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Abstract

Performing a variety of numerical computations efficiently and, at the same time, in a portable fashion requires both an
overarching design followed by a number of implementation strategies. All of these are exemplified below as we present
transitioning the PLASMA numerical library from relying on dependence-driven large tasks to achieving utilization of fine
grain tasking and offload to hardware accelerators while keeping its core dependence sets: OpenMP source code pragmas
and runtime for most system-level functionality and basic low-level numerical kernels provided directly by hardware
vendors or open source projects with vendor contributions. We also present new algorithmic methods and their efficient
parallel implementations including fine grained tasking for eigen-spectrum slicing and offload for mixed-precision eigenvalue
refinement. We provide performance, scaling, and numerical results showing sizable gains over the available solutions from

either the open source and vendor-provided packages.
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I. Introduction

For a known numerical solver, using a specialized software
library is one of the most productive ways to achieve high
levels of efficiency on modern hardware platforms featuring
specialized accelerators that require ever increasing levels
of parallelism exposed by the user code. The upside of
abstracting away the solver details comes with high ex-
pectations from scientific simulation community in terms of
delivering state-of-the-art performance that rivals that of
specialized techniques matched only by the most skilled
programmers. But access to such a talent is problematic for
even a single hardware type, let alone an entire set of
platforms that now form the varied landscape of the national
computing cyberinfrastructure. To both maintain the
functionality surface and provide competitive performance,
we use the standards-based portable design of a numerical
library to show how these goals can be achieved in practice
with long term sustainability in mind. In particular, we
present the overarching design featuring descriptive,

prescriptive, and even meta directives with judicious use of
vendor-provided primitives, all of which serve our stated
vision of both portable and performant numerical linear
algebra with the machine precision accuracy. We back up
our claims using a set of numerical experiments that are
verified to deliver on all three fronts. We present the process
of transitioning the PLASMA numerical library (Dongarra
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et al., 2019) from its sole reliance on dependence-driven
large tasks towards more comprehensive use of much more
fine-grained facilities on the CPU as well as offload to
hardware accelerators, primarily GPUs. Keeping the main
goal of relying on OpenMP in the source code and at
runtime for the vast majority of system-level interactions
such as thread management, asynchronous task scheduling,
and interacting with the OS kernel drivers to GPU software
toolchains. The responsibility of providing the common
high-performance low-level numerical kernels was rele-
gated to hardware vendors or specialized open source
projects that often receive much needed input from vendor-
sponsored teams.

Our new contribution is a parallel algorithm implemented
portably on top of the modern OpenMP constructs. Addi-
tionally, we contribute the efficient management of two main
problems that often plague the instances with large n: oc-
currences of underflow/overflow and loss of orthogonality in
the inverse iteration. The former necessitates autoscaling of
the intermediate results in order to avoid underflow and
overflow in eigenvalue computation, based on the Sturm
sequences. The latter problem, originating in the inverse
iteration used to find eigenvectors, is implemented in LA-
PACK’s DSTEIN () in double precision, and in our tests
could produce non-orthogonal eigenvectors for a symmetric
matrix. We also address a known issue in LAPACK’s
DSTEVX () that always orthogonalizes the resultant eigen-
values using the Modified Gram-Schmidt (MGS) algorithm.
This step dominates the execution time of DSTEVX () (and
some of our algorithms), often accounting for over 95% of
the runtime in our experiments. To orthogonalize the ei-
genvectors, we introduce the use of the specialized QR
factorization for tall-and-narrow matrices with excess num-
ber of rows compared to columns. This also allows us to
achieve higher speedup with much easier parallelization than
is possible with MGS.

We also present a new implementation of mixed-precision
eigen-pair refinement with explicit offload to GPU acceler-
ators and show its performance across the hardware spec-
trum: CPU-only, low-end GPU, and high-end GPU. Our
results indicate there is a need for heterogeneous parallelism
to benefit from mixed precision and GPU acceleration.

2. Related work

The parallel algorithms for reduction of square symmetric or
Hermitian matrices to condensed forms with similarity
transformations while maintaining high utilization of
multicore processors were pioneered in the PLASMA li-
brary (Haidar et al., 2011, 2014; Luszczek et al., 2011) and
similar techniques are applicable to singular value calcu-
lations (Haidar et al., 2012, 2013; Ltaief et al., 2012).
However, the tridiagonal eigen-solver remained elusive for
these approaches with the LAPACK library (Anderson

et al.,, 1999) and its sequential implementation providing
the most common workaround justified by the low com-
putational intensity. We address this missing piece of nu-
merical diagonalization with a parallel algorithm and careful
numerical considerations for tridiagonal matrices.

There are many numerical and middleware libraries that
provide eigenvalue algorithms with DPLASMA (Bosilca
et al., 2011) and Chameleon (Agullo et al., 2012) being
prominent out of a few recent efforts. They approach the
computational problem of eigenvalue solvers from a large
scale and multi-GPU perspective while we aim at the small
scale of a single node and single accelerator to deal with
common problem sizes. A similar scale difference exists
with the SLATE library (Gates et al., 2019), that in addition
to targeting large distributed memory systems with many
accelerators, also relies on industry standards including
OpenMP for portability of performance critical aspects of its
design.

One way to recursively compute the selected eigenvalues of
a matrix is with the bisection eigenvalue algorithm (Demmel
et al., 1995) that also applies for bidiagonal matrices resulting
from SVD (Gu et al., 1994). With the mild assumption that the
floating-point arithmetic is monotonic, these methods are
accurate and numerically stable (Demmel et al., 1995). For
example, monotonic summation satisfies the property that for
any x<X and y <y implies FP(x 4+ y) <FP(¥ + ¥), which is
requested by the IEEE 754 standard but may be violated in
hardware (Fasi etal., 2021). The natural splitting of work in the
bisection leads to parallel approaches (Volkov and Demmel,
2007) based on a divide-and-conquer scheme (Gu and
Eisenstat, 1995). We extend this work to allow for the
range-based parallelization and dynamic work balancing that
is data-driven based on the eigenvalue-count within the di-
vided spectrum “slices”.

