmetric matrix after
modification by arank one change. This rank-one updating method was inspired by some earlier work of
Golub[19] on modified eigenvalue problems. The basic idea of the new method is to use rank-one modifi-
cations to tear out selected off-diagonal elements of the tridiagonal problem in order to introduce a num-
ber of independent subproblems of smaller size. The subproblems are solved at the lowest level using the
subroutine TQL 2 from EISPACK and then results of these problems are successively glued together using
the rank-one modification routine devel oped by Dongarra and Sorensen.

A surprising result of that parallel algorithm is that even when run in serial mode, the divide and
conquer approach can be significantly faster than the previously best sequential algorithm on large prob-
lems, and is effective on moderate size (order = 30) problems when run in serial mode.

Projectslike LAPACK lay the groundwork for much needed research.

References

An Agenda for Improved Evaluation of Supercomputer Performance, US National Research Council,
1986.

-26-

M. Berry, F. Gallivan, W. Harrod, W. Jalby, S. Lo, U. Meier, B. Philippe, and A. Sameh, Parallel Algo-
rithms on the CEDAR System, CSRD Report No. 581, 1986.

HillisW.D, The Connection Machine, MIT Press, 1985.
J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen, Prospectus for
the Development of a Linear Algebra Library for High-Performance Computers, Argonne Nationa Labo-

ratory Report MCS-TM-97, September, 1987.

D. Dodson and J. Lewis, Issues relating to extension of the Basic Linear Algebra Subprograms, ACM
SIGNUM Newsdletter 20, 2-18, 1985.

J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users Guide, SIAM Pub., Philadelphia,
1979.

J. J. Dongarra, L. Kaufman, and S. Hammarling, Squeezing the Most out of Eigenvalue Solvers, Linear
Algebraand Its Applications, 77, 113-136, 1986.

J. J. Dongarra and C. B. Moler, EISPACK—A Package for Solving Matrix Eigenvalue Problems, in:
Sources and Development of Mathematical Software, ed. W. R. Cowell, Prentice-Hall, Englewood Cliffs,
N.J., 1985.

J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, An Extended Set of Basic Linear Algebra Sub-
programs, ACM Trans. Math. Software, 14,1, p 1-17, March 1988.

J. J. Dongarra and T. Hewitt, Implementing Linear Algebra Algorithms Using Multitasking on the CRAY
X-MP-4, SIAM J. Sci Stat. Comp., 7, 347-350, 1986.

J. J. Dongarra et a. A Proposal for a Set of Level 3 Basic Linear Algebra Subprograms, Argonne
National Laboratory Report MCS-TM-88, April.

J.J. Dongarraand S. C. Eisenstat, Squeezing the Most out of an Algorithm in Cray Fortran ACM Trans.
Math. Software, 10, 3, 221-230, 1984.

K. Fong and T. L. Jordan, Some Linear Algebra Algorithms and Their Performance on the CRAY-1, Los
Alamos Scientific Laboratory Report UC-32, June 1977.

L. Fox, James Hardy WIkinson (1919-1986), Biographical Memoirs of Fellows of the Royal Society, Vol.
33, 1987.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines—EISPACK

-27-

Guide Extension, in: Lecture Notesin Computer Science, Vol. 51, Springer-Verlag, Berlin, 1977.

R. Hanson, C. Lawson, and F. Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Trans-
actions on Mathematical Software, 5, 308-323, 1979.

R. W. Hockney and C. R. Jesshope, Parallel Computers, J. W. Arrowsmith Ltd., Bristol, Great Britain,
1981.

C. Lawson et al. 1979. Basic Linear Algebra Subprograms for Fortran usage, ACM Trans. on Math. Soft.
5, 153-165

C. Moler, J. Little, S. Bangert, and S. Kleiman, PC-MATLAB for MS-DOS Personal Computers Users
Guide The MathWorks Inc., M assachusetts, 1986.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix
Eigensystem Routines—EISPACK Guide, in: Lecture Notes in Computer Science, Vol. 6, 2nd ed.,
Springer-Verlag, Berlin, 1976.

R. V. Southwell, Relaxation Methods in Engineering Science and Theoretical Physics, Clarendon Press,
Oxford, 1940.

A. M. Turing, Rounding-off Errorsin Matrix Processes, Quart. J. Mech, 1, pp 287-308, 1948.

J. von Neumann and H. H. Goldstine, Numerical Inverting of Matrices of High Order, Bull. Amer. Math.
Soc., 53, pp 1021-1099, 1947.

E. T. Whittaker and G. N. Watson, A Course in Maodern Analysis, The University Press, Cambridge, 1927.

E. T. Whittaker and G. Robinson, The Calculus of Observations. A Treatise on Numerical Mathematics,
Blackie and Son, London, 1924,

M. V. Wilkes, The EDSAC, NPL Report COM 90, National Physical Laboratory, Teddington, Middlesex
TW11 0LW, UK, 1977.

M. V. Wilkes, D. J. Whedler and S. Gill, The Preparation of Programs for an Electronic Digital Com-
puter, Addison-Wesley, Cambridge, Mass., 1951.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

J. H. Wilkinson and C. Reinsch, eds., Linear Algebra, in: Handbook for Automatic Computation, Val. 2,
Springer-Verlag, New York, 1971.

-28-

J. H. Wilkinson, Rounding Errorsin Algebraic Processes, Notes on Applied Science No.32, HMSO, Lon-
don, 1963.

J. H. Wilkinson, Some Comments from a Numerical Analyst, J. ACM, 18, pp 137-147, 1971.
J. H. Wilkinson, Turing's Work at the National Physical Laboratory and the Construction of Pilot ACE,
DEUCE, and ACE, In A History of Computing in the Twentieth Century, Ed. N Metropolis, J. Howlett

and Gian-Carlo Rota, Academic Press, New York, pp 101-114, 1980.

J. H. Wilkinson, The Sate of the Art in Error Analysis, NAG Newsletter 2/85, NAG Ltd., Wilkinson
House, Jordan Hill Road, Oxford, OX2 8DR, UK, 1985.

