The Infermatinnal dosmal of Superoampotar

Editnrz-r-Cingl
aans 1. Martin
ack Dongarra

Eritorral Azsvstan

j:ll'| jl‘ll!ﬁj

The lnferstional Jeevnal of Supareommaier
Applications nvd'ﬁr';frmemme LS
|:||,g|,r||:.|||_-|:| uarierly [} Id'il'lﬁ; SLITETEET, I'.-.II
aml winter) by Tle MIT Press, Cambnoge,
MA 03142, Subscripions and adedress
changes shoukd be adddressed to MIT Fress

aurmals. 33 Havward Soeeer, Cambridpe,
MA 0D142; (617) S53- 5860, E-rud: jouroals-
ardersiei el 5.||.'I|-;rri]ui|:-1|s. are o i ved-
WIEHE VR Basis. Rates are: Inelividizals 375,00,
Inszitistians 52 10000, StudenrsBetmed $45,040,
Csicle U5, add $16.00 far titer senel
abling, Cangdians aded addienal 75 GHT.
Cierrent issues zre $35.000 Back msoes ane
Inclivzluals $26.50, [nsmutions 5300, Oyi-
aicle LS, add §5.000 pet issuie For peaslERe aml
baratling. Cammians aded addisenal 7‘#' ST
To be honored Eres, clhimms for n|u~:<i|1__q 1850105
misr b ma‘:l.-c; imn'r!w!inlf-'ll.' LI DEOeE]a o
U next published e, Prces sulsecn e
rhange withour novice. e iemanonal Sgimmal
o Sepercompufer Appleatons sod High Farfor-
mance Lempunng 1= absiracted or indesed in
the falloeimg;: ..ﬁ*,j,'.v.'.k'\a! Mrechrmes Revews, A
_.l".n.g'im' fridtellipeece Afsirarts, Combndgr Soenific
At f_.:m_F.l\.a.lu.?.\'.l.l {ratatron fedesy Chwrenr
f.'nﬁ.'ellﬂ"n‘?.lw'm-:'|1r:g. Technology (& Uemfler
Abstrarts Appdied Scvences, Frengy Dot Heasr, s
fmr.\;.lr.' carrice Adodracts, ek A, and
Hderare Litaron frded SoSmmh,

Evinng Adiresses

Sor tdndih PadsasCTiRY,

Jack Demgarea

T dntarmuationiad v of FugeompaTer Aodeatons
and Mgk Pedfoemance Competing Depe of Compaier
Sowe] TH Awees Hall Unversdy ol L ennesss:s;

Ko, T R70H- 1001

S speraal viied pu.f-wdl:l.

s 1 Mardin

T Mebsrmuatiinisd ! o Susesvmged Aoadcams
and gk Pedormmer Compeding 1BM Corparation,
Banlsieg GOL; Hudg 311 Metghboebeond B, Kingson.
NV I2400

Bosimass 0o

Sl,zl,lg.q,:“l,{'mc'n. acldiess |_'|'|.i|IF¢1.. arel mailing
B conrresponelenive slwoukd be addressed o
I Press Jourmals, 55 Flaaeard Soreet,
{'.'ll'llhliligl_'. WA Q24T

Capyright keferaation

Permsaen 4 |:.!||_|':H_-c|-|_'|:\.' articles Tar in-
sermal or perstnal use, or the nlernal o
{mnlul use of specific dienis, is gramed

Yy Ll o0 J!.'liF|1I I for users I'!"ﬁ'i.ﬂl'l'l:‘ﬂ
with |.I|.q:1!1-:l|.l:.'|'i5,!|l Cleranoe Coenler

OO Trnsaconal WM Service,
|_||mi|_||_'\-|! thar the: Fee of 3500 ix":l' armicle
copy 5 prakd divectly g SO, S0 Rasewod
Dirwve, Dianvers, MA 015925, The Loe oosde For
isers of the Transacienal Beporting Ser-
vice m SR 2720 £0,00, For rhase orm-
mimisans dat bave been granied @ phato-
copy license with GO, 2 separae system of
|_|,1:.'||r|_'||[fas f_u_'\-q,'u ATTANEY Adddbress all anhier

anequaries 1o Che Subsidiary Righes Manager,
T Mress Jowmals, 55 Haywand 54, Cam-
hriclgpe, MA 02142

lil|{_|.1ig|'|l & 10 by The Massachsens
Instituse ol “Lechinslogy

Fosiraster

Serel aielress changes 10 Tie famatona! Jouma)
ol Supsrcaeutar Apskzanno and Mol Pivmance
Crmpatiog, 55 Haywand Strevel, Canfndpe, MA
12142 Serond Clss postage paid ar Boswan,
M, ared s sl ezt effices