There are multiple orthogonalization schemes and, in the
context of the Krylov subspace iteration, and more spe-
cifically in the Arnoldi procedure of the GMRES method,
two methods stand out: CGS (Classical Gram-Schmidt) and
MGS (Modified Gram-Schmidt). The former is often used
due to its practical advantages such as a lower computa-
tional cost and data-access overhead (Paige and Strakos,
2001). On the other hand, the latter scheme retains or-
thogonality at a better rate and may be simply implemented
using matrix-vector products (Giraud et al., 2005a). For
CGS, reorthogonalizing only once is sufficient in practice to
provide numerical stability (Giraud et al., 2005b). However,
both of these methods suffer from exposure to the band-
width bottleneck because they are memory-bound. An or-
thogonalization scheme may present issues in situations, for
example, with rank-deficient matrices, for which the or-
thogonal basis vectors, contained in the matrix customarily
named Q, could be arbitrarily far from orthonormality when
the Gram-Schmidt process is used (Daniel et al., 1976;
Kietbasinski, 1974).
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3. Portability strategies

We use a multi-pronged approach to achieve portable per-
formance across a wide range of hardware targets, some of
which were used to obtain the results presented below. First
off, we opted for a judicious choice of only a subset of
features used from the supported programming languages: C
(ISO/IEC9899, 2023), C++ (ISO/IEC14882, 2023), and
Fortran (ISO/IEC1539-1, 2018). Another aspect of our ap-
proach is to delegate the majority of the system-level pro-
gramming to OpenMP (Architecture Review Board, 2021),
which includes thread management, asynchronous task
scheduling, offload to hardware accelerators, and manage-
ment of disjoint memory spaces. Finally, we use portability
layers for low-level numerical computations such as CBLAS
and LAPACKE in C or BLAS++ and LAPACK++ in C++,
We discuss these further in this section.

It is a generally safe assumption that both C and C++
share the same backend compiler passes while the Fortran
toolchain is included in the system’s linker infrastructure
and dynamic loading of binaries. With this in mind, it is a
safe portable method of sharing symbols and functions
using the C linkage available in C++ through the extern “C”
statement and with ISO C bindings introduced in Fortran
2003 and further extended in Fortran 2008. Limited at-
tention has to be paid to the corner cases of the base lan-
guages interacting with OpenMP compiler and runtime.
Notable examples include avoiding the use of virtual
methods relying on compiler-generated v-tables in C++ or
using assumed-type dummy arguments in Fortran. While
the former is explicitly prohibited by the OpenMP standard
and may easily be flagged by the compiler, the latter may
result in undefined behavior, which is altogether more subtle
and thus much harder to detect, especially at user’s site if
reported as a bug. At the same time avoiding some features
such as C++ modules is easy due to their limited im-
plementation availability across the vendor and compilation
platforms. This also includes complex C++ concept con-
structs but we still intend to use exposition-only concepts as
very productive documentation aids.

The portability contribution of OpenMP is hard to
overstate both in its span across the hardware platforms and
durability throughout decades spanning vector, RISC,
multicore, and now GPUs. However, the fast-paced growth
of the standard contributed to its somewhat uneven state of
its implementations. This creates a different kind of chal-
lenge to probe, detect, and guard against specific OpenMP
features either not implemented, partially available, or
simply incorrect. A primary example is often used clause
default(none) that requires scope sharing specification to be
provided for every variable in OpenMP region. However,
different versions of GNU C Compiler would either require
for-loop iteration variable to be included in private clause or
be left out completely as per the standard’s default

designation as private for all participating threads. This
leads to a portability strategy shown in Figure 1(a) that
shows incremental building of the pragma string during
compilation by using the standard Pragma() macro.
Figure 1(b) shows a way for the aforementioned dispatch to
vendor-specific numerical kernels with meta-directives.
Figure 1(c) is a trivial example that replaces memory al-
location and transfer routines with OpenMP equivalence.
Finally, Figure 1(d) shows how accelerator-specific features
can be leveraged for optimization with asynchronous nu-
merical kernel processing.

4. Motivation for eigen-spectrum slicing

In scientific applications that use n x n matrices to represent
equations of a quantum state and, for some of them, » can
grow extremely large for many-particle systems (Lowdin,
1955): as large as tens of thousands or millions of rows and
columns. While the roots of the characteristic equation
det(4 — I1,) = 0 are the eigenvalues A; of matrix 4, in
practice, however, generic root-finding is neither as nu-
merically stable nor as performance-efficient as the more
matrix-based specific approaches. The resulting eigenvalue-
eigenvector pairs, or eigen-pairs for short, represent salient
information from the field where the matrix originated.
More concretely, in quantum chemistry or condensed matter
physics (Ando, 1963; Carlson and Keller, 1961) the ei-
genvalues represent energy levels while the eigenvectors
represent the coefficients of the corresponding wave
function in a suitable basis. Diagonalization of the specific
and large Hamiltonian matrices could also be used to de-
termine entanglement of spinless Fermions (Barghathi et al.,
2017).

We assume the standard formulation of the symmetric or
Hermitian eigenvalue problem for the ith eigenpair:
Av; = Ayv;, where A€R"" and J;€R fori € {1, ..., n}.
When considering complex Hermitian matrices, the ei-
genvalues are still real and our results carry-over naturally.
In block form, this is represented by grouping the eigen-
values on the diagonal and gathering the eigenvectors to
form the similarity transformation into the following di-
agonal form: AV = AV, where V is unitary: V*V = [.

When 7 is large, the cubic complexity of O(n*) makes
the compute time and memory cost of finding all n ei-
genpairs prohibitive, or just not possible. Fortunately, the
domain scientists are often interested in just a thin “slice” of
the full range where the eigenvalues reside. This naturally
motivates the spectrum slicing approach: it finds eigen-
values from just a limited range, with their corresponding
eigenvectors computed subsequently with other methods.
The slice contains k eigenpairs, with £ < n. The serial
implementation is available from LAPACK as subroutine
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a) Conditional use of clauses.

