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Abstract This chapter presents the current best design and implementation prac-
tices for the acceleration of dense linear algebra (DLA) on GPUs. Examples are
given with fundamental algorithms – from the matrix-matrix multiplication kernel
written in CUDA to the higher level algorithms for solving linear systems, eigen-
value and SVD problems. The implementations are available through the MAGMA
library – a redesign for GPUs of the popular LAPACK. To generate the extreme
level of parallelism needed for the efficient use of GPUs, algorithms of interest are
redesigned and then split into well-chosen computational tasks. The tasks execu-
tion is scheduled over the computational components of a hybrid system of multi-
core CPUs with GPU accelerators using either static scheduling or a light-weight
runtime system. The use of light-weight runtime systems keeps scheduling over-
head low, similar to static scheduling, while enabling the expression of parallelism
through sequential-like code. This simplifies the development effort and allows the
exploration of the unique strengths of the various hardware components.
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1 Introduction

Enabling large scale use of GPU-based architectures for high performance compu-
tational science depends on the successful development of fundamental numerical
libraries for GPUs. Of particular interest are libraries in the area of dense linear al-
gebra (DLA), as many science and engineering applications depend on them; these
applications will not perform well unless the linear algebra libraries perform well.

Drivers for DLA developments have been significant hardware changes. In par-
ticular, the development of LAPACK [1] – the contemporary library for DLA com-
putations – was motivated by the hardware changes in the late eighties when its
predecessors (EISPACK and LINPACK) needed to be redesigned to run efficiently
on shared-memory vector and parallel processors with multilayered memory hierar-
chies. Memory hierarchies enable the caching of data for its reuse in computations,
while reducing its movement. To account for this, the main DLA algorithms were
reorganized to use block matrix operations, such as matrix multiplication, in their
innermost loops. These block operations can be optimized for various architectures
to account for memory hierarchy, and so provide a way to achieve high-efficiency
on diverse architectures.

Challenges for DLA on GPUs stem from present-day hardware changes that re-
quire yet another major redesign of DLA algorithms and software in order to be ef-
ficient on modern architectures. This is provided through the MAGMA library [12],
a redesign for GPUs of the popular LAPACK.

There are two main hardware trends that challenge and motivate the development
of new algorithms and programming models, namely:

The explosion of parallelism where a single GPU can have thousands of cores
(e.g., there are 2,880 CUDA cores in a K40), and algorithms must account for
this level of parallelism in order to use the GPUs efficiently;

The growing gap of compute vs. data-movement capabilities that has been in-
creasing exponentially over the years. To use modern architectures efficiently
new algorithms must be designed to reduce their data movements. Current dis-
crepancies between the compute- vs. memory-bound computations can be orders
of magnitude, e.g., a K40 achieves about 1,240 Gflop/s on dgemm but only about
46 Gflop/s on dgemv.

This chapter presents the current best design and implementation practices that
tackle the above mentioned challenges in the area of DLA. Examples are given
with fundamental algorithms – from the matrix-matrix multiplication kernel written
in CUDA (in Section 2) to the higher level algorithms for solving linear systems
(Sections 3 and 4), to eigenvalue and SVD problems (Section 5).

The complete implementations and more are available through the MAGMA li-
brary1. Similar to LAPACK, MAGMA is an open source library and incorporates
the newest algorithmic developments from the linear algebra community.

1 http://icl.cs.utk.edu/magma/
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2 BLAS

The Basic Linear Algebra Subroutines (BLAS) are the main building blocks for
dense matrix software packages. The matrix multiplication routine is the most com-
mon and most performance-critical BLAS routine. This section presents the process
of building a fast matrix multiplication GPU kernel in double precision, real arith-
metic (dgemm), using the process of autotuning. The target is the Nvidia K40c
card.

1 f o r (m = 0 ; m < M; m++)
2 f o r ( n = 0 ; n < N; n ++)
3 f o r ( k = 0 ; k < K; k ++)
4 C[ n ] [m] += A[ k ] [m]∗B[ n ] [ k ] ;

Fig. 1 Canonical form of matrix multipli-
cation.

In the canonical form, matrix multipli-
cation is represented by three nested loops
(Figure 1). The primary tool in optimiz-
ing matrix multiplication is the technique
of loop tiling. Tiling replaces one loop with
two loops: the inner loop incrementing the
loop counter by one, and the outer loop in-
crementing the loop counter by the tiling
factor. In the case of matrix multiplication,
tiling replaces the three loops of Figure 1

with the six loops of Figure 2. Tiling of matrix multiplication exploits the surface to
volume effect, i.e., execution of O(n3) floating-point operations over O(n2) data.

1 f o r ( m = 0 ; m < M; m += t i l e M )
2 f o r ( n = 0 ; n < N; n += t i l e N )
3 f o r ( k = 0 ; k < K; k += t i l e K )
4 f o r (m = 0 ; m < t i l e M ; m++)
5 f o r ( n = 0 ; n < t i l e N ; n ++)
6 f o r ( k = 0 ; k < t i l e K ; k ++)
7 C[ n +n ] [ m +n ] +=
8 A[ k +k ] [ m +m]∗
9 B[ n +n ] [ k +k ] ;

Fig. 2 Matrix multiplication with loop
tiling.

Next, the technique of loop unrolling is
applied, which replaces the three innermost
loops with a single block of straight-line
code (a single basic block), as shown in Fig-
ure 3. The purpose of unrolling is twofold:
to reduce the penalty of looping (the over-
head of incrementing loop counters, advanc-
ing data pointers and branching), and to in-
crease instruction-level parallelism by cre-
ating sequences of independent instructions,
which can fill out the processor’s pipeline.

1 f o r ( m = 0 ; m < M; m += t i l e M )
2 f o r ( n = 0 ; n < N; n += t i l e N )
3 f o r ( k = 0 ; k < K; k += t i l e K )
4 {
5 i n s t r u c t i o n
6 i n s t r u c t i o n
7 i n s t r u c t i o n
8 . . .
9 }

Fig. 3 Matrix multiplication with complete
unrolling of tile operations.

This optimization sequence is universal
for almost any computer architecture, in-
cluding “standard” superscalar processors
with cache memories, as well as GPU ac-
celerators and other less conventional archi-
tectures. Tiling, also referred to as blocking,
is often applied at multiple levels, e.g., L2
cache, L1 cache, registers file, etc.

In the case of a GPU, the C matrix is over-
laid with a 2D grid of thread blocks, each
one responsible for computing a single tile
of C. Since the code of a GPU kernel spells

out the operation of a single thread block, the two outer loops disappear, and only
one loop remains – the loop advancing along the k dimension, tile by tile.
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Figure 4 shows the GPU implementation of matrix multiplication at the device
level. Each thread block computes a tile of C (dark gray) by passing through a stripe
of A and a stripe of B (light gray). The code iterates over A and B in chunks of Kblk
(dark gray). The thread block follows the cycle of:

• making texture reads of the small, dark gray, stripes of A and B and storing them
in shared memory,

• synchronizing threads with the syncthreads() call,
• loading A and B from shared memory to registers and computing the product,
• synchronizing threads with the syncthreads() call.

After the light gray stripes of A and B are completely swept, the tile of C is read,
updated and stored back to device memory. Figure 5 shows closer what happens in
the inner loop. The light gray area shows the shape of the thread block. The dark
gray regions show how a single thread iterates over the tile.
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Fig. 4 gemm at the device level.
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Fig. 5 gemm at the block level.

Figure 6 shows the complete kernel implementation in CUDA. Tiling is defined
by BLK M, BLK N, and BLK K. DIM X and DIM Y define how the thread block
covers the tile of C, DIM XA and DIM YA define how the thread block covers a stripe
of A, and DIM XB and DIM YB define how the thread block covers a stripe of B.

