INFORMATION SCIENCE

Special Topic: High Performance Computing
A new metric for ranking high-performance computing systems

Jack Dongarra'*, Michael A. Heroux? and Piotr Luszczek'

INTRODUCTION

Performance benchmarks play an impor-
tant role in various stages of hardware de-
velopment and use. During development,
hardware designers use benchmarks as
proxies for full-fledged applications be-
cause prototype systems have a limited
set of software tools that the applications
require for compilation and execution. At
procurement time, benchmarks serve as
an assurance test that establishes the new
system’s viability and fulfillment of con-
tractual obligations between the system
integrator and the customer. And finally,
benchmarking during the system’s daily
use can ensure proper operation of a com-
puter installation, exposing any potential
problems to the system’s administrators,
and gives the users an estimate of what
their applications of interest can achieve
without requiring the effort of building
those applications, their software depen-
dences, and loading the necessary input
data that may initially reside offsite.

The LINPACK benchmark [1] has
been in continuous use since the 1980s.
It was born out of necessity in the
1970s, when it was used to quickly test
the performance of vector subroutines—
which could serve as a good approxima-
tion of performance for the rest of the
LINPACK library. Because of the na-
ture of the implementation, the bench-
mark could also be used as a first-order
approximation of other codes, partially
due to the well-balanced hardware that
offered plentiful bandwidth for every
floating-point operation. Over the years,
Moore’s law eroded the compute-to-
bandwidth balance, resulting in a mem-
ory wall. Today, this wall can be ex-
hibited by the Intel Haswell (Xeon E7
v3 8900) processors, which feature 18
cores—each equipped with dual floating-
point units (FPUs) with AVX vectors

capable of fused multiply-add (FMA)
instructions and clocked at 2.5 GHz
(before TurboBoost)—bringing to bear,
altogether, over 700 Gflop/s worth of
peak performance—over 90% of which
may be realized in a well-tuned matrix—
matrix multiplication from a vendor li-
brary (MKL). At the same time, the
memory controller for that processor has
a theoretical maximum of 25 GB/s. The
exact number of floating operations per
every byte of bandwidth is 28.8—a far dif-
ferentratio than the 1 flop per byte, which
was the design point in the 1990s when
the TOPS500 list started ranking the su-
percomputers using the scalable version
of the LINPACK benchmark.

To reassess the application needs
in this new and drastically different
hardware regime, it is worthwhile to look
at the computational simulations that
drive national interest. Many of these
simulations involve heat diffusion, elec-
tromagnetics, and fluid dynamics. Unlike
LINPACK, which tests raw floating-
point performance and its delivery
through the BLAS API, these real-world
applications rely on partial differential
equations (PDEs) that govern the con-
tinuous representations of the physical
quantities such as particle speed, mo-
mentum, etc. These PDEs involve sparse
(not dense) matrices that represent the
3Dl embedding of the discretization
mesh. While the size of the sparse data
fills the available memory to accommo-
date the simulation models of interest,
most of the optimization techniques that
help achieve close to peak performance
in dense matrix calculations are only
marginally useful in the context of sparse
matrices originating from PDEs.

Our new benchmark, called high-
performance conjugate gradients
(HPCG) (further information is avail-
able at www.hpcg-benchmark.org), is

based on Mantevo collection’s HPCCG
code base [2], but aims to go beyond its
originator and represent the calculations
that commonly occur during the numer-
ical solution of PDEs in modern state-
of-the-art solvers. To that end, HPCG is
dominated by sparse operations such as
sparse matrix-vector product and sparse
matrix triangular solve. When properly
implemented, these operations stress the
memory subsystem, including the higher
level cache memories’ ability to coalesce
irregularly strided memory loads, band-
width and latency of the main memory,
as well as the processing units’ ability to
schedule around the inherent delays of
the main memory. In terms of commu-
nication, the benchmark tests global and
neighborhood collectives for dot prod-
ucts and halo (domain boundary) ex-
changes, respectively. As an added irregu-
larity, HPCG features elements of multi-
grid with a local smoother. This counter-
acts the initial regularity of the domain
and increases the complexity of mem-
ory access patterns that become much
less bandwidth bound and more latency
bound at the coarse levels of the multi-
grid. As the figure of merit, HPCG uses
the Gflop/s rate based on the apparent
(rather than actual) number of floating-
point operations executed during exe-
cution (apparent operations are those
that have to be performed based on the
structure of the matrix, actual opera-
tions depend on the implementation—
they could be larger if the implemen-
tation chooses to recomputed some of
the intermediate results). Such a metric
is unconstrained and benefits from im-
provements applied to any of the hard-
ware components relevant to the simu-
lation applications based on PDEs. At
the same time, the low value of the
achieved Gflop/s serves as a stark re-
minder of the imbalance between the