#ifdef USE_DEFAULT _NONE

#else
#define OCLAUSE ™
#tendif

#define OCLAUSE “default(none)”

_Pragma(“#pragma omp parallel for” OCLAUSE)

b) Dispatch to device specific numerical kernels.

{

c_ld);
#pragma omp taskwait

}

int dev = omp_get_default_device();
double *a = mkl::malloc(a_ld * n * 8, 64);
#pragma omp target data map(to:a,b) map(tofrom:c)

#pragma omp target variant dispatch \

use_device_ptr(a,b,c) device(dev)
mkl::dgemm(tA, tB, m, n, k, alpha, a, a_ld, b, b_ld, beta, c,

¢) Hiding accelerator-specific memory allocations and transfers.

omp_target_-memcpy(..., a);
omp_target_free(a);

double *a = omp_target_alloc(device, a_ld * n * 8, 64);

d) Leveraging accelerator-specific command queues.

map(alloc:c[0:n*n])

}

#pragma omp target data map(a[0:n*n],b[0:n*n]) \
#pragma omp target data use_device_ptr(a,b,c)

cudaStream_t omp_stream =\
(cudaStream_t) omp_get_cuda_stream(dev);
cublasSetStream(handle, stream);
cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OPN, \
m, n, k, &alpha, a, a_ld, b, b_ld, &beta, c, c_ld);

Figure 1. OpenMP strategies for portable code across various toolchain implementation. (a) Conditional use of clauses. (b) Dispatch to
device specific numerical kernels. (c) Hiding accelerator-specific memory allocations and transfers. (d) Leveraging accelerator-specific

command queues.

DSTEVX (), which implements, among its other available
functional options, the spectrum slicing procedure.

5. Methodology for eigen-spectrum slicing

Like LAPACK’s! DSTEVX () , we use the Sturm sequence
and bisection to first discover all of the eigenvalues in the
given range. The Sturm sequence S(u) is a function with

complexity O(n) for an n-by-n matrix. It processes the
values on the diagonal and off-diagonals of the tridiagonal
matrix T€R"" to compute the number of the k possible
eigenvalues that are less than u, and returns the integer & to
the user.

We use S(u) in the bisection method. We are given a half-
open interval as [l,, u,) to find eigenvalues in the eigen-
spectrum that the user is interested in. S(l;) yields the
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number of eigenvalues less than /,, and k = S(ug) — S(/g)
is the number of eigenvalues £ that are in the eigen-slice.
Our data structure called bracket consists of a lower
bound / and an upper bound u, within which lie a count of
k eigenvalues. This is sufficient information to prepare
the output: a vector of k eigenvalues, a vector of k cor-
responding multiplicity counts, and an n X k matrix of
orthogonal eigenvectors.

We subdivide the range by computing a mid-point
Pm = (I + u)/2 and then t, = S(p,,). If 0 <1, <k, we can
replace the bracket with two brackets, a left and a right
one. On the left, setting u = p,, gives us a bracket with ¢,
eigenvalues in it; and on the right setting / = p,, gives us a
bracket with (k — 1,,) eigenvalues in it. If £, = 0, we do not
require a split: we can just replace / with p,,. If £, = k, we
do not require a split either: we can just replace u
with p,,.

We process these replacements in a similar pattern
that naturally lends itself to computing with recursive
calls. Ultimately, since we know there are k eigenvalues
in the user’s range, we will end up with at most &
brackets (or less if any eigenvalues have larger than
1 duplicity)®. If we continue to subdivide, then,
eventually, in finite precision arithmetic, we will reach
the limit of the machine precision for that exponent, or
ULP (the unit at last place): ¢, = (I + u)/2 will result in
either t, =l or ¢, = u.

At that point, we have found an eigenvalue to ma-
chine precision: u = [ + ULP. This means that in [/, [ +
ULP) there are k eigenvalues. But the upper bound of this
range is open, so / is the most precise number we can get
for an eigenvalue of multiplicity k. If k=1 then we only
indicate finding of a single eigenvalue. If £ > 1 then we
indicate a single eigenvalue with multiplicity £ or
multiple eigenvalues within ULP of each other that
cannot be distinguished within the limits of the working
precision.

Finding a single eigenvalue by bisection should be an
O(n -log(range)) operation; with range = uy — l,. We
narrow range by a factor of two with each bisection.
Finding all k eigenvalues within range has complexity
O(k - n -log(range)). Having found an eigenvalue, we
then invoke LAPACK’s DSTEIN () to compute, by
inverse iteration, the unit eigenvector corresponding
to [.

Then we can store this eigenpair in the return vectors and
matrices directly in its proper sort order. Recall there are
globally S(/,) eigenvalues less than /,, which we have
already calculated, and we also already calculated S(/) for
the current bracket, the difference between them, S(/) —
S(lg) is the zero-relative index into the result vectors and
matrices. This lets us directly store the eigenvalue, its
multiplicity and eigenvector into the result arrays to be
returned to the user.

5.1. Sturm sequence modification

For some matrices, the intermediate values produced in the
Sturm function can grow or shrink monotonically as it
processes the diagonal and off-diagonal elements; and for
very large n, this can result in an underflow or overflow.
Using a method from Zhang, (2003), we implement a Scaled
Sturm sequence, a backward stable algorithm that auto-
matically rescales the computation in progress while
keeping it an O(n) computation.

Input: LaunchTask (Ig, ug)

1 lo < lg | up < uy | Ay +TotThreads ~
2 fori < 1...(S(ug) —S(ly)) do

1

3 ki < S(lifl) ‘ Ng < S(m,l)

4 A; + max(Agy, ULP)

5 ifn; — k; > 1then // got at least one A
6 for j < 1...TotThreads do

7 ‘ LaunchTask (g + ( — 1) A, lg + jAs)
8 end

9 end

10 end

Algorithm 1: Recursive tasking code for finding eigen-
values in range (/g, #,) based on the number of threads.