In lines 24–28 the values of C are set to zero. In lines 32–38 a stripe of A is read
(texture reads) and stored in shared memory. In lines 40–46 a stripe of B is read
(texture reads) and stored in shared memory. The syncthreads() call in line
48 ensures that reading of A and B, and storing in shared memory, is finished before
operation continues. In lines 50–56 the product is computed, using the values from
shared memory. The syncthreads() call in line 58 ensures that computing
the product is finished and the shared memory can be overwritten with new stripes
of A and B. In lines 60 and 61 the pointers are advanced to the location of new
stripes. When the main loop completes, C is read from device memory, modified
with the accumulated product, and written back, in lines 64–77. The use of texture
reads with clamping eliminates the need for cleanup code to handle matrix sizes not
exactly divisible by the tiling factors.
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1 e x t er n ”C” g l o b a l
2 void b e a s t g e m m k e r n e l (
3 i n t M, i n t N, i n t K,
4 double a lpha , double ∗A, i n t lda ,
5 double ∗B , i n t ldb ,
6 double be ta , double ∗C , i n t l d c )
7 {
8 i n t b l x = b l o c k I d x . x ; / / b l o c k ’ s m p o s i t i o n
9 i n t b l y = b l o c k I d x . y ; / / b l o c k ’ s n p o s i t i o n

10 i n t i d x = t h r e a d I d x . x ; / / t h r e a d ’ s m p o s i t i o n i n C
11 i n t i d y = t h r e a d I d x . y ; / / t h r e a d ’ s n p o s i t i o n i n C
12 i n t i d t = DIM X∗i d y + i d x ; / / t h r e a d ’ s number
13
14 i n t idxA = i d t % DIM XA ; / / t h r e a d ’ s m p o s i t i o n f o r l o a d i n g A
15 i n t idyA = i d t / DIM XA ; / / t h r e a d ’ s n p o s i t i o n f o r l o a d i n g A
16 i n t idxB = i d t % DIM XB ; / / t h r e a d ’ s m p o s i t i o n f o r l o d i n g B
17 i n t idyB = i d t / DIM XB ; / / t h r e a d ’ s n p o s i t i o n f o r l o a d i n g B
18
19 s h a r e d double sA [BLK K ] [ BLK M+ 1 ] ; / / sh are d memory b u f f e r f o r A
20 s h a r e d double sB [BLK N ] [ BLK K + 1 ] ; / / sh are d memory b u f f e r f o r B
21 double rC [BLK N / DIM Y ] [ BLK M/ DIM X ] ; / / r e g i s t e r s f o r C
22
23 i n t coord A = b l x∗BLK M + idyA∗l d a +idxA ; / / A s t r i p e ’ s i n i t i a l l o c a t i o n
24 i n t coord B = b l y∗BLK N∗l d b + idyB∗l d b +idxB ; / / B s t r i p e ’ s i n i t i a l l o c a t i o n
25 i n t m, n , k , kk ; / / l oop c o u n t e r s
26
27 # pragma u n r o l l
28 f o r ( n = 0 ; n < BLK N / DIM Y ; n ++)
29 # pragma u n r o l l
30 f o r (m = 0 ; m < BLK M/ DIM X ; m++)
31 rC [ n ] [m] = 0 . 0 ;
32
33 f o r ( kk = 0 ; kk < K; kk += BLK K)
34 {
35 # pragma u n r o l l
36 f o r ( n = 0 ; n < BLK K ; n += DIM YA)
37 # pragma u n r o l l
38 f o r (m = 0 ; m < BLK M; m += DIM XA) {
39 i n t 2 v = t e x 1 D f e t c h ( t e x r e f A , coord A + n∗l d a +m) ;
40 sA [ n+idyA ] [m+idxA ] = h i l o i n t 2 d o u b l e ( v . y , v . x ) ;
41 }
42
43 # pragma u n r o l l
44 f o r ( n = 0 ; n < BLK N ; n += DIM YB)
45 # pragma u n r o l l
46 f o r (m = 0 ; m < BLK K ; m += DIM XB) {
47 i n t 2 v = t e x 1 D f e t c h ( t e x r e f B , coord B + n∗l d b +m) ;
48 sB [ n+idyB ] [m+idxB ] = h i l o i n t 2 d o u b l e ( v . y , v . x ) ;
49 }
50
51 s y n c t h r e a d s ( ) ;
52
53 # pragma u n r o l l
54 f o r ( k = 0 ; k < BLK K ; k ++)
55 # pragma u n r o l l
56 f o r ( n = 0 ; n < BLK N / DIM Y ; n ++)
57 # pragma u n r o l l
58 f o r (m = 0 ; m < BLK M/ DIM X ; m++)
59 rC [ n ] [m] += sA [ k ] [m∗DIM X+ i d x ] ∗ sB [ n∗DIM Y+ i d y ] [ k ] ;
60
61 s y n c t h r e a d s ( ) ;
62
63 coord A += BLK K∗l d a ;
64 coord B += BLK K ;
65 }
66
67 # pragma u n r o l l
68 f o r ( n = 0 ; n < BLK N / DIM Y ; n ++) {
69 i n t coord dCn = b l y∗BLK N + n∗DIM Y+ i d y ;
70 # pragma u n r o l l
71 f o r (m = 0 ; m < BLK M/ DIM X ; m++) {
72 i n t coord dCm = b l x∗BLK M + m∗DIM X+ i d x ;
73 i f ( coord dCm < M && coord dCn < N) {
74 i n t o f f s C = coord dCn∗l d c + coord dCm ;
75 double &regC = rC [ n ] [m] ;
76 double &memC = C[ o f f s C ] ;
77 memC = a l p h a∗regC + b e t a∗memC;
78 }
79 }
80 }
81 }

Fig. 6 Complete dgemm (C = alpha A B + beta C) implementation in CUDA.
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With the parametrized code in place, what remains is the actual autotuning part,
i.e., finding good values for the nine tuning parameters. Here the process used in
the BEAST project (Bench-testing Environment for Automated Software Tuning) is
described. It relies on three components: 1) defining the search space, 2) pruning
the search space by applying filtering constraints, 3) benchmarking the remaining
configurations and selecting the best performer. The important point in the BEAST
project is to not introduce artificial, arbitrary limitations to the search process.

1 / / Sweep t h r e a d b l o c k d i m e n s i o n s .
2 f o r ( dim m = 1 ; dim m <= MAX THREADS DIM X ; dim m ++)
3 f o r ( dim n = 1 ; dim n <= MAX THREADS DIM Y ; dim n ++)
4 / / Sweep t i l i n g s i z e s .
5 f o r ( blk m = dim m ; blk m < INF ; blk m += dim m )
6 f o r ( b l k n = dim n ; b l k n < INF ; b l k n += dim n )
7 f o r ( b l k k = 1 ; b l k k < INF ; b l k k ++)
8 {
9 / / Apply p r u n i n g c o n s t r a i n t s .

10 }

Fig. 7 The parameter search space for the autotuning of
matrix multiplication.

The loops of Figure 7 define
the search space for the autotun-
ing of the matrix multiplication
of Figure 6. The two outer loops
sweep through all possible 2D
shapes of the thread block, up to
the device limit in each dimen-
sion. The three inner loops sweep
through all possible tiling sizes,
up to arbitrarily high values, rep-
resented by the INF symbol. In
practice, the actual values to sub-
stitute the INF symbols can be

found by choosing a small starting point, e.g., (64, 64, 8), and moving up until
further increase has no effect on the number of kernels that pass the selection.