Markpting and Maing Lis! Rental
Acddress e to the Advertising Man-

ager, MIUT Press Journals, 55 Flansired Simee,

Cambriclge, :‘|1.-"._.IF'.E'|-CI!..:'. 617 2RE-DEAG,
o ol inlodaimisedu,

Edtoris! Board

Feirer E. Bjorstnd
Tiezinnint for [nfprmarikk
Bergen, Moraay

amiess I Blick
BN Corpesrarian
[T

Ermest B Divid=on
Irifana Llniversing
Blosmminglan, 1

[izrviel Dixeom
E. L elu Fong de Semours & Co
Wilmingion, IE

Jainy Doiff

Buthertord Appdctan Labsratary
Diddeon, Crcdordshare

l_:llil'ﬂl. l':.il'lu'l'll:ll.'ll

Cleerbael Farful
The University of Colormtbo
Peaoilder, (O

Willim Caropa
Argrnne Maional Laboratory
.l"aI‘!_'IIIII"II_'. Il

A G Hey
Liniversity af Smnhampinn
Engebancl

Michaiel Henth
Beckman Insiniae
Upniversity al Hlinsais
Urfam, [L

Rl Hempel
LMl
LTy

'|'|'|||L.,||'|_|:||||:\.
Llgnversly aof Rerms,
Renires, Friree

Avithosy Jans=on
Frimeeion Unnersaty
Frireetan, M

Dhernners Jespeersan
MoASAAmes Resarch Cenler
Malfen Fiekl, A

Ll Jodmsca
Universny of Flousion
Honisran, Tx

Lemmart Johmssom

Thinking Machines Corporsion
arnd Harvard Lllli\l'l"h'.il'_l'
Cambriige, MA

D] K. Kahanet
LIS Ol of Maval Research Asiz
Tadey, Jagwin

David E. Reves

U] Dessmisnion Llniversity and
ICASEMNASA Langley Besearch Cenner
Hampaon, YA

[hoamas AL kacbens
Callice of Enengy Reszarch
Washingon, [0

Aok Laon
Standord University
Sqanbard, O

J[ill I, Mesina
'I|it1l:i1_||; Machines Corparaian
Cambrelge, M

Ceerard Menrant
Cepnres d Frisles de Limeil-Valenion
Villeneuse-50, Cetirges, France

Anna Magurney
Lignversity af s hsens
Ambeersi. MA

Remneth W, Neves p
By Coampualet S
Sk, WA

S W, D

Chregoan Lot Instiune
of Brence & Technodogy
Portlanel, OF

Yarshier €y
'|_.||':|.|'I"5.i.l:!¢' oo 1:&.!«"3
Likyer, Japsin

4-::I:.|| F. Biganati
Favid SarnalT Besearch Cenmter
Trrmnctan, &

Y Bobern
Eeole Neanale Supericure de Lyan
Lywm, Franoe

Carry H. Redrigue
Lawrerwe Livenmoss
Matioaal Labswratory
| svermaare, CA

|k Bust
Innversny of Wistonsm-Madison
walisom, Wl

Kokt 5, Schiciles
RIACSMNARY Ames Resmach Center
soffen Fiekl, CA

4;1.1|:.n A, Sethm
Iniversay of Calilomia, Berkehey
|'||_'|k|_-||_':f. [

Heomrst Jimon

Coanpuaier Soences Darporiian'
MASA Ames Rescardh I:I:E'Il.ﬂ'."l'
Maofbeie Fiekl, CA

Il".l||_|||_|||_'! Skjellum
Missraaggn atale Unncrsaly
Missrsappi State, M3

Aadondm Siocka
Clak Kidge Mo Labeaaesy
Ok Ridge, TN

Hoobwert G, Vinpn
Mational Soence Founcatkmn
".*.'::-:I':ingmu.. IH:

THE INTERNATIONAL JOURMNAL OF

SUPERCOMPUTER APPLICATIONS
AND HIGH PERFORMANCE COMPUTING

SPECIAL ISSUE
MPI: A MESSAGE-PASSING INTERFACE STANDARD

The standard, called the Messagpe Passig latecbace (MPL), provides a com-
maon interfhce for dstabared ooy concirment computers and networks
of workstations, MPL fupcaonaliuy imehades poini-to-poiniand collective
comenmunication roulings, aswell as support Tor prosess prinips, COmmuna-
tion contexts, and apphcaion wpokogies, While making use of new ideas,
the MP1 standard is based largelvon currene prnive suehas Expless,
PWA, RS2 Vertex, ared

The maip-dvantages nfestablishing a message passing interface are porta
biliy arid-ease ol use; a sandard (bomessage passing is a key component in
buileing & nmabrrent computing environitent mn witnch apphications, doft-
ware Jlitraries, and fools can be s pare oty poited berween ditferent
misthines, Furthermaore, the delinitiop ofustandard provides veodors with
a clegrly defined set of roatines that they can implement efbwiently, of

in somecases provide ardware or wslevel system supportfor aberely
enhancing stalabaling

The MPI standardization effort invabved about Gl-pesple from ™30 organiza-
tions, mainly from the Umted Staes and Europe. Mot o the major vendors
of concurrent computers have been invelved i MEPL along with vesearchers
From universities, government laboratories and industry, MPDis irteneled o
be a standard message passng interface for applications running on MIMD

distritated memory concurrent computers and workstation networks.