Input: LaunchTask (I, ug)

1 pm 3 (lg+ug) // middle point

2 if pp, —lg > ULPthen // left half-slice

3 if S(lg + pm) — S(ly) then // A's available
‘ LaunchTask (Ig,lg + Pm)

end

end

ifug — pm > ULPthen // right slice

if S(ug) — S(ug — pm) then // A's available
| LaunchTask (ug — pm, ug)

10 end

11 end

e ® 9 & wnon

Algorithm 2: Recursive tasking code for finding eigen-
values in range (I,, u,) based on bisection with stopping
criterion based on Sturm sequence.

5.2. Parallelization of finding eigenvalues in a range

We parallelize using fine grain tasks using the standard
OpenMP tasking constructs. In Alg. 1, we initially divide
the user’s Range of eigenvalues into TotThreads equal parts.
As we will show in the testing section, this does not ensure
an equal amount of work for each thread, because eigen-
values are not necessarily distributed uniformly. In Alg. 2,
we use the mid-point technique described earlier to launch
tasks for each half of the range as long as it is large enough.

5.3. Eigenpair search performance

Our testing was done on a 36-core machine: Intel Xeon
Gold 6140 2.30 GHz CPUs with 25344 KB Level 2 cache.
The configuration had hyper-threading enabled for the total
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of 72 OpenMPthreads. Some scaling experiments limit the
number of threads but our final performance experiments
use all 72 threads. This is counter-intuitive for purely
compute-bound runs but we still obtain better performance
with hardware threads (or hyper-threading) due to our
mixed-bottleneck workloads.

Figure 2 shows performance for a single thread com-
pleting eigenpair discovery. The performance is scaled to
O(n - k). The slight decline indicates some non-linear ad-
vantage for size. Once we get to larger matrices, we require
roughly 290 ns per (n - k) steps, with k£ being the number of
eigenpairs in the user specified range.

Figure 3 shows parallel performance of eigenpair dis-
covery. The performance is also scaled to O(n - k). The
massive decline indicates poor parallelism for 72 threads on
relatively small matrices. At n =64 000 the number is 6.5 ns
per O(n - k) pairs.

Figure 4 shows parallel speedups in eigenpair discov-
ery. They range from 2.3x up to 44x, for 72 threads. We
show in the left bar the speedup averaged over 7 matrices,
and in the right the speedup in the Glued Wilkinson
matrix — a “difficult” matrix with large eigenvalue clusters.
As expected, little parallelism is available for smaller
matrices, while 44% is a reasonable speedup on our par-
ticular test machine. In other words, we managed to extract
parallelism from a code with limited computational in-
tensity with only O(n - k - log(range)) operations, which
permits little data reuse in order to alleviate the memory
system overheads.

We should note that, for large matrices, eigenpair
discovery runtime is typically dwarfed by the time taken
by the orthogonalization step that follows. This is because
given k eigenvalues, eigenpair discovery is effectively an
O(n - k) algorithm, while the orthogonalization step is an
O(n - k?) algorithm. For n > 8000 and relatively small &,
say k <2500 in our tests, eigenpair discovery is 60% of

the runtime on the small end but declines to less than 10%
around £ =2500. At k= 7630, eigenpair discovery is only
5.6% of the runtime.

6. Numerical testing of challenging
eigenvalue problems

We use matrices proposed by Demmel et al. (2006) and
Marques et al. (2008), including “121”, Wilkinson,
Clement, Legendre, Laguerre, Hermite, and GluedWilkin-
son. We also test with a Kahan matrix, similar to the “121”
with a tiny value for the diagonal 10~ instead of 2. Clement
matrix is useful for verifying that any algorithm finds ei-
genvalues correctly at all; analytically it produces eigen-
values of = (n), #(n — 2), ... . For closely spaced
eigenvalues, we test with the Kahan matrix which has
analytically computable eigenvalues that are also tightly
packed.

More specifically, the eigenvalues of the Kahan matrix are
given by the following algorithm, with x being the diagonalp

k
M= | +4dcos| —— | k=1.n/2 1
k <(N+1)2> 2o
1N+ifk = ——ik k= 1.J1/2 (2)
Ani1y2 =0 if N is odd. (3)

Other matrices are interesting for the distribution of
eigenvalues in their range.

Figure 5 shows eigenvalues of the “121” matrix: all
diagonals are set to 2, super- and sub-diagonals are set to 1.
The eigenvalue distribution for the Kahan matrix is visually
identical to this and not shown. Note the near exponential
increase at the far ends. There are 2500 eigenvalues tightly

350

Average Single Thread Eigenpair Discovery per (N*K)

K = #eigen-pairs, 7 test matrices

nano seconds per O(N*K)
o

o

340
330
320
310
300
290
28

27

260

2000

4000

8000
N

16000 32000 64000

Figure 2. Single thread performance of eigenpair discovery with K on the order of O(N/10) depending on the user-provided value

range for the 7 matrices we used throughout this study.
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Figure 3. Parallel performance of eigenpair discovery.

Parallel Speedup on Eigenpair Discovery | (N*K)

45 72 threads; K=#eigenpairs|

M Avg 7 Matrices
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&
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8000
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Figure 4. Parallel speedup in eigenpair discovery.

packed in (0, 0.04). Even if we zoom in on just that leftmost
bar (not shown) it also looks like an exponentially declining
term. This dramatically increases the density of eigenvalues.
DSTEIN () finds nearly identical (but not quite) eigenvectors.
As n increases, the non-orthogonality of the DSTEIN () ’s
vectors increases, meaning the dot-product of tightly packed
eigenvectors is increasingly greater than zero.

Figure 6 shows the spectrum of the Hermite matrix with
non-uniform density, but not dramatically so. The eigen-
values are most closely packed in the center, where our slice
is. We use this matrix extensively for performance testing.