The list of pruning constraints consists of nine simple checks that eliminate ker-
nels deemed inadequate for one of several reasons:

• The kernel would not compile due to exceeding a hardware limit.
• The kernel would compile but fail to launch due to exceeding a hardware limit.
• The kernel would compile and launch, but produce invalid results due to the

limitations of the implementation, e.g., unimplemented corner case.
• The kernel would compile, launch and produce correct results, but have no

chance of running fast, due to an obvious performance shortcoming, such as very
low occupancy.

The nine checks rely on basic hardware parameters, which can be obtained by
querying the card with the CUDA API, and include:

1. The number of threads in the block is not divisible by the warp size.
2. The number of threads in the block exceeds the hardware maximum.
3. The number of registers per thread, to store C, exceeds the hardware maximum.
4. The number of registers per block, to store C, exceeds the hardware maximum.
5. The shared memory per block, to store A and B, exceeds the hardware maximum.
6. The thread block cannot be shaped to read A and B without cleanup code.
7. The number of load instructions, from shared memory to registers, in the inner-

most loop, in the PTX code, exceeds the number of Fused Multiply-Adds (FMAs).
8. Low occupancy due to high number of registers per block to store C.
9. Low occupancy due to the amount of shared memory per block to read A and B.
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In order to check the last two conditions, the number of registers per block, and
the amount of shared memory per block are computed. Then the maximum number
of possible blocks per multiprocessor is found, which gives the maximum possible
number of threads per multiprocessor. If that number is lower than the minimum
occupancy requirement, the kernel is discarded. Here the threshold is set to a fairly
low number of 256 threads, which translates to minimum occupancy of 0.125 on the
Nvidia K40 card, with the maximum number of 2,048 threads per multiprocessor.

This process produces 14,767 kernels, which can be benchmarked in roughly one
day. 3,256 kernels fail to launch due to excessive number of registers per block. The
reason is that the pruning process uses a lower estimate on the number of registers,
and the compiler actually produces code requiring more registers. We could detect
it in compilation and skip benchmarking of such kernels or we can run them and
let then fail. For simplicity we chose the latter. We could also cap the register usage
to prevent the failure to launch. However, capping register usage usually produces
code of inferior performance.
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Fig. 8 Distribution of the dgemm kernels.

Eventually, 11,511 kernels run suc-
cessfully and pass correctness checks.
Figure 8 shows the performance distri-
bution of these kernels. The fastest ker-
nel achieves 900 Gflop/s with tiling of
96× 64× 12, with 128 threads (16×8
to compute C, 32×4 to read A, and
4×32 to read B). The achieved occu-
pancy number of 0.1875 indicates that,
most of the time, each multiprocessor
executes 384 threads (three blocks).

In comparison, CUBLAS achieves
the performance of 1,225 Gflop/s us-
ing 256 threads per multiprocessor. Al-
though CUBLAS achieves a higher
number, this example shows the effec-
tiveness of the autotuning process in

quickly creating well performing kernels from high level language source codes.
This technique can be used to build kernels for routines not provided in vendor li-
braries, such as extended precision BLAS (double-double and triple-float), BLAS
for misshaped matrices (tall and skinny), etc. Even more importantly, this technique
can be used to build domain specific kernels for many application areas.

As the last interesting observation, we offer a look at the PTX code produced by
the nvcc compiler (Figure 9). We can see that the compiler does exactly what is
expected, which is completely unrolling the loops in lines 50–56 of the C code in
Figure 6, into a stream of loads from shared memory to registers and FMA instruc-
tions, with substantially more FMAs than loads.



8 Dongarra, Gates, Haidar, Kurzak, Luszczek, Tomov, Yamazaki

1 l d . s h a r e d . f64 %fd258 , [% rd3 ] ;
2 l d . s h a r e d . f64 %fd259 , [% rd4 ] ;
3 fma . rn . f64 %fd260 , %fd258 , %fd259 , %fd1145 ;
4 l d . s h a r e d . f64 %fd261 , [% rd3 + 1 2 8 ] ;
5 fma . rn . f64 %fd262 , %fd261 , %fd259 , %fd1144 ;
6 l d . s h a r e d . f64 %fd263 , [% rd3 + 2 5 6 ] ;
7 fma . rn . f64 %fd264 , %fd263 , %fd259 , %fd1143 ;
8 l d . s h a r e d . f64 %fd265 , [% rd3 + 3 8 4 ] ;
9 fma . rn . f64 %fd266 , %fd265 , %fd259 , %fd1142 ;