VOLUME 8 NUMBER 3/4
FALL/WINTER 1994

B UHETpeiN () St ERES: O Seh [S e 2 e Tt e)

e e o L

CONTEMNTS
Acknowledgments
Preface

1 Introduction to MPT

I

1.1

2.6
25,
2.4

Cwverview and Cooals

Whao Should Use This Standard®

What Platforms Are Targets Fo Implementation?
What Iz Included in the Standard?

What Is Not Included in the Stndard?
Chrrganization of This Decument

Terms and Conventions

Decument Notation

Procedure Specification

Semantic Terms

Data Types

241 Opaque Objects

242 Array Arguments

243 Statc

244 Named Constants

24.5 Choice

240 Addresses

Language Binding

2.5.1 Fortran 77 Binding Issues

252 C Binding lssues

Processes

Error Handling

Implementation [ssues

281 Independence of Basic Runtime Routines
282 Interaction with Signals in POSIX

15

167

1ho)
154
171
171
172
17

172

175
176
177
i)
178
gt
174
174
179
179
| =0
121
141
182
153
%
124

4 Point-to-Point Communication

A
3.2

3.3

3.8
3.9
310
311
. I

315

Introduction

Blocking Send and Receive Operations
.21 Blocking Scnd

222 Message Data

323 Messape Envelope

424 Blocking Receive

525 Rewrn Stalus

Data Type Matching and Data Conversion
331 Type Matching Rules

3.5 Data Conversion

Communication Modes

Semantics of Pont-to-Point Commumcalion
Biffer Alloscanon and Usage

56,1 Model Implementation of Buffered Mode
Monblocking Communication

%.7.1 Communication Oljects

2,72 Communication Initiaonon

ES

4.7.% Communication Completion
274 Semantics of Nonblecking Communications
375 Multple Completions

Probe and Cancel

Persistent Communication Requests
Send-receive

Null Processes

Derived Datatypes

2121 Daarvpe Constrclors

5122 Address and Exent Functions

5123 Lowerbound and Upper-bound Markers
%.1%4 Commit and Free

3,125 Use of General Datatypes in Communication
2196 Correct Use of Addresses

3.12.7 Examples

Pack and Unpack

4 Caollective Communication

4.1
4.2
1.5
4.4

4 5

4.6

Introdoction and Overview

Commuanicator f"ugumnm

Barrier Synchronization

Broadeast

4.4.1 Example vsing MPLBCAST

Lrather

4.51 Fxamples using MEILGATHER, MPIGATHERY
Scatter

185
154
186
| 5
137
158
189
191
152
192
195
197
201
205
206
206
2
20s
211
214
214
221
225
229
51
231
253
241
243
245
246
244
254
258

267
967
270
2710
270
2n
271
274
250

4.6.1 Examples using MPI_SCATTER, MPILSCATTERV 283

4.7 Gatherto-All 285
4.7.1 Examples nsing MPILALLGATHER. MPI_ALLGATHERY 2HT
4.4 All-to-All Scatter /Gather 2ay
4.4 Clobal Reduction Crperations 250
491 Reduce 200
402 Predefined Beduce Opervaticns 291
4.9.5 MINLOC and MAX L 205
494 User-Defined Operations a7
495 All-Reduce 301
4,10 Recdice-Scarter S0
4.11 Scan 303
4.11,1 Example using MPI_SCAM 04
4.1% Correctness 05
Groups, Contexts, and Communicators 311
8.1 Introduction 311
5.1.1 Feamres Needed to Support Libraries 311
5.1.2 MPI's Support for Libraries 312
52 Basic Conceps 414
521 Groups A4
222 Contexts a1h
523 Inra-Communicators 35
544 Predefined Intra-Commuomicalon 316
5.5 Group Management 516
551 Group Accessors 516
5532 Group Constructors 518
535 Group Destrictors 322
54 Communicator Management Y
54l Communicalor Accessors 322
542 Communicator Constructors 524
4.5 Communicator Destractars 327
5.5 Motvaung Examples FEE
551 Cuwrrent Practce #1 398
5.2 Current Practice #2 329
555 (Approgimare) Current Practice (3 3249
i.5.4 Example #4 50
555 Libwary Example #] A51
6.5.6 Library Example #2 A55
A0 Inter-Communication A3h
6.1 Inper-Commuenicalor ACcessors 137
G.6.2 Inter-Communicator Operations 35K
563 Inter-Communication Examples 341

5.7 Caching 548

5.7.1 Funcdonality 344

5.7.2 Auributes Example 355

5.8 Formalizing the Loosely Synchronons Model 455
.51 Basic Statements 555

B2 Models of Execution 350

i Process Topologies AT
6.1 Inoroduction any
6.2 Virmal Topologies 358
6.3 Embedding in MPI 3454
fi.d Owerview of the Functions 2549
6.3 Topology Constructors A0
f.5.1 Cartesian Constructor A6