The spectrum of Laguerre matrix in Figure 7 shows a wide
range of eigenvalues. The range increases proportionally to 7,
but the density is increasing very rapidly from right-to-left as we
approach zero: 12.5% of eigenvalues are in 1% of the range. We
zoom in on the near-zero part of this range in the second graph
of Figure 7: it is just the first 10% of the first bar in the upper

graph. It shows the same high density near zero. There are
50 eigenvalues in a millionth of the entire range of eigenvalues.
With Laguerre matrix, we get a tight cluster of eigenvalues very
close to zero. This is what makes a slice of Laguerre near zero
ideal for testing orthogonality of eigenvectors and the relative
eigenvector error (discussed later), this cluster in the neigh-
borhood of zero is where these measures look the worst.

The Wilkinson matrix shown in Figure 8 looks nearly
perfectly uniform, but in this matrix eigenvalues occur in ex-
tremely close pairs (clusters). The clusters are well separated by
~1.0. The magnitude of dot-product of the eigenvectors for
these close pairs approaches 1.0, but not quite, so they need to
be orthogonalized. However, at large n, the Wilkinson pairs on
the far right end becoming closer than ULP, and to our algo-
rithm appear as a single eigenvalue with multiplicity 2; even
though analytically (in infinite precision) we know they are
distinct. The Glued Wilkinson matrix has a similarly uniformly
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Figure 5. 100 step eigenvalue distribution over full range for matrix 121.
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Figure 6. 100 step eigenvalue distribution over full range for Hermite matrix.

distributed spectral histogram, but it is designed to exacerbate
the clustering property with groups of ten closely spaced
eigenvalues.

The Legendre matrix spectrum from Figure 9 shows a
tight packing of eigenvalues, in a relatively small range of
(—1, + 1). In our experiments, we take the final slice on the
right where the eigenvalues are most densely packed.

7. QR-based orthogonalization of
eigenvectors

For our selected symmetric matrices, all eigenvectors are
theoretically orthogonal in infinite precision arithmetic.
Yet, DSTEIN () generates increasingly non-orthogonal
eigenvectors as eigenvalues occur closer together. In
Wilkinson matrices, eigenvalues occur in close pairs that

grow increasingly closer as n increases. In Figure 10, we
show the largest absolute dot product of any two ei-
genvectors as produced by DSTEIN ().

We see that the eigenvectors produced by DSTEIN () are
nearly unit vectors with each other. They are slightly different,
and can be orthogonalized, but DSTEIN () does not “natu-
rally” produce nearly orthogonal vectors. Even with well
separated eigenvalues, DSTEIN () can produce two eigen-
vectors with a dot-product of 10~'°, which can be corrected by
orthogonalization to 10~ or full double-precision accuracy €g4.

The severity of this problem is unique to Wilkinson in our
test suite, but the trend of losing orthogonality with increasing
matrix size # occurs in all the matrices as we see increasingly
tight packing in the eigenvalue distribution. Besides Wil-
kinson, our test matrices show this phenomenon for large n
with “121”, Kahan, Laguerre, and Legendre matrices.
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Figure 7. 100 step eigenvalue distribution over full range for Laguerre matrix.
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Figure 10. Orthogonality issues for Wilkinson matrix.

Thus, orthogonalization is a necessary post-processing
operation. In LAPACK’s DSTEVX (), this orthogonali-
zation is accomplished with the Modified Gram-Schmidt
(MGS) algorithm: each column of the matrix (one ei-
genvector) is orthogonalized against all prior columns and
then normalized. For our largest test matrices, it may be
95% of the total runtime. In the MGS approach, a given
eigenvector requires all previous orthogonalized eigen-
vectors and this data dependence produces a memory-
bound sequential runs.

A second approach often used, and empirically better at
orthogonalization, is the Classical Gram-Schmidt algo-
rithm, applied twice (CGS-2). This requires approximately
1.5% as many flops, and suffers the same data dependency
problem making parallelization difficult.

We implemented an alternative approach, using QR
factorization, which is already available in PLASMA
(Buttari et al., 2008). Our matrix of eigenvectors is n X k,
with n being the vector length, and &k the number of ei-
genvectors found in the user’s specified range. Since we
expect n > k, our eigenvector matrix is very “tall” lending
itself to specialized methods.

The classic QR factorization, as implemented in LA-
PACK’s DGEQREF (), performs best for square matrices and
produces Q and R as n x n square matrices for square inputs,
with Q constituting an orthonormal basis of the columns of
A, and R being an upper triangular matrix, such that 4 = Q %
R. But since in spectrum slicing # is very large, factoring an
n *x n matrix would require prohibitive memory and time.
However, there exist specialized variants of the QR
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algorithms such as CAQR (Demmel et al., 2012, 2015),
TSQR (Terao et al., 2020), or PAQR (Sid-Lakhdar et al.,
2023) for this very purpose. They accept a matrix 4 € R,
and produce Q€ R"™* and ReR**. The workspaces
required are affordably small. We regard the upper tri-
angular R as a “scaling” matrix. We know 4 = Q x R
(barring the roundoff error), and A4 is the original set of
our eigenvectors. In particular, the ith column of 4 will be
produced by O x R, , ; (in 1-based indices, R, ,, ;1is the ith
column of R). Only the first i elements matter, the rest are
zero and each R;; (j = 1..i) is the “scaling” of column
01, the jth eigenvector. These scaled eigenvectors are
summed to produce the original eigenvector in column i
OfA, ie. Al..n,[~

In this application, the only purpose of R is to reconstruct
the original 4 from the orthonormal basis delivered in Q.
But we have no need of 4, which are the original eigen-
vectors produced by DSTEIN (), so while it is necessary for
the algorithm to form R, we can discard it once the spe-
cialized rectangular QR factorization finished.

The columns of Q are the orthogonalized normal vectors
as we would get® using either MGS or CGS-2. Each column
of Q is the orthogonalized version of the same column in 4;
and thus associated with the same eigenvalue.

There is a crucial performance difference: the specialized
rectangular QR method is optimized and parallelized by
several numerical libraries and reaps the benefits of using
high performance implementations of Level 3 BLAS,
which, generally speaking, are various matrix-matrix op-
erations). We leverage that effort in our approach. In fact,
using the high performance Level 3 BLAS alone is suffi-
cient to warrant the use of any of the specialized QR fac-
torizations for rectangular matrices.