http://www.hpcg-benchmark.org

floating-point capability and the speed
of various data storage and transmis-
sion pathways in modern supercomput-
ing systems.

GOALS OF BENCHMARK

The HPCG Benchmark can help alleviate
many of the problems described above
using the following principles:

® Provide comprehensive coverage of the
code types that test major communica-
tion and computational patterns. Both
global and neighborhood collectives
are essential in terms of communica-
tion, and the important computational
patterns include vector updates, dot
products, sparse matrix-vector multi-
plication, and local triangular solves.
These are inspired by our produc-
tion differential equation codes, both
implicit and explicit, and therefore
made their way into this benchmark.
In addition, emerging asynchronous
collectives and other latency-hiding
techniques can be explored in the
context of HPCG and aid in their
adoption and optimization on future
systems.

® Represent a minimal collection of the
major patterns. Even though it is a
benchmark code rather than a full
application, HPCG represents major
computational patterns well, and
is—to our knowledge—the smallest
code containing them. The HPCG
methods and algorithms approximate
real mathematical computation very
well, which aids in our validation
and verification efforts described
below.

® Reward investment in high perfor-
mance of collective communication

primitives. 'The neighborhood and

all-reduce collectives represent es-

sential performance bottlenecks for

our applications. Implementations
of these primitives can benefit from
high-quality system design. As a conse-
quence, improving the performance of
HPCG will improve the performance
of real applications.

® Reward investment in local memory sys-
tem performance. As the local shared-
memory and multicore performance of

HPCQG is largely determined by the ef-
fective use of the local memory sys-
tem, it becomes important to stim-
ulate improvements at the hardware
level by rewarding good design deci-
sions with appropriate improvements
in the benchmark results. A good corre-
lation already exists between improve-
ments in the implementation of HPCG
data structures, compilation of HPCG
code, the performance of the under-
lying system, improvements in HPCG
benchmark results, and real applica-
tion performance. These results will
inform application developers of new
approaches to optimizing their own
implementations.

RELATED WORK

For along time, the standard for measur-
ing parallel sparse solvers was the NAS
parallel benchmarks (NPB) collection
[3/4] and its recent updates [S]. Since
HPCG and NPB both aim to extract
the most common features of scien-
tific computational kernels, there are
similarities in design and algorithmic im-
plementation between both. There are,
however, three important differences:
(i) the data distribution and generation,
(i) splitting of code components, and
(iii) algorithmic goals and choices of the
code. While NPB uses 2D data distri-
bution, HPCG uses 1D distribution—a
more common distribution for modern
solvers. NPB uses the structure of the
matrix chosen from a uniform random
distribution based on a multiplicative
random number generator [6]. This
can hardly be correlated with the actual
matrices of common PDE discretizations
that admit a 3D embedding or similar
low-dimensional space representation.
Thus, HPCG uses a regular 3D grid
discretization (see below), but prohibits
exploiting this structure (this may be
enforced by stochastically testing the
implementation with slightly perturbed
structure). NPB splits the multigrid
(NPB MG) and conjugate gradient
(NPB CG) components, while HPCG
them Additionally,
HPCG combines domain decomposition
with additive Schwarz coupling as that is

treats together.

the preferred method for a parallel sparse
solver.

Another sparse benchmark, which in
our mind is very closely related to our
efforts, was the iterative solver bench-
mark [7]. The algorithmic scope of this
benchmark is broader than HPCG: it in-
cludes both CG and GMRES methods,
it tests a number of meaningful sparsity
patterns, and uses several precondition-
ers. With such a broad spectrum of tested
codes it still lacks any tests of scalabil-
ity that target distributed memory paral-
lelism, multicore processors, or hardware
accelerators—testing of each of these as-
pects of modern supercomputers is an es-
sential prerequisite for a comprehensive
benchmark code.