A.5.2 Cartesian Convenience Function; MPLDIMS_CREATE a6l

(.59 General (Graph) Construcior Al

6.53.4 Topology Inquiry Functions 63

(.55 Cartesian Shift Coardinanes S67

6.53.6 Partitioning of Cartesian structures S8

5.5.7 Lowlevel Topology Functions i)

6.6 An Appheation Example 372

7 MPI Environmental Management 373
7.1 Implementation Informartion 373
7.1.1 Environmental Inguiries 37a

7.2 Error Handling Y]
7.5 Error Codes and Classes aTh
7.4 Timers ek
7.5 Starup A0

& Profiling Interface 2H3
8.1 Requirements 85
B2 Discussion SH3
8.3 Logic of the Design Asd
231 Miscellancous Control of Profiling 354

#.4 Examples 555
g.4.1 Profiler Implementation 355

#.4.2 MPI Library Implementation HHO

243 Complications 87

#.5 Multiple Levels of Interception HHE
Bibliography 3849

A Language Binding 194
Al Introduction 505
A Defined Constants for © and Fortan 593

o)

T

A CBindings for Pointto-Foint Communication

Ad CBindings for Collective Communication

A% CBindings for Groups, Contexs, and Communicanors
A C Bindings for Process Topologies

AT C Bindings for Environmental Inquiry

AR C Bindings for Profiling

Al Forwan Bindings for Point-to-Point Communication
A0 Forwran Bindings for Collective Communication
A1 Fortran Bindings for Groups, Contexs, cic.

A12 Fortran Bindings for Process Topolagies

A3 Fortran Bindings for Environmental Inquiry

A04 Fortran Bindings for Profiling

307
)
101
404
403
4014
4014
40H
4110
414
413
414

ACKNOWLEDGMENTS

The echnical development was carried out by subgroups, whose work was re-
viewed by the full committee. During the periced of development of the Message

Fassing Interface (MPD, many people served in positions of responsibility and
are listed below

v [ack Dongarra, David Walker, Conveners and Meeting Chairs
Ewing Lusk, Bob Knighten, Minutes
Mare Snin, William Gropp, Ewing Lusk, Pointwo-Point Communicalions
Al Gedst, Mare Snir, Steve Oteo, Collective Communications

Steve Oua, Edito

]
L]
[]
L]
[]
L]
[]
L
-

Folf Hempel, Process Topologics

Ewing Luzsk, Language Binding
Willtam Gropp, Eovironmental Management

James Cownie, Prafiling

Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Lictleficld, Mark Sears,
Crroups, Contexis, and Communicalors

Steven Huss-Lederman, Inital Implementaton Subset

The Fllowing list includes some of the active partcipants i the MP| process

noel mrentioned above.

Ed Amderaon
Eontt Berrvman
Jim Freenes
Lrarel Frve
[esliee Hart
Alex Ho

James Kaohl
Perer Madams

Charles Mosher

Paul Pierce
Ereh Schikuts
Raobert 1I..I'ligl_

Robert Bablb
Eob Bjornsan
Wince Fernando
lan Glendinning
Tom 'I'I.;||_||'_||:

C.T. Howard He
Snsan Kranss
Alan Mainwaring
Ihime Mazgeit
Sanjay Ranka
.-'|.r|'|h'.|._i Sangrh
ennis Weeks

Joe Baron
Mathan Doss
Sam Fincherg
Al Greenherg
Dan Heller
Crary Howell
15515 f.{-:lr:.'
Cliver MeBavan
Peter Pachecos
Peter Rigsbee
Alan Susman
Swephen Whear

Erae Barszce
Anne Elster

Jon Flowe:

Eobwert Flaarrisan
Tom Henderson

Jokun Bagenym

Arthur Maccabe
Phul Mebanley
Hewward Palmer
Areh Bobasan
Hohert Tomlinson

Steven £enith

I SUPERCOMPUTER APPLICATIGHS

The University of Tennessee and Oak Ridge National Laboratory made the
draft available by anonymous FTF mail servers and were insprumental in dis-
tributing the document.

This work was supported in part by ARPA and NSF under grane ASC-55 LS50,
the Mational Science Foundation Science and Technology Center Cooperative
Agreement Mo, COR-B800615, and by the Commission of the European Com-
munity through Esprit project P6643 (PPPL).

PREFACE

Jack Dongarra

The Mesage Passing Interface effort began in the summer of 1991 when a
small group of rescarchers started discussions al a mounlam relreat in Ausira,
O of that discussion came a Workshop on Standards for Message Passing in a
Distributed Memory Envirconment held on April 20-50, 1992, in Williamsburyg,
Virginia, Al this workshop the basic features essendal to a standard message-
passing interface were discussed, and a working group established 1o contnue
the standardization process. More formal meetings and discussions began in
January 1995 and continued with meetings every six weeks with discussions via
g=mail. The MPI Standard was completed in March of 1994, The MPI effort
involved abour B people from 40 arganizatons, mainly from the United States
and Europe. Most of the major vendors of concurrent computers were involved
in MPI, along with researchers from universities, povernment lalocatories, and
indusiry,

Thizs citort defines the syniax and semantics of a core of hbrary routines
useful 1o a wide range of users writing portable message-passing programs in
Fortran or 5. The MPI effort was conducted in a similar spivit 1o the E[jgh-
Performance Fortran Forum {(HPFF).