In Figure 11, we show the performance of LAPACK’s
DSTEVX (). It is a sequential code executing on a single
thread and thus it cannot take advantage of multicore
hardware. Both DSTEVX () and the algorithm described
in this paper are completely dominated by their orthog-
onalization step, using MGS and specialized rectangular
QR, respectively. We can see that the former method tops
out at 759 Mflop/s, for m = 32, 000 with n = 3392
(#eigenvalues), and begins declining (likely due to Level
3 cache effects).

In Figure 12, we show the performance of the Spectrum
Slicer with specialized rectangular QR orthogonalization
available from Intel’s MKL library, also in sequential
mode for a fair comparison. As this is not using any
parallelization at all, the matrix sizes and #eigenvalues
remain identical. The Y-axis scale is 22x larger, this is due
to using the BLAS Level 3 and cache-friendly blocking
factors.

In Figure 13, we show the performance ratio at each
problem size. We see a linearly improving speedup, from 5%
to nearly 22x faster at m = 60000 (m is the number of rows in

this graph; # is the number of columns being orthogonalized).
On top of this serial speedup, we also show parallel speedup.

Intel’s MKL library uses system threads and has
DLATSOR () which produces the O and R of the economic
factorization in a packed form and DORGTSQR (), which
then explicitly produces the Q € R matrix of orthonormal
eigenvectors.

Figure 14, shows the average speedup we achieved using
the fully parallelized version of our Spectrum Slicer im-
plementation that has all the steps running in parallel. We
use DLATSQR () for orthogonalization and compare
against the vendor’s LAPACK routine DSTEVX () which
was the fastest available on the platform and included
multithreading. The maximum speedup achieved was 156x
for the matrix of size m = 64000. This high speedup number
may be decomposed into multiple improvements over the
reference sequential code. In the following analysis, we use
the timing results for a matrix with m = 64, 000 rows and
only 10% columns or n = 6400. The first improvement
comes from using efficient orthogonalization. For example,
using specialized rectangular QR, a variant of QR well
suited for our use case, instead of the MGS scheme as
implemented by the LAPACK’s DSTEVX () routine ach-
ieves about 20x speedup based on our estimates of the
single thread runs of the tested machine. Further im-
provement in speedup comes from using the full parallelism
of the hardware threads that compounds the speedup by 8x
which is enabled by the purely algorithmic change. This
gives us the total speedup of about 160 =20 x 8. We hope to
achieve even higher speedup for specialized rectangular QR
by focusing on the potential bottlenecks of this QR variant
that does not share the strong-scaling properties of the
classic QR for square matrices. With the 1-to-10 ratio of
matrix columns to matrix rows, the compute intensity per
byte transferred shifts the code towards memory-bound
category of codes, and thus the independent work dimin-
ishes limiting the available parallelism.

Another issue originates in the implicit barrier resulting
in normalization of each orthogonal basis column which
creates synchronization overhead that can only partially be
mitigated with the look-ahead technique inside and across
the matrix panels. Finally, a full exploration of the data and
algorithmic blocking factors would be in order to improve
performance tuning close to the optimal setting. Never-
theless, the final 156% speedup figure we observed in our
initial runs is impressive nonetheless and at the same time
offers potential new performance research directions for
possible improvements in our future work.

7.1. Errors in orthogonalization of eigenvectors

As mentioned earlier, we replaced the MGS orthogonali-
zation algorithm with specialized rectangular QR. We ex-
plore the two algorithms in producing comparable levels of



682 The International Journal of High Performance Computing Applications 38(6)

DSTEVX Linear Performance

800
700
600
o 500
Q
@ a0 - -
o Serial DSTEVX Performance with MGS
2 300 Assume ~ 2:M-N2 Flops
= 200
100
0
o O O O O O O O O O O O O O O O O O 9o o
o o o o (=) o o o o o o o o o o o o o o [=)
o o o o o o o o o o o o o o o o o (=} (=] o
— N < [¢9) N o o < [e0) N [(e] o g <o) N «© o < o N
— — N N N ™ (2] < < [Xe) n () © © ~
M, N ~= M/10

Figure Il. Serial DSTEVX () performance with MGS orthogonalization.

Spectrum Slicer Serial Performance
18000

Spectrum Slicer Single-Thread Performance with QR
Assume ~ 2-M-N2 Flops

14000
12000
10000
8000
6000
4000
2000
0

o 9o g o

=)

=]

=]

)

16000

MFlops/Sec

o
o
Q
3

Figure 12. Serial Spectrum Slicer performance with specialized rectangular QR orthogonalization.

o o o
(=] o o
(=] o o
< @ N
© © ~

Figure 13. Comparison of speedup of serial Spectrum-Slicer with specialized rectangular QR (marked TSQR) over serial DSTEVX with
MGS orthogonalization.

68000
72000 |

20000 (NN
24000 NN
28000 (I

gooo [N
12000 [N
16000 |G

o o o o
& &6 &8 & & &6 &
S &6 &8 & & & o
§ & 2 3 2 & 8
®» o T ¥ 1 ©
M, N ~= M/10

DSTEVX (MGS) vs Spectrum Slicer (TSQR)
25

Serial Speedup using TSQR

20 instead of MGS Max=21.5
15
0
o o o o o o o
o
o
o
©

Speedup, TSQR vs MGS

o

[6;] o
gooo
12000
16000
20000 [N

24000
28001
3200
3600
5200
56000

4000
4400
4800

M, N=~N/10




Luszczek et al.

683

numerical errors. The short answer here is in affirmative: the
numerical errors are comparable, and for many cases our
proposed method slightly improves upon the numerical
accuracy of MGS. The detailed analysis follows.