MODEL PROBLEM AND ITS
DISCRETIZATION

The model problem that HPCG bench-
mark solves is a discretized Poisson PDE
in three dimensions [8]. The iterative
method of choice is preconditioned CG
applied to the resulting symmetric pos-
itive definite sparse linear system. The
original PDE models a single degree of
freedom heat diffusion equation with
zero Dirichlet boundary conditions. The
PDE is discretized with a finite difference
scheme on a 3D rectangular grid domain
with regular spacing of the nodes, thus
producing a sparse matrix with a simple
and predictable structure.

The parallelism of the solver may be
scaled arbitrarily through the domain
decomposition scheme with additive
Schwarz coupling. The partitioning of
the global discretization grid among
the distributed memory processes is
regular and three dimensional: across the
x-, y-, and z-axes. The factoring of
the distributed processes (the ranks)
into a 3D regular grid can deteriorate
into a 1D or 2D structure if the total
rank count does not have good inte-
ger factors, e.g. it’'s a prime number.
In such a case, the communication
patterns between the processes will
be local for the most part, and will
not reflect the challenges imposed by
scientific applications on the large-scale
HPC networks. For this reason, one

of the checks in HPCG keeps the
ratio min(x,y,z)/max(x,y,z) high
enough: it is not supposed to drop
below 0.125. Choosing this ratio to
be high would keep the shape closer
to a cube, but due to the distribu-
tion of factors in process counts up
to hundreds of millions, keeping the
ratio high would preclude a large
number of configurations from being
eligible.

During the setup phase, a logically
global, but physically distributed, sparse
linear system is constructed using a 27-
point stencil at each grid point in the
3D domain, such that the equation—
at any interior point—depends on the
values at that point and its 26 sur-
rounding neighbors. The matrix is con-
structed to be weakly diagonally domi-
nant for the interior points of the global
domain, and strongly diagonally dom-
inant for the boundary points, reflect-
ing a synthetic conservation principle
for the interior points and the impact
of zero Dirichlet boundary values on
the boundary equations. The resulting
sparse linear system has the following
properties:

e A sparse matrix with 27 non-zero en-
tries per row for interior equations
and 7-18 non-zero terms for boundary
equations.

e A symmetric, positive definite linear
operator.

o The boundary condition is reflected by
subtracting 1 from the diagonal.

e A generated known exact solution vec-
tor with all values equal to 1.

o A matching right-hand-side vector.

o An initial guess of all zeros.

PRECONDITIONED ITERATIVE
SOLVER

The preconditioned CG method, shown
in Fig. 1, allows the code to maintain the
orthogonality relationship with a short
three-term recurrence formula. This in
turn allows the linear system data to
be scaled arbitrarily without worrying
about the excessive growth of storage re-
quirements for the orthogonal basis, un-
like GMRES, which was used in the it-
erative solver benchmark. GMRES in-

ternal storage requirements grow with
the system size and it requires to bal-
ance the scale with the restriction in-
herent to the solution method. CG uses
short-term recurrence relation to keep
track of its progress and hence internal
storage does not grow with the prob-
lem size. As mentioned above, the cen-
tral purpose of defining this sparse lin-
ear system is to provide a rich vehicle
for executing the collection of important
computational kernels. The pseudo code
shown in the figure features these ker-
nels prominently. At the same time, the
benchmark’s primary function is not to
compute a numerically exact solution to
the model problem. In fact, the iteration
counts are fixed in the benchmark code
and we do not expect convergence to
the solution, regardless of the problem
size. We do use the spectral properties
of both the problem and the precondi-
tioned CG algorithm as part of software
verification.

HPCG performs multiple sets of 20 it-
erations, using the same initial guess each
time. These parameters were chosen to be
sufficiently large to test the system’s re-

A, b, x = hpcg setup()

max iter = 20
tolerance = 0.0

rtz = 0.0

p = x.copy()

silience and ability to remain operational.
By doing this, we can compare the nu-
merical results for ‘correctness’ at the end
of each of the iteration sets.