MPI provides parallel hardware vendors with a clearly defimed base set of
routines that can be efficiently implemented. As a result, hardware vendors
can build upon this collection of standard low-level routines 1o create higher
level routines for the distnbuted-memory communication environments sup-
plied with their parallel machines, MPI provides a simple-to-use portable inter
face for the basic user, vet is powerful enough to allow programmers to use the
high-performance message-passing operations available on advanced machines,

As an effort 1o create a “true” standard for message passing, rescarchers
incorporated into MP] the most useful features of several svstems, rather than
choosing one svstem to adopt as a standard. Features were used from systems by
IBM, Intel, nCUBE, PVM, Express, P4, and PARMACS, The message |.:'il.il'-:l.1.|i|_.{Irl,
wi believe, will be attractive because of its wide portability and can be used in

The .I'lll'l"i"u?\-'!l.'ﬁﬂr'.'!_.':':".ﬂlln! af ‘I‘Iulh'."l'l:ll.'rl':lhl'u'." ."IIDII.I\.'lllll'.'.'.l\.u. ard Hiph |"|r.l_|l.'.l\.'.11.|.l\.u.r r..I'IA.'Il.lIJI'JrIJ:_ Wolunne B Mo, 3594,
Fall Winter 19584, pp. L67=168. (@) 1994 Massachusens Tnstimwane of Technelogy

communications for distributed-memory and shared-memory multiprocessors,
networks ol workstations, and any combination of these elementz, The paradigm
will not be made ohsolete by increases in network speeds or by architectures com-
bining shared and distributed-memory components. As this standard is printeed,
we have implementations of M@ on varous platforms with more expected in
the months to come.

MPL operated on a very tight budget (in reality, it had no budget when the
first mecting was announced). ARPA and NSF have supported research arvarions
institutions and have made a contribution wward ravel for the U5, academics,
Support for several European participants was provided by ESPRIT.

This issue of the Journal is also available in Postscript and HTML formns
over the Internet. To retrieve the postscripe file vou can anonvmous fip o
netlib2.cs.uk.edu; od mpi; get mpireportps, The HTML form can be found
by the URL: bttp: ffuww.mes . anl gov/mpd fopi-report/mpi-report . htol. An up-io-
date list af errata for this document is being maintained. To receive a copy,
send an e-mail message 10 netlib@ornl.gov with contents: send opi_errata.ps

from mpd.

CHAPTER 1

INTRODUCTION TO MPI

1.1 Overview and Goals

Message passing is a paradigm used widely on certain classes of parallel machines,
especially those with distributed memaory, Although there are many varciatons,
the basic concept of processes communicating through messages is well under-
stoodl, Ohwer the last en vears, subziantal progress bas been made in casting
significant applications in this paradigm. Each vendor has implemented its own
varianl. More recently, several svstems have demonsirated that a message-passing
system can be efficiently and portably implemented. It is thus an appropriace
rme o v o define both the svntax and semantics of a care of hbwary roulines
that will be usetul o a wide range of users and efficiently implementable on a
wide range of compulers,

In designing MPl we have sought to make use of the most attractive features
of & number of exizting mesage-passing svstems, rather than selecting one of
them and adopting it as the standard. Thus, MP| has been strongly influenced by
work al the IBM T, [. Waison Rezearch Center [1, 2], Intel’s WX /2 [23], Express
[22], nCUBE's Vertex [21], p4 [7, 6], and PARMACS [5, 8]. Other important
contributions have come from Zipeode [24, 25], Chimp [14, 15], PVM [4, 11],
Chameleon [19], and PICL [18].

, The MPI standardizaion effor involved about 60 people from 40 organica-
tons mainly from the United States and Europe. Most of the major vendors of
concurrent computers were invoelved in MPI, along with researchers from umi-
versities, government laboratories, and industry. The standardization process
Began with the Workshop on Standards for Message Pazssing in a Disribured
Memory Envirenment, sponsored by the Center for Besearch on Parallel Com-
puting, held April 29=-30, 1992, in Williamsburg, Virginia [29]. Ar this wark-
shop the basic features essential to a standard message-passing interface were
discussed, and a working group establizhed o continue the standardization pro-
Cess,

& 1993, 1984 University of Tennessee, Knosadlle, Tennessee, Feprinted by penmission of the Universaty
al Tenneassee,

i

A preliminary drafi proposal, known as MPI, was put forward by Dongarra,
Hempel, Hey, and Walker in November 1992, and a revised version was com-
pleted in February 1993 [12], MPI1 embodied the main fratures that were
identified ar the Williamsburg workshop as being necessary in @ message-passing
standard. Since MPI1 was primarilv intended to promote discussion and “get
the ball rolling,” it focuscd mainly on point-to-point communications. MPI1
brought to the forefront a number of imporant standardization issues, but did
not incliude any collective communication routines and was not thread-sale.

In Movember 1992, a4 meeting of the MP1 working group was held in Min-
neapolis, at which it was decided to place the standardizaion process on a more
formal fosting, and 1o generally adopt the procedures and organization of the
High Performance Fortran Forum. Subcommittees were lormed lor the major
component areas of the standard, and an e-mail discussion service established For
each. In addition, the goal of producing a draft MP1 standard by the Fall of 1995
was set. To achieve this goal the MPl working group met every 6 weeks for two
days throughout the first 9 months of 1993, and presented the draflt MPI siandard
at the Supercomputing 93 conference in November 1993, These meetings and
the e-mail discussion wogether constituted the MP| Forum, membership of which
has been open 1o all members of the high performance computing community.