In Figure 15, we compute the orthogonality error by taking
the absolute value of the dot-product of every pair of eigen-
vectors. This is for testing purposes only, we can do this ef-
ficiently with a matrix multiply; given our eigenvector matrix
O« with n the rows and k the number of eigenpairs, we
produce I x; = Q,{ vk * Onxk, which should be symmetric. Q is
supposed to be an orthonormal basis, thus the result should be
an identity matrix. We take as the orthogonality the maximum
of the absolute values of these off-diagonal matrix elements; if
found on row/column i, j, then the eigenvectors in columns i
and j of Q are the least orthogonal (values furthest from 0).

Figure 15 compares the orthogonality errors produced by
specialized rectangular QR and implemented in the vendor’s
LAPACK routine DSTEVX (). The two began with the
identical source matrix, Laguerre, with an eigenvalue distri-
bution shown in Figure 7, and the slice taken in the far left: near
zero. We chose this matrix because it is the most troublesome,
producing tightly packed eigenvalues near zero.

Figure 15 uses logarithmic scale to emphasize the errors
between the two algorithms. The specialized rectangular
QR clearly produces more orthogonal vectors than MGS, by
an average factor of 7.28x. This may be due to the blocked
variant of QR, and/or other changes that reduce round-off
error.

Figure 16 shows the worst absolute eigenvector er-
rors. We compute this for an eigenpair (4,,v) as
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e =|[Ad-v—=2-v)
be 0 in infinite precision. The absolute error is the largest
magnitude value in the vector. What we report in Figure 16 is
the largest magnitude error over all & eigenvectors.

As we can see in the graph, which uses logarithmic scale,
neither algorithm is superior across all tested matrix sizes.
The average proportion of the two errors is 0.995, favoring
MGS slightly on these 7 Laguerre matrices, but this may be
due to noise that would vanish with a more comprehensive
testing set with a variety of application matrices, or with
randomly generated matrices.

Figure 17 shows the worst relative error. For an eigenpair,
we compute (4, v) ase, = ||4 - v — 4, - V||, /|Av]. We find the
worst error in an eigenvector relative to its eigenvalue. This is

The result being computed should

[

not the same as the vector with the worst absolute error.
Vectors with very large eigenvalues may produce large ab-
solute errors that are tiny relative to their eigenvalue. In
Figure 17, we report the largest relative error over all k ei-
genvectors. The intuition is thate = (4 - v — 4, - v) /4, should
be a vector of elements that are relatively small compared to 4,.
Specialized rectangular QR is overall slightly superior to
MGS, showing an average of half the relative error of MGS.
Again, this may be due to differences in the round-off error of
the two algorithms.

Overall, our conclusion is that specialized rectangular
QR is the more numerically accurate algorithm, on the
particularly problematic smallest magnitude eigenvalues of
the Laguerre matrix.
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8. Eigenvector swapping

It is possible that when eigenvalues are extremely close, the
eigenvectors, after orthogonalization, may produce less
error if they are swapped.

For this operation, we measure eigenvector error (given
the symmetric tridiagonal matrix 4 € R, eigenvector v,
and eigenvalue 1) as e = || 4- v — 1- V|, an O(n)
operation. If 1 and v were exact, this would produce zero.

For a swap to occur, we require a close pair of eigen-
values A;, Ay St [ — A < 1071

If that occurs, we compute the following:

1. ei,i = ||A - Vi —ﬂi . V,‘”w,

2. eirtivt = [ -vigr = Aivt - Vit |loos

3. € i+l = ||A *Vip] — ﬂ.i * Vit ||OO (swapped),
4. e =||4-vi — Aiy1 - vill,, (swapped).

Then, if e; ;41 <e;; and e;; ; < e;41 441, both eigenvectors work
better with the opposite eigenvalue, so we swap the vectors.

In practice, the number of eigenvalues closer than 10!
is infrequent; except in the Wilkinson matrix. The fact that it
occurs there, and swaps occur regularly in our testing,
suggests it is a beneficial check to make in practice.

Because it occurs so infrequently, we do not time it as
comprehensively as the other test cases with greater rele-
vance for practical settings. It is an O(k) cost to make the
comparisons (all the eigenvalues are sorted); an O(n) cost to
compute the effects of a swap, and O(n) to make the swap
and thus it constitutes a relatively small cost of the overal
computational and data transfer cost.

9. Performance of eigen-spectrum slicing

The primary function here is the bisection method to find
eigenvalues and then the formation of at least an initial
eigenvector for later refinement as necessary.

We will turn to the performance of the orthogonalization
step that follows. We will begin with the Clement matrix,

because we compute all (k — 1) dot-products. However, there
are never any orthogonalizations to perform for this case as all
the eigenvalues are integers separated by 2. Thus the graph in
Figure 18 consists of just the overhead of finding non-
orthogonal eigenvectors when none exist in practice.The
graph bars in the figure are scaled to O(n - k), but do not form a
flat line. The difference can easily be attributed to cache co-
herency effects such as a transition from Level 1 to Level 2 and
its associated NUMA data traffic. There is a 10% rise in per
O(n - k) runtime from n = 2000 to n = 64,000.The graph bars in
Figure 19 are scaled to O(n - k), but clearly there is another
factor involved. We excluded Wilkinson matrices from this
graph, and show it as a separate graph in Figure 20. The runtime
growth here, as per the O(n - k) scaling, between n = 2000 and
n =64, 000, is about 30%. Cache effects may account for 10%,
but the other 20% is something else, because approximately
twice the slowdown occurs for matrices not fitting in cache. To
our best estimates, the number of non-orthogonal eigenvectors
is growing non-linearly with #, especially for the test matrices
that suffer eigenvalue crowding that increases with #.

The graph in Figure 20 is scaled to O(n - k) as before to
showcase the Wilkinson matrices and thus it is another relevant
case of a numerical test. We see a predictable number of /2
orthogonalizations performed by our method. Note that the y-
axis here is about 10x the scale of the graph in Figure 19.
Observe the runtime growth per O(n - k), from n = 2000 to n =
64, 000 is about 19%. The cache effects in our estimates
account for about 10%, but the other 9% seems to be an
unidentified additional factors worth further investigation.