10 l d . s h a r e d . f64 %fd267 , [% rd3 + 5 1 2 ] ;
11 fma . rn . f64 %fd268 , %fd267 , %fd259 , %fd1141 ;
12 l d . s h a r e d . f64 %fd269 , [% rd3 + 6 4 0 ] ;
13 fma . rn . f64 %fd270 , %fd269 , %fd259 , %fd1140 ;
14 l d . s h a r e d . f64 %fd271 , [% rd4 + 8 3 2 ] ;
15 fma . rn . f64 %fd272 , %fd258 , %fd271 , %fd1139 ;
16 fma . rn . f64 %fd273 , %fd261 , %fd271 , %fd1138 ;
17 fma . rn . f64 %fd274 , %fd263 , %fd271 , %fd1137 ;
18 fma . rn . f64 %fd275 , %fd265 , %fd271 , %fd1136 ;
19 fma . rn . f64 %fd276 , %fd267 , %fd271 , %fd1135 ;
20 fma . rn . f64 %fd277 , %fd269 , %fd271 , %fd1134 ;
21 l d . s h a r e d . f64 %fd278 , [% rd4 + 1 6 6 4 ] ;
22 fma . rn . f64 %fd279 , %fd258 , %fd278 , %fd1133 ;
23 fma . rn . f64 %fd280 , %fd261 , %fd278 , %fd1132 ;
24 fma . rn . f64 %fd281 , %fd263 , %fd278 , %fd1131 ;
25 fma . rn . f64 %fd282 , %fd265 , %fd278 , %fd1130 ;
26 fma . rn . f64 %fd283 , %fd267 , %fd278 , %fd1129 ;
27 fma . rn . f64 %fd284 , %fd269 , %fd278 , %fd1128 ;
28 l d . s h a r e d . f64 %fd285 , [% rd4 + 2 4 9 6 ] ;
29 fma . rn . f64 %fd286 , %fd258 , %fd285 , %fd1127 ;
30 fma . rn . f64 %fd287 , %fd261 , %fd285 , %fd1126 ;
31 fma . rn . f64 %fd288 , %fd263 , %fd285 , %fd1125 ;
32 fma . rn . f64 %fd289 , %fd265 , %fd285 , %fd1124 ;
33 fma . rn . f64 %fd290 , %fd267 , %fd285 , %fd1123 ;
34 fma . rn . f64 %fd291 , %fd269 , %fd285 , %fd1122 ;
35 l d . s h a r e d . f64 %fd292 , [% rd4 + 3 3 2 8 ] ;
36 fma . rn . f64 %fd293 , %fd258 , %fd292 , %fd1121 ;
37 fma . rn . f64 %fd294 , %fd261 , %fd292 , %fd1120 ;
38 fma . rn . f64 %fd295 , %fd263 , %fd292 , %fd1119 ;
39 fma . rn . f64 %fd296 , %fd265 , %fd292 , %fd1118 ;
40 fma . rn . f64 %fd297 , %fd267 , %fd292 , %fd1117 ;
41 fma . rn . f64 %fd298 , %fd269 , %fd292 , %fd1116 ;
42 l d . s h a r e d . f64 %fd299 , [% rd4 + 4 1 6 0 ] ;
43 fma . rn . f64 %fd300 , %fd258 , %fd299 , %fd1115 ;
44 fma . rn . f64 %fd301 , %fd261 , %fd299 , %fd1114 ;
45 fma . rn . f64 %fd302 , %fd263 , %fd299 , %fd1113 ;
46 fma . rn . f64 %fd303 , %fd265 , %fd299 , %fd1112 ;
47 fma . rn . f64 %fd304 , %fd267 , %fd299 , %fd1111 ;
48 fma . rn . f64 %fd305 , %fd269 , %fd299 , %fd1110 ;
49 l d . s h a r e d . f64 %fd306 , [% rd4 + 4 9 9 2 ] ;
50 fma . rn . f64 %fd307 , %fd258 , %fd306 , %fd1109 ;
51 fma . rn . f64 %fd308 , %fd261 , %fd306 , %fd1108 ;
52 fma . rn . f64 %fd309 , %fd263 , %fd306 , %fd1107 ;
53 fma . rn . f64 %fd310 , %fd265 , %fd306 , %fd1106 ;
54 fma . rn . f64 %fd311 , %fd267 , %fd306 , %fd1105 ;
55 fma . rn . f64 %fd312 , %fd269 , %fd306 , %fd1104 ;
56 l d . s h a r e d . f64 %fd313 , [% rd4 + 5 8 2 4 ] ;
57 fma . rn . f64 %fd314 , %fd258 , %fd313 , %fd1103 ;
58 fma . rn . f64 %fd315 , %fd261 , %fd313 , %fd1102 ;
59 fma . rn . f64 %fd316 , %fd263 , %fd313 , %fd1101 ;
60 fma . rn . f64 %fd317 , %fd265 , %fd313 , %fd1100 ;
61 fma . rn . f64 %fd318 , %fd267 , %fd313 , %fd1099 ;
62 fma . rn . f64 %fd319 , %fd269 , %fd313 , %fd1098 ;
63 l d . s h a r e d . f64 %fd320 , [% rd3 + 7 7 6 ] ;
64 l d . s h a r e d . f64 %fd321 , [% rd4 + 8 ] ;
65 fma . rn . f64 %fd322 , %fd320 , %fd321 , %fd260 ;
66 l d . s h a r e d . f64 %fd323 , [% rd3 + 9 0 4 ] ;
67 fma . rn . f64 %fd324 , %fd323 , %fd321 , %fd262 ;
68 l d . s h a r e d . f64 %fd325 , [% rd3 + 1 0 3 2 ] ;
69 fma . rn . f64 %fd326 , %fd325 , %fd321 , %fd264 ;
70 l d . s h a r e d . f64 %fd327 , [% rd3 + 1 1 6 0 ] ;
71 fma . rn . f64 %fd328 , %fd327 , %fd321 , %fd266 ;
72 l d . s h a r e d . f64 %fd329 , [% rd3 + 1 2 8 8 ] ;
73 fma . rn . f64 %fd330 , %fd329 , %fd321 , %fd268 ;
74 l d . s h a r e d . f64 %fd331 , [% rd3 + 1 4 1 6 ] ;
75 fma . rn . f64 %fd332 , %fd331 , %fd321 , %fd270 ;
76 l d . s h a r e d . f64 %fd333 , [% rd4 + 8 4 0 ] ;
77 fma . rn . f64 %fd334 , %fd320 , %fd333 , %fd272 ;
78 fma . rn . f64 %fd335 , %fd323 , %fd333 , %fd273 ;
79 fma . rn . f64 %fd336 , %fd325 , %fd333 , %fd274 ;
80 fma . rn . f64 %fd337 , %fd327 , %fd333 , %fd275 ;
81 fma . rn . f64 %fd338 , %fd329 , %fd333 , %fd276 ;
82 fma . rn . f64 %fd339 , %fd331 , %fd333 , %fd277 ;
83 l d . s h a r e d . f64 %fd340 , [% rd4 + 1 6 7 2 ] ;
84 fma . rn . f64 %fd341 , %fd320 , %fd340 , %fd279 ;
85 fma . rn . f64 %fd342 , %fd323 , %fd340 , %fd280 ;
86 fma . rn . f64 %fd343 , %fd325 , %fd340 , %fd281 ;
87 fma . rn . f64 %fd344 , %fd327 , %fd340 , %fd282 ;
88 fma . rn . f64 %fd345 , %fd329 , %fd340 , %fd283 ;
89 fma . rn . f64 %fd346 , %fd331 , %fd340 , %fd284 ;

Fig. 9 A portion of the PTX for the innermost loop of the fastest dgemm kernel.
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3 Solving Linear Systems

Solving dense linear systems of equations is a fundamental problem in scientific
computing. Numerical simulations involving complex systems represented in terms
of unknown variables and relations between them often lead to linear systems of
equations that must be solved as fast as possible. This section presents a method-
ology for developing these solvers. The technique is illustrated using the Cholesky
factorization.

3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) of an n× n real symmet-
ric positive definite matrix A has the form A = LLT , where L is an n×n real lower
triangular matrix with positive diagonal elements [5]. This factorization is mainly
used as a first step for the numerical solution of linear equations Ax = b, where
A is a symmetric positive definite matrix. Such systems arise often in physics ap-
plications, where A is positive definite due to the nature of the modeled physical
phenomenon. The reference implementation of the Cholesky factorization for ma-
chines with hierarchical levels of memory is part of the LAPACK library. It consists
of a succession of panel (or block column) factorizations followed by updates of the
trailing submatrix.

3.2 Hybrid Algorithms

Fig. 10 Algorithms as a collection of
tasks and dependencies among them
for hybrid GPU-CPU computing

The Cholesky factorization algorithm can eas-
ily be parallelized using a fork-join approach
since each update – consisting of a matrix-
matrix multiplication – can be performed in par-
allel (fork) but that a synchronization is needed
before performing the next panel factorization
(join). The number of synchronizations of this
algorithm and the synchronous nature of the
panel factorization would be prohibitive bottle-
necks for performance on highly parallel de-
vices such as GPUs.

Instead, the panel factorization and the up-
date of the trailing submatrix are broken into
tasks, where the less parallel panel tasks are
scheduled for execution on multicore CPUs,
and the parallel updates mainly on GPUs. Fig-
ure 10 illustrates this concept of developing hy-
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brid algorithms by splitting the computation into tasks, data dependencies, and con-
sequently scheduling the execution over GPUs and multicore CPUs. The scheduling
can be static (described next), or dynamic (see Section 4). In either case, the small
and not easy to parallelize tasks from the critical path (e.g., panel factorizations) are
executed on CPUs, and the large and highly parallel task (like the matrix updates)
are executed mostly on the GPUs.