The main advantages of establishing a message-passing standard are porta-
bility and ease-ofuse, In a distributed memory communication environment in
which the higher level routines and /or abstractions are built upon lower level
message-passing routings the benelits of standardization are particularly appar-
ent. Furthermore, the definidon of a message-passing standard, such as thar
p:l'upm-'r_'d here, provides vendors with a clearly defined base set of rontines that
they can implement cificiently, or in some cases provide hardware support for,
therehy enhancing scalability,

The goal of the Message Passing Interface simply staled is 1o develop a
widely used standard for writing message-passing programs. As such the in-
terface should cstablish a practical, portable, efficient, and flexible standard for
IMEssIEe PAssing.

A complete list of goals follows,

» Design an application programming interface (not necessarily for compil-
ers or a system implementation library).

« Allow efficient communication: Avoid memor-lomemnory capying and
allow everlap of computation and communicaton and offload to commu-
nication co-processor, where availalile,

o Allow for implementations that can be used in a heterogeneous environ-
ment.

o Allow convenient C and Fortran 77 bindings for the interface.

s Assume a reliable communication mterface: the uzer need nol cope with
communication failures, Such Filures are dealt with by the underlying
communication subsystem.

¢ Define an interface that is not wo different from current practice, such
as VM, NX, Express, p4. etc., and provides extensions that allow greater
flexibilio.

o Define an interface that can be implemented on many vendors’ platforms,
with no significant changes in the underlving communication and system
software.

e Semantics of the interface should e language independent.

The interface should be designed to allow for thread-satery.

1.2 Who Should Use This Standard ?

This standard 1s intended for use by all those who want 1o write portalle message-
passing programs in Fortran 77 and C. This includes individnal application pro-
grammers, developers of software designed o run on parallel machines, and
creators of environments and wwols, In order o be attractive 1o this wide au-
dience, the standard must provide a simple, easy-ro-use interface for the basic
user while not semantically precluding the high-performance message-passing
operations available on advanced machines.

1.2 What Platforms Are Targets For Implementation?
The attractiveness of the message-passing paradigm at least partially stems from
its widle portability. Programs expressed this way may mn on distribured-memory
multiprocessors, networks of workstatons, and combimatons of all of these.
In addition, shared-memory implementations are possible. The paradigm will
not he made obsolete by architectures combining the shared- and distributed-
memory views, or by increases in network speeds. [t thus should he both possible
and usetul o implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or nor,
conpected by a communication network,

The interface 15 suitable for use by fully general MIMI programs, as well as
those written in the more restricted siyle of SPMD, Although no explicit support
for threads is provided, the interface has been designed so as not o prejudice
their use. With this version of MPI no support is provided for dynamic spawning
aof 1asks,

MP1 provides many features intended o improve performance on scalable
paralle]l computers with specialized interprocessor communication hardware.
Thus, we expect that native, high-performance implementations of MP@will be
provided on such machines. At the same time, implementations of MP1 on top
of standard Unix interprocessor communication protocals will provide porabil-
ity 1o workstation clusters and heterogenous networks of workstations, Several
proprietary, native implementations of MPI, and a public domain, portable im-
plementation of MPI are in progress at the dme of this writing [17, 13].

1.4 What is Included in the Standard?
The standard includes:

Poini-to-point communication

Collective operations

Process groups

Communication contexts

Process wopologics

Bindings for Fortran 77 and C
Environmental Management and inquiry
Profiling interface

1.5 What Is Not Included in the Standard?
The standard does nod specily:

¢ Fxplicit shared-memory operations

o Operations that require more operating system support than is currently
standard; for example, interrmupt-driven receives, remote execation, or ac-
tives Imessages

FProgram construction tools

Desbugring Facilities

Explicit support for threads

Support for task management

LAY funecrions

There are many feamres that have been considered and not included in this
standard. This happened for o number of reasons, one of which is the ome
constraint that was sclf-imposed in Anishing the standard, Features that are
not included can always be affered as extensions by specific implementations.
Ferhaps futnre versions of MPI will address some of these issues,

1.6 Organization of This Document
The fallowing iz a list of the remaining chapters in this document, along with a
brief description of each.

o Chapter 2, MP1 Terms and Conventions, explains notational terms and
conventions used throughout the MPI document.

o Chapter 3, Point-to-Point Communication, defines the basic, pairwise com-
rmunication subset of MPL send and receive are found here, along with many
associated funcions designed w make basic communication powerful and
efficient.

o Chapter 4, Collective Communication, defings process-group collective
communication operations. Well-known examples of this are barrer and
broadcast over a group of processes (not necessarily all the processes).