COMPONENTS OF AN MG
SOLVER

The MG method has been a subject of ex-
tensive research and may be considered
ideal for elliptic PDEs. However, by vary-
ing the discretization, it is possible to ap-
ply it successfully to a much larger class
of linear and non-linear PDEs [9]. As de-
scribed so far, HPCG directly character-
izes all of the computational and com-
munication patterns exhibited by MG
solvers. Specifically, the unaddressed is-
sues include smoothing through hard-to-
parallelize methods, such as the Gauss—
Seidel iteration, and the dominant per-
formance bottleneck at coarse grid levels
in the form of latency rather than band-
width. What dominates the overheads are
the message exchanges at the fine grid
levels and dot products of the precon-
ditioned CG method. For these reasons,

Ap = SparseMatVecProduct (A, p)

r = WAXPBY(1.0, b, -1.0,

Ap) # r = b - A*p

normr = sqgrt (DotProduct (r, r))

normr_old = normr

for k in range(l, max iter+l):
if normr/normr_old > tolerance:
break

z = MultigridPreconditioner (A, r)

if k == 1:

p = z.copy ()

rtz = DotProduct(r, z)
else:

rtz_old = rtz

rtz = DotProduct (r, z)

beta = rtz / rtz_old

p = WAXPBY (1.0, z, beta, p) # p = beta*

Ap = SparseMatVecProduct (A, p)
alpha = rtz / DotProduct(p, Ap)
x = WAXPBY (1.0, x, alpha, p) #
r = WAXPBY (1.0, r, -alpha, Ap) f
normr = sqgrt (DotProduct(r, r)
niters = k

Figure 1. Preconditioned CG algorithm used by HPCG.

X = X +
r =r —

starting with version 2.0 of HPCG, an
MG component was introduced in the
reference code to model the behavior
of multilevel methods. In particular, the
MG method is used for preconditioning
as shown in Fig. 1 with the multiple lev-
els of coursing and refinement as well
asrestriction and prolongation contained
therein. The problem often faced when
introducing this kind of new non-trivial
functionality was a potential for a sub-
stantial increase in the code complexity
and growth in tangential and supporting
components, such as the validation and
verification modules. Hence, to minimize
the impact of the change, we reused the
existing components and recast them in
terms of commonly used parts of a typi-
cal MG solver. The smoother/solver for
all of the levels of our simulated geomet-
ric MG is a local Gauss—Seidel iteration.
The mesh coarsening and refinement (to-
gether with the restriction and prolon-
gation operators) is accomplished by
simple halving of the number of points
in every dimension, and thus each coarse
grid level has 8(=2 X 2 x 2) times as few
points as the neighboring fine grid level.
Just as was the case for the precondi-
tioned CG from Fig. 1, our goal is only
to provide basic components rather than
a complete MG solver, let alone a com-
prehensive implementation of a full MG
solver. Consequently, we include neither
the full V nor W cycles, which are named
after the shape of the grid mesh hierar-
chy. In particular, we do not perform an
accurate solve at the coarsest grid level
to remove all error modes and provide
a good solution vector for prolongation.
Instead, we limit the number of grid lev-
els to 3, which results in a 256-fold reduc-
tion in the number of grid points, which
is sufficient to address most of the band-
width and/or latency bottlenecks and ex-
pose the performance of common algo-
rithmic tradeoffs in broadly used solvers.
At fine grain level, bandwidth is the main
concern as the number of grid points is
large enough for pipelining to hide the la-
tency. When the coarse grid is used, the
number of points is reduced 256 times
and latency is this many times harder to
hide. Adding more grid levels could po-
tentially expose these bottlenecks even
more but as the grid becomes coarser,

the latency overhead becomes one of
many other bottlenecks such as loop
overheads due to lack of benefits from
unrolling. In this limited implementation,
we also captured the prevalent recursive
patterns of code execution and the inte-
ger arithmetic required to capture some
of the overheads inherent in grid mesh
manipulation.