3.3 Hybrid Cholesky Factorization for a single GPU

Figure 11 gives the hybrid Cholesky factorization implementation for a single GPU.
Here da points to the input matrix that is in the GPU memory, work is a work-space
array in the CPU memory, and nb is the blocking size. This algorithm assumes the
input matrix is stored in the leading n-by-n lower triangular part of da, which is
overwritten on exit by the result. The rest of the matrix is not referenced. Compared

1 f o r ( j = 0 ; j < ∗n ; j += nb ) {
2 j b = min ( nb , ∗n−j ) ;
3 c u b l a s D s y r k ( ’ l ’ , ’ n ’ , jb , j , −1, da ( j , 0 ) ,∗ lda , 1 , da ( j , j ) ,∗ l d a ) ;
4 cudaMemcpy2DAsync ( work , j b∗s i z e o f ( d ou b l e ) , da ( j , j ) , ∗l d a∗s i z e o f ( d ou b l e ) ,
5 s i z e o f ( d ou b l e )∗jb , jb , cudaMemcpyDeviceToHost , s t r e a m [ 1 ] ) ;
6 i f ( j + j b < ∗n )
7 cublasDgemm ( ’ n ’ , ’ t ’ , ∗n−j−jb , jb , j , −1, da ( j + jb , 0 ) , ∗lda , da ( j , 0 ) ,
8 ∗lda , 1 , da ( j + jb , j ) , ∗l d a ) ;
9 cudaStreamSynchronize ( s t r e a m [ 1 ] ) ;

10 d p o t r f ( ” Lower ” , &jb , work , &jb , i n f o ) ;
11 i f (∗ i n f o != 0)
12 ∗ i n f o = ∗ i n f o + j , b r e a k ;
13 cudaMemcpy2DAsync ( da ( j , j ) , ∗l d a∗s i z e o f ( d ou b l e ) , work , j b∗s i z e o f ( d ou b l e ) ,
14 s i z e o f ( d ou b l e )∗jb , jb , cudaMemcpyHostToDevice , s t r e a m [ 0 ] ) ;
15 i f ( j + j b < ∗n )
16 c u b l a s D t r s m ( ’ r ’ , ’ l ’ , ’ t ’ , ’ n ’ , ∗n−j−jb , jb , 1 , da ( j , j ) , ∗lda ,
17 da ( j + jb , j ) , ∗l d a ) ;
18 }

Fig. 11 Hybrid Cholesky factorization for single CPU-GPU pair (dpotrf ).

to the LAPACK reference algorithm, the only difference is that the hybrid one has
three extra lines – 4, 9, and 13. These extra lines implement our intent in the hybrid
code to have the jb-by- jb diagonal block starting at da(j,j) factored on the CPU,
instead of on the GPU. Therefore, at line 4 we send the block to the CPU, at line 9
we synchronize to ensure that the data has arrived, then factor it on the CPU using a
call to LAPACK at line 10, and send the result back to the GPU at line 13. Note that
the computation at line 7 is independent of the factorization of the diagonal block,
allowing us to do these two tasks in parallel on the CPU and on the GPU. This is
implemented by statically scheduling first the dgemm (line 7) on the GPU; this is an
asynchronous call, hence the CPU continues immediately with the dpotrf (line 10)
while the GPU is running the dgemm.

The hybrid algorithm is given an LAPACK interface to simplify its use and adop-
tion. Thus, codes that use LAPACK can be seamlessly accelerated multiple times
with GPUs.
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To summarize, the following is achieved with this algorithm:

• The LAPACK Cholesky factorization is split into tasks;
• Large, highly data parallel tasks, suitable for efficient GPU computing, are stati-

cally assigned for execution on the GPU;
• Small, inherently sequential dpotrf tasks (line 10), not suitable for efficient GPU

computing, are executed on the CPU using LAPACK;
• Small CPU tasks (line 10) are overlapped by large GPU tasks (line 7);
• Communications are asynchronous to overlap them with computation;
• Communications are in a surface-to-volume ratio with computations: sending

nb2 elements at iteration j is tied to O(nb× j2) flops, j ≥ nb.

4 The Case for Dynamic Scheduling

In this section, we present the linear algebra aspects of our generic solution for
development of either Cholesky, Gaussian, and Householder factorizations based
on block outer-product updates of the trailing matrix.

Conceptually, one-sided factorization F maps a matrix A into a product of two
matrices X and Y :

F :
[

A11 A12
A21 A22

]
7→
[

X11 X12
X21 X22

]
×
[
Y11 Y12
Y21 Y22

]
Algorithmically, this corresponds to a sequence of in-place transformations of A,

whose storage is overwritten with the entries of matrices X and Y (Pi j indicates the
currently factorized panels):A(0)

11 A(0)
12 A(0)

13

A(0)
21 A(0)

22 A(0)
23

A(0)
31 A(0)

32 A(0)
33

→
P11 A(0)

12 A(0)
13

P21 A(0)
22 A(0)

23

P31 A(0)
32 A(0)

33

→
XY11 Y12 Y13

X21 A(1)
22 A(1)

23

X31 A(1)
32 A(1)

33

→
XY11 Y12 Y13

X21 P22 A(1)
23

X31 P32 A(1)
33

→

→

XY11 Y12 Y13
X21 XY22 Y23

X31 X32 A(2)
33

→
XY11 Y12 Y13

X21 X22 Y23
X31 X32 P33

→
XY11 Y12 Y13

X21 XY22 Y23
X31 X32 XY33

→ [XY
]
,

where XYi j is a compact representation of both Xi j and Yi j in the space originally
occupied by Ai j.

Observe two distinct phases in each step of the transformation from [A] to [XY ]:
panel factorization (P) and trailing matrix update: A(i) → A(i+1). Implementation
of these two phases leads to a straightforward iterative scheme shown in Algo-
rithm 1. Table 1 shows BLAS and LAPACK routines that should be substituted
for the generic routines named in the algorithm.

The use of multiple accelerators complicates the simple loop from Algorithm 1:
we must split the update operation into multiple instances for each of the accel-
erators. This was done in Algorithm 2. Notice that FactorizePanel() is not split
for execution on accelerators because it exhibits properties of latency-bound work-
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Cholesky Householder Gauss

FactorizePanel dpotf2 dgeqf2 dgetf2
dtrsm

dsyrk dlarfb dlaswp
UpdateTrailingMatrix dgemm dtrsm

dgemm

Table 1 Routines for panel factorization and the trailing matrix update.

Algorithm 1 Two-phase implementation of a one-sided factorization.
// iterate over all matrix panels
for Pi ∈ {P1,P2, . . . ,Pn}

FactorizePanel(Pi)
UpdateTrailingMatrix(A(i))

end

Algorithm 2 Two-phase implementation with the update split between Fermi and
Kepler GPUs.

// iterate over all matrix panels
for Pi ∈ {P1,P2, . . .}

FactorizePanel(Pi)
UpdateTrailingMatrixKepler(A(i))
UpdateTrailingMatrixFermi(A(i))

end

Algorithm 3 Two-phase implementation with a split update and explicit communi-
cation.

// iterate over all matrix panels
for Pi ∈ {P1,P2, . . .}

FactorizePanel(Pi)
SendPanelKepler(Pi)
UpdateTrailingMatrixKepler(A(i))
SendPanelFermi(Pi)
UpdateTrailingMatrixFermi(A(i))

end

loads, which face a number of inefficiencies on throughput-oriented GPU devices.
Due to their high performance rate exhibited on the update operation, and the fact
that the update requires the majority of floating-point operations, it is the trailing
matrix update that is a good target for off-load. The problem of keeping track of the
computational activities is exacerbated by the separation between the address spaces
of main memory of the CPU and the GPUs. This requires synchronization between
memory buffers and is included in the implementation shown in Algorithm 3.

The complexity increases further as the code must be modified further to achieve
close to peak performance. In fact, the bandwidth between the CPU and the GPUs is
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Algorithm 4 Lookahead of depth 1 for the two-phase factorization.
FactorizePanel(P1)
SendPanel(P1)
UpdateTrailingMatrix{Kepler,Fermi}(P1)
PanelStartReceiving(P2)
UpdateTrailingMatrix{Kepler,Fermi}(R(1))
// iterate over remaining matrix panels
for Pi ∈ {P2,P3, . . .}

PanelReceive(Pi)
PanelFactor(Pi)
SendPanel(Pi)
UpdateTrailingMatrix{Kepler,Fermi}(Pi)
PanelStartReceiving(Pi)
UpdateTrailingMatrix{Kepler,Fermi}(R(i))

end
PanelReceive(Pn)
PanelFactor(Pn)

orders of magnitude too slow to sustain computational rates of GPUs.2 The common
technique to alleviate this imbalance is to use lookahead [14, 15].