10. Parallel scaling of
eigen-spectrum slicing

In Figure 21, we show the behavior of our algorithm given a
single large problem size, executed with various numbers of
threads. We see the performance rising up to its peak at
20 threads, then leveling off at about 100 Tflop/s.
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Figure 18. Single thread orthogonalization performance for the Clement matrix.
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Figure 22. Weak Scaling of our Spectrum Slicer performance across the available hardware threads.

In Figure 22, we see an improvement in weak scaling
regime, but again leveling off occurs at the very end, with
n > 64000, at about 100 Tflop/s. Some of these limitations
might be improved by better tuning of the specialized
rectangular QR algorithm, which is dominating the runtime
at these sizes where the leveling-off threshold is reached.

I 1. Performance of mixed-precision
eigenvalue refinement

Our SICE-SM algorithm was originally introduced for
mixed-precision eigenvalue solvers (Tsai et al., 2022). Here,
we present the results when combining it with the portable
offloading techniques and spectrum slicing methods that fit
perfectly in one of the phases of the full and robust eigenvalue
solver and eigenvector computation. We break down this
contribution into refinement merged with reorthogonaliza-
tion, which are separate from the actual speedups across a
range of CPUs and GPUs, that we discuss last.

The eigenvalue refinement algorithm was originally pro-
posed by Ogita and Aishima (2018) and we present in Table 1
the results from this type of refinement based on our portable
implementation outlined earlier. We also note that in addition
to the techniques based on special-purpose QR factorization of
tall-and-narrow matrices, which we presented earlier, we also
used Newton-Schulz iteration (Chen and Chow, 2014) for re-
orthogonalization of the eigenvectors during the refinement.
This was performed according to the formula

|
XX + X1 X' X) &)

The main advantage of using portable approaches to
implement complex numerical schemes is the ability to test

Table I. Timing and performance of refining eigenvalues and
eigenvectors simultaneously with respect to the number of refined
eigen-pairs on NVIDIA Volta V100.

Matrix Eigenvector Time Performance
size count (ms) (Tflop/s)
20000 | 3.76 0.212

20000 8 3.79 1.688

20000 32 6.48 3.949

20000 128 13.57 7.544

their performance across the variety of hardware targets.
This is done in Figure 23 that shows advantages and dis-
advantages of using a mixed-precision eigensolver, which
depend on the specific hardware structure and the balance
between performance levels of the floating-point units for
different data formats. On common x86 and other RISC
CPUs, the 32-bit format units are twice as fast as their 64-bit
counterparts. Thus, we observe a slight slowdown when
employing the mixed-precision approach. On NVIDIA
Volta V100 GPUs, the performance difference is the same as
the CPUs, however, our approach derived from the SICE-
SM algorithm (Tsai et al., 2022), takes advantage not only of
the GPU, but also includes the CPU in the computation thus
showing speedup for real domain problems. That advantage
increases for the complex domain to about 50% speedup
over the uniform precision implementation. Finally, NVI-
DIA GTX1060 card is an example of a gaming GPU card
without physical FP64 units that are instead emulated by the
FP32 hardware at the warp level and thus the imbalance of
the two data formats is 1 to 32, a staggering difference from
the previous two targets. The figure clearly indicates how
this can translate into much higher speedups of 2x and 3.6x
for real and complex domains, respectively. We expect the
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Figure 23. Speedup of our portable mixed-precision eigenvalue solver across CPUs and GPUs that feature different balance between

performance of different floating-precition formats.

gains to be even larger for newer hardware accelerators that
feature much higher imbalance of different floating-point
formats albeit at the cost of much lower bit counts in the fast
formats relegated to the “tensor core” units.

Speedup of mixed-precision eigensolver over its uniform
precision counterpart

12. Conclusions and future work

We presented a number of contributions to the parallel and
portable PLASMA library (Dongarra et al., 2019) with a
combined focus on both hardware efficiency and portable
performance while maintaining asymptotic scaling up to
and beyond the sizes of modern platforms and input
problem dimensions. The numerical contributions include
parallel spectrum slicing and mixed-precision iterative re-
finement results for the SICE-SM algorithm (Tsai et al.,
2022). The former is akin to LAPACK’s DSTEVX ()
routine, to extract the eigenvalues of a matrix in a given
range and return an orthonormal matrix of the corre-
sponding eigenvectors. We demonstrated the speedup of
156% using 72 threads and OpenMP tasks which compares
favorably against the available sequential implementations
that do not fully exploit the algorithmic space to enable high
levels of parallelism. Our analysis showed the improvement
may have been attributed to the replacement of the original
MGS orthogonalization with the specialized rectangular QR
algorithm. Our proposed replacement achieves superior
performance thanks to primarily a data blocking strategy
and the use of Level 3 BLAS computational kernels as well
as exposing far greater levels of parallelism to the hard-
ware’s compute units.

Potential extensions left for future work include inves-
tigation, better understanding, and subsequent tuning of the

cause of the observed leveling off we reported for the
performance metric in our strong and weak scaling results.
Using and extending our GPU portability strategies to
further the functionality available on the hardware accel-
erator is currently under development to deliver even greater
efficiency and accuracy in a combined processor-accelerator
systems. Finally, moving beyond a single accelerator or
even beyond a single node is also under consideration to
either address even larger problem sizes or to accommodate
existing application contexts in which the matrix data is
distributed in some fashion.
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Notes

1. We used the latest (as of this writing) LAPACK version
3.12.0 released on November 24, 2023.

2. For a symmetric matrix with eigenvalue duplicities of 1 the
eigenvalues should be distinct; but in certain problematic
matrices like the Wilkinson matrices, a cluster of arithmetically
distinct eigenvalues may be so close they are all within ma-
chine-precision of each other; thus the software using finite
floating-point precision arithmetic cannot distinguish or rep-
resent them and thus produces a single eigenpair with a mul-
tiplicity factor larger then 1.

3. With minor differences due to algorithmic differences such as
data/algorithmic blocking and changes in the operations’ order
producing round-off error similar in magnitude but not its
value.
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