IMPLEMENTATION DETAILS

As was indicated throughout this docu-
ment, the aim of any benchmark—and
HPCG in particular—is to strike a bal-
ance between complexity, software de-
pendences, and requirements imposed
by real scientific applications. The im-
plementation details and low-level soft-
ware engineering artifacts play a role in
this, and we made design choices along
these specific issues. For the program-
ming language we chose a subset of mod-
ern C+4+, which is a rapidly evolving lan-
guage comparatively speaking, and the
compiler writers attempt to follow the
progress of the standard and even include
provisional features that are not guaran-
teed to make it to the upcoming official
document in the particular form and/or
semantics, if at all. As of this writing, the
majority of compilers have implemented
a substantial portion of the C++ 2011
and 2014 standards. But to an extent,
using some of these more modern fea-
tures could jeopardize the portability of
the code. At the same time, the code
base is fairly simple by design and the im-
plementation remains compact and read-
able without relying on potentially non-
portable constructs while stressing the
use of C++-in scientific codes. As a point
of interest, a similar reasoning applies to
any other language of choice or the asso-
ciated standard library of routines.

Along these lines, we chose OpenMP
for multithreading and Message Passing
Interface (MPI) for distributed memory
communication. The former is currently
in version 4, while the latter is in version 3.
Both of these are backed up by decades of
continuous development and widespread
community support. It is safe to assume
that these standards will and should be
available for future supercomputers.

Finally, hardware accelerators are now
an important component of modern su-
percomputing installations and clusters.
To this end, the code available for down-
load has provisions for optimizations
that take advantage of such accelerators,
namely GPUs and coprocessors. In ad-
dition, there are vendor-optimized im-
plementations available from either the
HPCG web page or from the respective
vendors directly.

VALIDATION, VERIFICATION,
AND BASELINE RULES

The regularity of the model PDE’s dis-
cretization grid provides ample opportu-
nity to optimize the sparse data structure
for efficient computation. Results show
how to optimally partition and reorder
the mesh points to achieve good load
balance, small communication volume,
and good local performance. However,
we feel that allowing such optimizations
would violate the spirit of the benchmark
and trivialize its results. Instead, we insist
that the knowledge of the problem’s reg-
ularity should not be taken into consid-
eration when porting and optimizing the
code for the user’s machine. To that ex-
tent, the discretization should be treated
as a generic mesh without any proper-
ties known a priori. In exchange, the users
may take advantage of the simplicity of
the mesh to find problems with their op-
timizations, since many aspects of the op-
timal solution are known in closed form
and can serve as a useful debugging tool.
Similarly, we prohibit the use of knowl-
edge of the problem when performing the
CG iteration. We do, however, recognize
that users may wish to use the knowledge
of the spectrum of the discretization ma-
trix to estimate the accuracy of their opti-
mized solver.

HPCG includes a code that detects
and measures variances from bitwise
identical computations because it is
widely believed that future computer
systems will not be able to provide
deterministic ~ execution paths for
floating-point computations. In fact,
bit fluctuations may already be present
on some accelerators, and can even be
exacerbated by disabling error correcting

code on some hardware. This may hap-
pen in particular, because floating-point
addition is not associative, thus we may
not have bitwise reproducible results—
even when running the same exact
computation twice on the same number
of processors of the same system. This is
in contrast with many of our MPI-only
applications today. Going forward, it
presents a big challenge to applications
that must ascertain their computational
results and perform numerical debugging
in the presence of bitwise variability.
The setup and execution of the tests in
HPCG makes the deviation from bitwise
reproducibility easier to observe.

To detect anomalies during the
iteration phases, HPCG code uses
standard software engineering prac-
tices such as computing preconditions,
post-conditions, and invariants. These
are likely to eliminate a vast majority
of errors that might creep in when
implementing an optimized version of
the benchmark.

In order to take full advantage of
the tested hardware, the end user is
encouraged—but not required—to
optimize the computational kernels
in HPCG. The reference code that we
provide is focused on portability and
readability, which may often have nega-
tive effects on performance for a specific
system. In practice, we have already
observed successful attempts to optimize
the HPCG code by benchmarking teams
and vendor engineering groups with
successful outcomes and good results
reported. The resulting code is available
on the download page or directly from
the respective vendor site. In order
to validate the user-provided kernels,
HPCG includes a symmetry test for
the sparse matrix multiply with a dis-
cretization matrix and for the symmetric
Gauss—Seidel smoother.

Finally, a spectral test is also included
in HPCG, whose purpose is to test for
fast convergence of the CG algorithm on
amodified matrix that s close to being di-
agonal. From the theoretical standpoint,
and according to the convergence frame-
work underlying the CG solver [10], we
know that a fixed number of iterations
is required for such matrices, and the in-
valid optimizations attempted by the user

should easily violate this property. The
spectral test is meant to detect potential
anomalies in the optimized implemen-
tation related to inaccurate calculations
and changes to convergence rate due to
user-defined matrix ordering.