Algorithm 4 shows a very simple case of a lookahead of depth 1. The update
operation is split into an update of the next panel, the start of the receiving of the
next panel that just got updated, and an update of the rest of the trailing matrix
R. The splitting is done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the fact that depending
on the communication bandwidth and the accelerator speed, a different lookahead
depth might be required for optimal overlap. In fact, the adjustment of the depth
is often required throughout the factorization’s runtime to yield good performance:
the updates consume progressively less time when compared to the time spent in the
panel factorization.

Since the management of adaptive lookahead is tedious, it is desirable to use a
dynamic scheduler to keep track of data dependences and communication events.
The only issue is the homogeneity inherent in most of the schedulers which is vi-
olated here due to the use of three different computing devices that we used. Also,
common scheduling techniques, such as task stealing, are not applicable here due
to the disjoint address spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the chapter.

2 The bandwidth for the current generation PCI Express is at most 16 GB/s while the devices
achieve over 1,000 Gflop/s performance.
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5 Eigenvalue and Singular Value Problems

Eigenvalue and singular value decomposition (SVD) problems are fundamental for
many engineering and physics applications. For example, image processing, com-
pression, facial recognition, vibrational analysis of mechanical structures, and com-
puting energy levels of electrons in nanostructure materials can all be expressed as
eigenvalue problems. Also, the SVD plays a very important role in statistics where
it is directly related to the principal component analysis method, in signal process-
ing and pattern recognition as an essential filtering tool, and in analysis of control
systems. It has applications in such areas as least squares problems, computing the
pseudoinverse, and computing the Jordan canonical form. In addition, the SVD is
used in solving integral equations, digital image processing, information retrieval,
seismic reflection tomography, and optimization.

5.1 Background

The eigenvalue problem is to find an eigenvector x and eigenvalue λ that satisfy

Ax = λx,

where A is a symmetric or nonsymmetric n×n matrix. When the entire eigenvalue
decomposition is computed we have A = XΛX−1, where Λ is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors. The SVD finds orthogonal matrices
U , V , and a diagonal matrix Σ with nonnegative elements, such that A = UΣV T ,
where A is an m× n matrix. The diagonal elements of Σ are singular values of A,
the columns of U are called its left singular vectors, and the columns of V are called
its right singular vectors.

All of these problems are solved by a similar three-phase process:

1. Reduction phase: orthogonal matrices Q (Q and P for singular value decom-
position) are applied on both the left and the right side of A to reduce it to a
condensed form matrix – hence these are called “two-sided factorizations.” Note
that the use of two-sided orthogonal transformations guarantees that A has the
same eigen/singular-values as the reduced matrix, and the eigen/singular-vectors
of A can be easily derived from those of the reduced matrix (step 3);

2. Solution phase: an eigenvalue (respectively, singular value) solver further com-
putes the eigenpairs Λ and Z (respectively, singular values Σ and the left and
right vectors Ũ and Ṽ T ) of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors (respectively, left and
right singular vectors) of A are computed by multiplying Z (respectively, Ũ and
Ṽ T ) by the orthogonal matrices used in the reduction phase.

For the nonsymmetric eigenvalue problem, the reduction phase is to upper Hes-
senberg form, H = QT AQ. For the second phase, QR iteration is used to find the
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eigenpairs of the reduced Hessenberg matrix H by further reducing it to (quasi) up-
per triangular Schur form, S = ET HE. Since S is in a (quasi) upper triangular form,
its eigenvalues are on its diagonal and its eigenvectors Z can be easily derived. Thus,
A can be expressed as:

A = QHQT = Q E S ET QT ,

which reveals that the eigenvalues of A are those of S, and the eigenvectors Z of S
can be back-transformed to eigenvectors of A as X = Q E Z.

When A is symmetric (or Hermitian in the complex case), the reduction phase
is to symmetric tridiagonal T = QT AQ, instead of upper Hessenberg form. Since T
is tridiagonal, computations with T are very efficient. Several eigensolvers are ap-
plicable to the symmetric case, such as the divide and conquer (D&C), the multiple
relatively robust representations (MRRR), the bisection algorithm, and the QR itera-
tion method. These solvers compute the eigenvalues and eigenvectors of T = ZΛZT ,
yielding Λ to be the eigenvalues of A. Finally, if eigenvectors are desired, the eigen-
vectors Z of T are back-transformed to eigenvectors of A as X = Q Z.

For the singular value decomposition (SVD), two orthogonal matrices Q and
P are applied on the left and on the right, respectively, to reduce A to bidiagonal
form, B = QT AP. Divide and conquer or QR iteration is then used as a solver to
find both the singular values and the left and the right singular vectors of B as
B = ŨΣṼ T , yielding the singular values of A. If desired, singular vectors of B
are back-transformed to singular vectors of A as U = Q Ũ and V T = PT Ṽ T .

There are many ways to formulate mathematically and solve these problems nu-
merically, but in all cases, designing an efficient computation is challenging because
of the nature of the algorithms. In particular, the orthogonal transformations applied
to the matrix are two-sided, i.e., transformations are applied on both the left and
right side of the matrix. This creates data dependencies that prevent the use of stan-
dard techniques to increase the computational intensity of the computation, such as
blocking and look-ahead, which are used extensively in the one-sided LU, QR, and
Cholesky factorizations. Thus, the reduction phase can take a large portion of the
overall time. Recent research has been into two-stage algorithms [10, 2, 7, 8, 11],
where the first stage uses Level 3 BLAS operations to reduce A to band form, fol-
lowed by a second stage to reduce it to the final condensed form. Because it is
the most time consuming phase, it is very important to identify the bottlenecks of
the reduction phase, as implemented in the classical approaches [1]. The classical
approach is discussed in the next section, while Section 5.4 covers two-stage algo-
rithms.

The initial reduction to condensed form (Hessenberg, tridiagonal, or bidiagonal)
and the final back-transformation are particularly amenable to GPU computation.
The eigenvalue solver itself (QR iteration or divide and conquer) has significant
control flow and limited parallelism, making it less suited for GPU computation.



16 Dongarra, Gates, Haidar, Kurzak, Luszczek, Tomov, Yamazaki

5.2 Classical Reduction to Hessenberg, Tridiagonal, or Bidiagonal
Condensed Form

The classical approach (“LAPACK algorithms”) to reduce a matrix to condensed
form is to use one-stage algorithms [5]. Similar to the one-sided factorizations (LU,
Cholesky, QR), the two-sided factorizations are split into a panel factorization and
a trailing matrix update. Pseudocode for the Hessenberg factorization is given in
Algorithm 5 and shown schematically in Figure 12; the tridiagonal and bidiago-
nal factorizations follow a similar form, though the details differ [17]. Unlike the
one-sided factorizations, the panel factorization requires computing Level 2 BLAS
matrix-vector products with the entire trailing matrix. This requires loading the en-
tire trailing matrix into memory, incurring a significant amount of memory bound
operations. It also produces synchronization points between the panel factorization
and the trailing submatrix update steps. As a result, the algorithm follows the ex-
pensive fork-and-join model, preventing overlap between the CPU computation and
the GPU computation. Also it prevents having a look-ahead panel and hiding com-
munication costs by overlapping with computation. For instance, in the Hessenberg
factorization, these Level 2 BLAS operations account for about 20% of the floating
point operations, but can take 70% of the time in a CPU implementation [16]. Note
that the computational complexity of the reduction phase is about 10

3 n3, 8
3 n3, and

4
3 n3 for the reduction to Hessenberg, bidiagonal, and tridiagonal form respectively.