I B e 2 R

Chapter 5, Groups, Contexts, and Communicatars, shows how groups of
processes are formed and manipulated, how unigque communication con-
texts are obiained, and how the owo are bound wogether into a comminicedor,
Chapter 8, Process Topalogies, explaing a set of utility functions meant to
asgisl in the mapping of process groups (a lincarly ordered set) 1o richer
topological structures such as muli=dimensional grids,

Chapter 7, MPI Environmental Management, explains how the program-
mer can manage and make inguiries of the current MPL environmene.
These functions are needed for the writing of correet, robust programs, and
are especially important for the construction of highly portable message-
PRSSiNg programs,

Chapter 8, Profiling Interface, explains a simple nameshifling convention
that any MPlimplementation must support. One motivation for this is the
ability to put performance profiling calls into MPI without the need for
access 1o the MPI source code. The name shift is merely an interface; it
savs nothing akout how the aciueal profiling should be done and in fact,
the name shift can be useful for other purposes.

Annex A, Language Binding, gives specific syntax in Foruan 77 and C, for
all MPI lunctions, constants, and types.

The MPI Function Index is a simple index showing the location of the
precise definition of each MPI function, together with hoth C and Fortran
bindings.

CHAPTER 2

MIPI TERMS AND COMVENTIONS

This chapter explains notational terms and conventions used throughont the
MPl document, some of the choices that have been made, and the rationale
hehind those choices.

2.1 Document Notation

fationale. Throughout this document, the ratonale for the design choices
miadle in the mterface specification is set ofl in thiz lormar. Some readers
may wish to skip these sections, while readers interested in interface design
ey wanl Lo read them carefully, (End of ratienaie)

Adwice fo wsers. Throughout this document, marerial that speaks 1o users
and illustrates usage is set off in this format. Some readers may wish 1o skip
these sections, while readers interested in programming in MP1 may want
to read them carefully, (fnd of advice fo wsers.)

Adhes o |'II'|'I|'I|r.{'i'.l!.I"l|'|'|'.l?"|. Throughouwt this document, material that is primar-
ilv commentary to implementors 15 set off in this format. Some readers
iy wish o skip these sections, while readers interested in MPlimplemen-
tations may want to read them carefully. (End of adwice to imflementors.)

2.2 Procedure Specification

MPI procedures are specified using a language-independent notadon, The ar-
gumentz of procedure calls are marked as 1IN, OUT or INOUT. The meanings of
these are:

o the call uses but does not update an argument marked IN,
o the call may update an argument marked OUT,
¢ (he call both uses and updares an argument marked INOUT.

There is one special case—il an argument is a bandle o an opaque object
ithese terms are defined in Section 2.4.1), and the object is updated by the
procedure call, then the argument is marked OUT. I is marked this way even

though the handle itself is not modified—we use the OUT atrdbute o denote
that what the handle sfeences s updated,

The definition of MPI tries to avoid, to the langest possible extent, the use
of INOUT arguments, because such use i3 errorprone, especially for scalar argu-
menis,

A common occurrence for MPI functions is an argument that is used as [N
by some processes and OUT by other processes. Such argument is, syntactically,
an INOUT argument and is marked as such, although, semanaeally, ivis not used
in ane call both for input and for output.

Another frequent siteation arizes when an argument value iz needed only
by a subset of the processes, When an argument is not significant at a process
then an arbitrary valie can be passed as argument.

Unless specified otherwise, an argument of type OUT or tvpe INOUT cannaot
be aliased with any other argument passed woan MPI procedure, An example of
argument aliasing in C appears below. If we define a C procedure like this,

woid copyIntBaffer{ int =pin, int *pout, int lan)
{ dmt 1;

for (i=0; i<lom; +441) *pout++ = *pins+;

then a call o it in the following code fragment has aliased argumenis,

int ali0];
copyInotBuffer a, a+3d, T);

Although the C language allows this, such usage of MP| procedures is forbidden
unless otherwise specificd. Note that Fortran prohibins aliasing of arpomenis,

All MPI functions are first specified in the language-independent notation.
Immesdiately below this, the ANSI Cversion of the function is shown, and helow
thiz, a version of the same funclion in Foruan 77,

2.2 Semantic Terms

When discussing MPl procedures the following semantic terms are used, The
first two are usually applied to communication operations.

nonblocking [fthe procedure mav reurn belore the operation compleles, and
befare the user is allowed o recuse resources (such as buffers) specified in
the call.

blocking IF return from the procedure indicates the user is allowed to re-use
resources specified in the call.

local If completion of the procedure depends only on the local executing pro-
cess. Such an operaton does not require communicaticn with another
USET PIOCess,

non-local If completion of the operation may require the execution ol some

MPI procedure on another process, Such an operation may require com-
munication occurring with another user process.
cellective If all processes in a process group need o invoke the procedure.

2.4 Data Types
2.4.1 OQOPAQUE QBJECTS

MPI manages system memaory that is used for buffering messages and for sioring
internal representations of various MPI ohjects such as groups, communicators,
datatypes, etc. This memory is not directly accessible to the user, and objects
stored there are opague: their size and shape is not visible 1o the user, Opagque
ohjects are accessed via handles, which exist in user space, MPI procedures that
aperale on apagque oljects are passed handle arguments 1o access these objects,
In addition to their use by MPI calls for olject access, handles can participate in
awssignment and comparisons.