PERFORMANCE RESULTS

The main performance result reported by
HPCG is the number of floating-point
operations per second. It is a metric that
is bound (in theory at least) by the hard-
ware’s peak performance rate (in prac-
tice, HPCG achieves a single digit frac-
tion of the peak), which is mostly related
to the number of FPU, their through-
put, cycle delay, and the available instruc-
tion mix such as pipelined add, multiply,
and FMA. This upper bound is unrealis-
tic for iterative solvers for elliptic PDEs,
such as HPCG, or most other scientific
applications. Only the LINPACK bench-
mark can claim sufficient data reuse and
locality in its computational patterns to
be able to keep the FPUs busy at almost
every cycle, and thus extract a substantial
percentage of the theoretical peak perfor-
mance of the hardware. For an example
of such an implementation of HPL, refer
to the TOPS00 listing of the K computer.
HPCG’s performance result is largely de-
pendent on the memory hierarchy and
the quality of the interconnect. The band-
width, latency, and parallelism in data
transfers all contribute to an overall all
good score reported by HPCG. It is in-
teresting then to look at how these fac-
tors affect the largest supercomputing in-
stallations in the world. In fact, this is

the purpose of collecting and publish-
ing the HPCG results obtained on large
supercomputing installations around the
world.

Figure 2 shows the HPCG results,
from supercomputing installations from
all over the world, as reported in June and
November 2014 and in June 2015. Since
HPCGis still arelatively new benchmark,
not all lists of results are of the same
length and the number of entries does
not yet rival the TOP500. However, to
put this growth rate and the benchmark
adoption in perspective, it is worth not-
ing the nearly 25-year lapse between the
first publication of LINPACK results and
the release of the first TOPS500 list. There
are currently 40 large computing systems
whose results are reported in the HPCG
list, and a number of interesting trends
may be observed on the results figure. The
HPCG results show orders of magnitude
difference across the systems on a sin-
gle list—a trend similar to what has been
happening on the TOPS500 list. Another
anomaly worth noting is that a number of
systems on the November 2014 HPCG
list are faster than their counterparts from
June 2015. This is due to the results being
scaled across larger parts of the respective
systems, and some of the results being
withdrawn due to code and rules changes.
In addition, the recent stagnation at the
top of the TOPS00 list, which saw almost
no change in the past several editions, can
also be observed on the HPCG results
lists.

Another interesting metric to help
compare systems is to count the number
of inversions between the TOPS00 and

1.000

0.1000 /
— Nov'15
—Jun'15

0.0100 Nov'14
— Jun'14

0.0010 / /

0.0001

Figure 2. HPCG results announced biannually since June 2014.

100.000:

10.000—H %

"1 1]

111193]

1.000 !

Pflop/s

"]
alls 1991 ® Peak
"] 1

HPL Rmax

(Pflop/s)

0.100: l

xHPCG
(Pflop/s)

| ————
 — lj]

0.010;

0.001
1 2

5 13 9 11 23 40 25 53 44 60 34 37264 189 193 461 115 440 338 349 94

Figure 3. Comparison between Peak, HPL, and HPCG performance numbers for the TOP500 machines

from November 2015.

HPCQG lists. One prominent example is
the inversion that occurs between the
Titan supercomputer and the K com-
puter. While the former is ahead on
the TOPSO00 list, the latter is faster on
the HPCG list. It is worth noting that
both systems use an expert-optimized
version of the HPL and HPCG codes,
which guarantees nearly maximized per-
formance results. Titan’s peak perfor-
mance (27 Pflop/s) is superior to K
computer (11 Pflop/s) due to the use
of GPU accelerators from NVIDIA and
HPL closely tracks the peak performance
mark. However, Titan achieves only 65%
of the peak while K computer achieves
over 93%. The reason for this drastic dif-
ference lies mainly in the interconnect
of the two machines. K uses Tofu in-
terconnect while Titan uses Cray Gem-
ini. The former is highly overprovisioned
with respect to the local node perfor-
mance while the latter, while still superior
to many commercial offerings, delivers
much smaller bytes/flop ratio. When run-
ning HPCG, the importance of fast net-
work increases even further as the con-
tribution of execution time form network
communication (collectives and neigh-
borhood exchanges) is substantial. As a
result, K computer achieves 0.46 Pflop/s
and Titan 0.32 Pflop/s. The former result
translates to over 4% of the peak perfor-
mance while the latter is at about 1%—
another indication of Tofu network’s su-
periority. Currently, it is important not

to read too much into the total inver-
sion count (163 for the November 2015
HPCG list), until the HPCG benchmark
more firmly establishes its presence in the
field and more comparisons can be made
across more comprehensive set of results.