Algorithm 5 Hessenberg reduction, magma *gehrd.
for i = 1, . . . ,n by nb

// panel factorization, in magma *lahr2.
get panel Ai:n,i:i+nb−1 from GPU
for j = i, . . . , i+nb

(v j,τ j) = householder(a j)
send v j to GPU
y j = Ai+1:n, j:nv j on GPU
get y j from GPU

compute T( j) =

[
T( j−1) −τ jT( j−1)V T

( j−1)v j

0 τ j

]
update column a j+1 = (I−V T TV T )(a j+1−Y T{V T } j+1)

end

// trailing matrix update, in magma *lahru.
Y1:i,1:nb = A1:i,i:nV on GPU
A = (I−V T TV T )(A−Y TV T ) on GPU

end

In the panel factorization, each column is factored by introducing zeros below the
subdiagonal using an orthogonal Householder reflector, H j = I−τv jvT

j . The matrix
Q is represented as a product of n−1 of these reflectors,

Q = H1H2 . . .Hn−1.
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Y1:i, : = A1:i, :V
BLAS-3 on GPU

column aj

yj = Avj

BLAS-2 
on GPU

Trailing 
matrix 
update

A = QTAQ

BLAS-3
on GPU

Panel V

0

Fig. 12 Hessenberg panel factorization, trailing matrix update, and V matrix on GPU with upper
triangle set to zero.

Before the next column can be factored, it must be updated as if H j were applied
on both sides of A, though we delay actually updating the trailing matrix. For each
column, performing this update requires computing y j = Av j. For a GPU implemen-
tation, we compute these matrix-vector products on the GPU, using cublasDgemv
for the Hessenberg and bidiagonal, and cublasDsymv for the tridiagonal factor-
ization. Optimized versions of symv and hemv also exist in MAGMA [13], which
achieve higher performance by reading A only once and using extra workspace to
store intermediate results. While these are memory-bound Level 2 BLAS opera-
tions, computing them on the GPU leverages the GPU’s high memory bandwidth.

After factoring each panel of nb columns, the trailing matrix must be updated. In-
stead of applying each H j individually to the entire trailing matrix, they are blocked
together into a block Hessenberg update,

Qi = H1H2 . . .Hnb = I−ViTiV T
i .

The trailing matrix is then updated as

Â = QT
i AQi = (I−ViT T

i V T
i )(A−YiTiV T

i ) (1)

for the nonsymmetric case, or using the alternate representation

Â = A−WiV T
i −ViW T

i (2)

for the symmetric case. In all cases, the update is a series of efficient Level 3 BLAS
operations executed on the GPU, either general matrix-matrix multiplies (dgemm)
for the Hessenberg and bidiagonal factorizations, or a symmetric rank-2k update
(dsyr2k) for the symmetric tridiagonal factorization.

Several additional considerations are made for an efficient GPU implementation.
In the LAPACK CPU implementation, the matrix V of Householder vectors is stored
below the subdiagonal of A. This requires multiplies to be split into two operations,
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a triangular multiply (dtrmm) for the top triangular portion, and a dgemm for the
bottom portion. On the GPU, we explicitly set the upper triangle of V to zero, as
shown in Figure 12, so the entire product can be computed using a single dgemm.
Second, it is beneficial to store the small nb×nb Ti matrices used in the reduction,
for later use in the back-transformation, whereas LAPACK recomputes them later
from Vi.

5.3 Back-transform eigenvectors

For eigenvalue problems, after the reduction to condensed form, the eigensolver
finds the eigenvalues Λ and eigenvectors Z of H or T . For the SVD, it finds the
singular values Σ and singular vectors Ũ and Ṽ of B. The eigenvalues and singular
values are the same as for the original matrix A. To find the eigenvectors or sin-
gular vectors of the original matrix A, the vectors need to be back-transformed by
multiplying by the same orthogonal matrix Q (and P, for the SVD) used in the reduc-
tion to condensed form. As in the reduction, the block Householder transformation
Qi = I−ViTiV T

i is used. From this representation, either Q can be formed explicitly
using dorghr, dorgtr, or dorgbr; or we can multiply by the implicitly represented
Q using dormhr, dormtr, or dormbr. In either case, applying it becomes a series of
dgemm operations executed on the GPU.

The entire procedure is implemented in the MAGMA library: magma dgeev for
nonsymmetric eigenvalues, magma dsyevd for real symmetric, and magma dgesvd
for the singular value decomposition.

5.4 Two Stage Reduction

Because of the expense of the reduction step, renewed research has focused on
improving this step, resulting in a novel technique based on a two-stage reduc-
tion [6, 7]. The two-stage reduction is designed to increase the utilization of
compute-intensive operations. Many algorithms have been investigated using this
two-stage approach. The idea is to split the original one-stage approach into a
compute-intensive phase (first stage) and a memory-bound phase (second or “bulge
chasing” stage). In this section we will cover the description for the symmetric case.
The first stage reduces the original symmetric dense matrix to a symmetric band
form, while the second stage reduces from band to tridiagonal form, as depicted in
Figure 13.



Accelerating Numerical Dense Linear Algebra Calculations with GPUs 19

0 20 40 60

0

10

20

30

40

50

60

nz = 3600
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 119

First stage 

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1016

Second stage 
Bulge chasing 

Fig. 13 Two stage technique for the reduction phase.

5.4.1 First Stage: Hybrid CPU-GPU Band Reduction

The first stage applies a sequence of block Householder transformations to reduce
a symmetric dense matrix to a symmetric band matrix. This stage uses compute-
intensive matrix-multiply kernels, eliminating the memory-bound
matrix-vector product in the one-stage panel factorization, and has been shown
to have a good data access pattern and large portion of Level 3 BLAS opera-
tions [3, 4, 9]. It also enables the efficient use of GPUs by minimizing commu-
nication and allowing overlap of computation and communication. Given a dense
n×n symmetric matrix A, the matrix is divided into nt = n/b block-columns of size
nb. The algorithm proceeds panel by panel, performing a QR decomposition for
each panel to generate the Householder reflectors V (i.e., the orthogonal transfor-
mations) required to zero out elements below the bandwidth nb. Then the generated
block Householder reflectors are applied from the left and the right to the trailing
symmetric matrix, according to

A = A−WV T −VW T , (3)

where V and T define the block of Householder reflectors and W is computed as

W = X− 1
2V T TV T X , where (4)

X = AV T.

Since the panel factorization consists of a QR factorization performed on a panel
of size l× b shifted by nb rows below the diagonal, this will remove both the syn-
chronization and the data dependency constraints seen using the classical one stage
technique. In contrast to the classical approach, the panel factorization by itself does
not require any operation on the data of the trailing matrix, making it an indepen-
dent task. Moreover, we can factorize the next panel once we have finished its up-
date, without waiting for the total trailing matrix update. Thus this kind of technique
removes the bottlenecks of the classical approach: there are no BLAS-2 operations
concerning the trailing matrix and also there is no need to wait for the update of
the trailing matrix in order to start the next panel. However, the resulting matrix
is banded, instead of tridiagonal. The hybrid CPU-GPU algorithm is illustrated in
Figure 14. We first run the QR decomposition (dgeqrf panel on step i of Figure 14)
of a panel on the CPUs. Once the panel factorization of step i is finished, then
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we compute W on the GPU, as defined by equation (4). In particular, it involves a
dgemm to compute V T , then a dsymm to compute X = AV T , which is the dom-
inant cost of computing W , consisting of 95% of the time spent in computing W ,
and finally another inexpensive dgemm. Once W is computed, the trailing matrix
update (applying transformations on the left and right) defined by equation (3) can
be performed using a rank-2k update.