Looking at the fraction of the peak
performance that is achieved by various
categories of systems on the HPCG list,
we see three main results. Vector ma-
chines with very high memory bandwidth
achieve about 10% of the peak perfor-
mance. Highly specialized machines with
very good interconnects achieve about
5% while more commonplace systems
have the ratio stuck at around 1%. This is
somewhat similar to the general trend on
the TOPSO00 list where systems with In-
finiBand interconnect achieve about 70%
of the peak performance and Ethernet-
based machines only attain 30%.

Figure 3 shows a comparison between
performance numbers for the peak, HPL,
and HPCG. The figure is ordered accord-
ing to the HPCG score which allows us
to see inversions with respect to the peak
and HPL numbers. Another noticeable
trend is a universal drop (by two orders
of magnitude) in performance from HPL
to HPCG.

Finally, it is also worth noting
the main performance numbers for
Tianhe-2, the world’s largest supercom-
puting system. Its peak performance rate
is 55 Pflop/s, and the HPL benchmark
achieves about 62% of that number

at 34 Pflop/s. At the other end of the
spectrum, with PDE solvers, HPCG
achieves only 0.6 Pflop/s, yet Tianhe-2
still remains the fastest result in the
world—even by this metric.

Jack Dongarra'*, Michael A. Heroux? and

Piotr Luszczek!

TInnovative Computing Laboratory, EECS
Department, University of Tennessee, Tennessee,
USA

2Scalable Algorithms Department, Sandia
National Laboratories, Minnesota, USA
*Corresponding author.

E-mail: dongarra@icl.utk.edu

REFERENCES

1. Dongarra, JJ, Luszczek, P and Petitet, A. The LIN-
PACK benchmark: past, present and future. Con-
curr Comput Pract Exp 2003; 15: 803-20.

. Heroux, MA, Doerfler, DW and Crozier, PS et al.
Improving performance via mini-applications.
[Techreport] SANDIE REPORT, SAND2009-5574,
Sandia National Laboratories, 2009.

. Bailey, D, Barszcz, E and Barton, JT et al. The NAS
parallel benchmarks. [Techreport] NAS Technical
Report ANR-94-007. NASA Ames Research Cen-
ter, Moffett Filed, CA, 1994.

. Bailey, D, Harris, T and Saphir, WC et al.
The NAS parallel benchmarks 2.0. [Techreport]
NAS-95-020. NASA Ames Research Center, Mof-
fett Filed, CA, 1995.

. Wijngaart, RV. NAS parallel benchmarks version
2.4. [Techreport] NAS Technical Report NAS-02-
007. Computer Sciences Corporation, NASA Ad-
vanced Supercomputing (NAS) Division, NASA
Ames Research Center, Moffett Field, CA, 2002.

. Knuth, DE. The Art of Computer Programming.

N

w

~

ol

[=2]

Addisona-Wesley Professional, 2nd edn. Boston:
Addison-Wesley, 1998.

. Dongarra, JJ, Eijkhout, V and van der Vorst, H An
iterative solver benchmark. Sci Progr 2001; 9:
223-31.

. Mattheij, RMM, Rienstra, SW and ten Thije,
JHM. PartialDifferential Equations, Modeling,
Analysis, Computation. Philadelphia: SIAM, 2005.

. Trottenberg, U, Oosterlee, CW and Schuller, A.
Multigrid. London, UK: Academic Press, 2001.

10. Saad, Y. terative Methods for Sparse Linear Sys-

tems, 2nd edn. Philadelphia, PA: Society for In-
dustrial and Applied Mathematics, 2003.

~

[e=]

w

doi: 10.1093/nsr/nwv084
Advance access publication 6 January 2016

mailto:dongarra@icl.utk.edu