However, to allow overlap of CPU and GPU computation, the trailing submatrix
update is split into two pieces. First, the next panel for step i+1 (medium gray panel
of Figure 14) is updated using two dgemm’s on the GPU. Next, the remainder of the
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Fig. 14 Description of the reduction to band form, stage 1.
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Fig. 15 Execution trace of reduction to band form.
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trailing submatrix (dark gray triangle of Figure 14) is updated using a dsyr2k. While
the dsyr2k is executing, the CPUs receive the panel for step i+1, perform the next
panel factorization (dgeqrf), and send the resulting Vi+1 back to the GPU. In this
way, the factorization of panels i = 2, . . . ,nt and the associated communication are
hidden by overlapping with GPU computation, as demonstrated in Figure 15. This
is similar to the look-ahead technique typically used in the one-sided dense matrix
factorizations. Figure 15 shows a snapshot of the execution trace of the reduction to
band form, where we can easily identify the overlap between CPU and GPU compu-
tation. Note that the high-performance GPU is continuously busy, either computing
W or updating the trailing matrix, while the lower performance CPUs wait for the
GPU as necessary.

5.4.2 Second Stage: Cache-Friendly Computational Kernels

The band form is further reduced to the final condensed form using the bulge chasing
technique. This procedure annihilates the extra off-diagonal elements by chasing the
created fill-in elements down to the bottom right side of the matrix using successive
orthogonal transformations. Each annihilation of the nb non-zero element below
the off-diagonal of the band matrix is called a sweep. This stage involves memory-
bound operations and requires the band matrix to be accessed from multiple disjoint
locations. In other words, there is an accumulation of substantial latency overhead
each time different portions of the matrix are loaded into cache memory, which is not
compensated for by the low execution rate of the actual computations (the so-called
surface-to-volume effect). To overcome these critical limitations, we developed a
bulge chasing algorithm, to extensively use cache friendly kernels combined with
fine grained, memory aware tasks in an out-of-order scheduling technique which
considerably enhances data locality. This reduction has been designed for multicore
architectures, and results have shown its efficiency. This step has been well opti-
mized such that it takes between 5% to 10% of the global time of the reduction from
dense to tridiagonal. We refer the reader to [9, 7] for a detailed description of the
technique.

We decide to develop a hybrid CPU-GPU implementation of only the first stage
of the two stage algorithm, and leave the second stage executed entirely on the
CPU. The main motivation is that the first stage is the most expensive computational
phase of the reduction. Results show that 90% of the time is spent in the first stage
reduction. Another motivation for this direction is that accelerators perform poorly
when dealing with memory-bound fine-grained computational tasks (such as bulge
chasing), limiting the potential benefit of a GPU implementation of the second stage.
Experiments showed that the two-stage algorithm can be up to six times faster than
the standard one-stage approach.
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5.5 Back Transform the Eigenvectors of the Two Stage Technique

The standard one-stage approach reduces the dense matrix A to condensed form
(e.g, tridiagonal T in the case of symmetric matrix), computes its eigenvalues/eigen-
vectors (Λ , Z) and back transform its eigenvectors Z to computes the eigenvectors
X = Q Z of the original matrix A as mentioned earlier in Section 5.3. In the case
of the two-stage approach, the first stage reduces the original dense matrix A to a
band matrix by applying a two-sided transformations to A such that QT

1 AQ1 = B.
Similarly, the second, bulge-chasing stage reduces the band matrix B to the con-
densed form (e.g, tridiagonal T ) by applying two-sided transformations to B such
that QT

2 BQ2 = T . Thus, when the eigenvectors matrix X of A are requested, the
eigenvectors matrix Z resulting from the eigensolver needs to be back transformed
by the Householder reflectors generated during the reduction phase, according to

X = Q1Q2 Z = (I−V1t1V T
1 ) (I−V2t2V T

2 ) Z, (5)

where (V1, t1) and (V2, t2) represent the Householder reflectors generated during the
reduction stages one and two, respectively. Note that when the eigenvectors are re-
quested, the two stage approach has the extra cost of the back transformation of Q2.
However, experiments show that even with this extra cost the overall performance of
the eigen/singular-solvers using the two stage approach can be several times faster
than solvers using the one stage approach.

From the practical standpoint, the back transformation Q2 is not as straightfor-
ward as the one of Q1, which is similar to the classical back transformation described
in Section 5.3. In particular, because of complications of the bulge-chasing mecha-
nism, the order and the overlap of the Householder reflector generated during this
stage is intricate. Let us first begin by describing the complexity and the design of
the algorithm for applying Q2. We present the structure of V2 (the Householder re-
flectors that form the orthogonal matrix Q2) in Figure 16a. Note that these reflectors
represent the annihilation of the band matrix, and thus each is of length nb – the
bandwidth size. A naı̈ve implementation would take each reflector and apply it in
isolation to the matrix Z. Such an implementation is memory-bound and relies on
Level 2 BLAS operations. A better procedure is to apply with calls to Level 3 BLAS,
which achieves both very good scalability and performance. The priority is to create
compute intensive operations to take advantage of the efficiency of Level 3 BLAS.
We proposed and implemented accumulation and combination of the Householder
reflectors. This is not always easy, and to achieve this goal we must pay attention
to the overlap between the data they access as well as the fact that their applica-
tion must follow the specific dependency order of the bulge chasing procedure in
which they have been created. To stress these issues, we will clarify it by giving an
example. For sweep i (e.g., the column at position B(i,i):B(i+nb,i)), its annihilation
generates a set of k Householder reflectors (vk

i ), each of length nb, the vk
i are rep-

resented in column i of the matrix V2 depicted in Figure 16a. Likewise, the ones
related to the annihilation of sweep i+1, are those presented in column i+1, where
they are shifted one element down compared to those of sweep i. It is possible to
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combine the reflectors v(k)i from sweep i with those from sweep i+1, i+2,. . . , i+ `
and to apply them together in blocked fashion. This grouping is represented by the
diamond-shaped region in Figure 16a. While each of those diamonds is considered
as one block, their back transformation (application to the matrix Z) needs to fol-
low the dependency order. For example, applying block 4 and block 5 of the V2’s in
Figure 16a modifies block row 4 and block row 5, respectively, of the eigenvector
matrix Z drawn in Figure 16b where one can easily observe the overlapped region.
The order dictates that block 4 needs to be applied before block 5. It is possible
to compute this phase efficiently by splitting Z by blocks of columns over both the
CPUs and the GPU as shown in Figure 16b, where we can apply each diamond
independently to each portion of E. Moreover, this method does not require any
data communication. The back transformation of Q1 to the resulting matrix from
above, Q1 × (Q2 Z), involves efficient BLAS 3 kernels and it is done by using the
GPU function magma dormtr, which is the GPU implementation of the standard
LAPACK function (dormtr).
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Fig. 16 Blocking technique to apply the Householder reflectors V2 with a hybrid implementation
on GPU and CPU.

6 Summary and Future Directions

In conclusion, GPUs can be used with astonishing success to accelerate fundamen-
tal linear algebra algorithms. We have demonstrated this on a range of algorithms,
from the matrix-matrix multiplication kernel written in CUDA, to the higher level
algorithms for solving linear systems, to eigenvalue and SVD problems. Further,
despite the complexity of the hardware, acceleration was achieved at a surprisingly
low software development effort using a high-level methodology of developing hy-
brid algorithms. The complete implementations and more are available through the
MAGMA library. The promise shown so far motivates and opens opportunities for
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future research and extensions, e.g., tackling more complex algorithms and hybrid
hardware. Several major bottlenecks need to be alleviated to run at scale though,
which is an intensive research topic. When a complex algorithm needs to be ex-
ecuted on a complex heterogeneous system, scheduling decisions have a dramatic
impact on performance. Therefore, new scheduling strategies must be designed to
fully benefit from the potential of future large-scale machines.
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