In Fortran, all handles have type INTEGER. In C, a different handle oype is
defined for each category of objects. These should be types that support assign-
ment and equality operators.

[Fortran, the handle can be an index o a able of opague abjects in
systemn table: in C it can be such index or a pointer 1@ the object. More bizarre
possibilities exisy,

Opague ohjects are allocated and deallacated by calls that are specific to each
object tvpe, These are listed in the sections where the objects are described. The
calls accept a handle argument of matching wpe, In an allocate call this is an
OUT argument that returns a valid reference to the object. In a call to deallocare
this 15 an INOUT argument which returns with an “invalid handle” value. MPI
provides an “invalid handle” constant for each object type. Comparisons 1o this
constant are used to st for validiy of the handle.

A call 1o deallocate invalidates the handle and marks the object for deallo-
cation. The object is not accessible 1o the uzer alter the call, However, MPI need
not deallocate the object immediately. Any operation pending (ar the time of
the deallocate) that involves this object will complete nermally; the object will
be deallocated afterwards.

An opaque object and is handle are significant only al the process where
the object was created, and cannot be ransferred to another process.

MPI provides centzin predefined opagque objects and predefined, static han-
dles 1o these objects, Such objects may not be destroyed.

Rationale, This design hides the internal representation used for MPI
data structures, thus allowing similar calls in G and Fortan, It also avoids
canflicts with the typing rules in these languages, and easily allows fumre
extensions of functicnality. The mechanizm for opague objects used here
laosely follows the POSIX Fortran binding standard.

The explicitseparating ol handles in user space, objects in system space,
allows space-reclaiming, deallocation calls to be made atappropriate painis

in the user program. If the opague objects were in user space, one would
have to e very carefinl no o go oul of scope before any pending operation
requiring that olject completed. The specified design allows an object (o
be marked [or deallocation, the wer program can then go our of scope,
and the object itself stll persists until any pending operations are complete.

The reguirement thar handles supportassignment,/ comparison is made
since such operations are common. This restrices the domain of possible
implementations. The alternative would have been o allow handles o
have been an arbitrary, opague type. This would force the introduction
of ronuines (o do assignment and comparizon, adding complexioy, and was
therefore ruled out. (End of rafionale)

Adwice fo wzers, A user may accidentally create a dangling reference by
assigning 1w a handle the value of another bandle, and then deallocating
the object associated with these handles. Conversely, if a handle variable is
deallocated belore the associated object iz freed, then the olject becomes
inaccessible {this may occur, for example, if the handle 15 a local varable
within a subrowting, and the subroutine i3 exited belore the associated
object is deallocated). It s the user’s responsibility o avoid adding or
deleting references o opagque objects, except as a result of calls thatallocane
or deallocate such objects. (End of adwviee to wsers.)

Advice to dmplemerdors, The intended semantics of opaque objects Is that
each opague objectis sepacate rom exch other; each call wallocawe such an
object copies all the information required for the object. Implementations
may avoid excessive copying by substtuting referencing for copying, For
example, a derived datatype may contain references to its components,
rather hen copies of 15 componenis; a call w MPLCOMM GROUP may
return a reference to the group associated with the communicator, rather
than a capy of this group, Insuch cases, the implementaton must maintain
reference counts, and allocate and deallocate objects such that the visible
effect s az il the objects were copied, (End of aduice fo fngdderendon,)

242 ARRAY ARGUMENTS

An MP1 call may need an argument that is an array of opaque objects, or an array
of handles, The arcay-of-handles is a regular arvav with enries that are handles
o objects of the same type in consecutive locations in the array. Whenever such
an array is used, an additional len argument is required to indicate the number
of valid entrics {unless this number can be derived otherwise). The valid encrics
are at the beginning of the aray; len indicates how many of them there are, and
need not be the entire size of the array. The same approach is followed for other
WITALY ATEUITeLE,

243 STATE

MPI procedures use at various places arguments with state types. The values of
such data tvpe are all identified by names, and no operation iz delined on them.
For example, the MPI_ERRHANDLER_SET routine has a state type argument with
values MPILERRORS ARE FATAL, MPILERRDRES RETURM, eic,

2.4.4 MAMED CONSTANTS

MPI procedures sometimes assign a special meaning o a special value of a hasic
type argument; e @49 is an integervalued argument of point-to-point commu-
nication operations, with a special wild-card value, MPLANY TAG. Such arguments
will have a range of regular values, which is a proper subrange of the range of
values of the corresponding basic tvpe; special values (such as MPLANY TAG) will
be outside the regular range. The mnge of regular values can be queried using
environmental inguiry lunctions {Chapler 7).

2.4.5 CHOICE

MPI funcrions sometimes use arguments with a choice (or union} dara tvpe. Dis-
tinct calls to the same routine may pass by reference actual arguments of different
vpes. The mechanism for providing such arguments will differ from language
to language. For Fortran, the document uses <types= to represent a choice
variable, for C2 we use [woid *),

2.4.6 ADDRESSES

Some MPI procedures use addvess arguments that represent an absolute address
in the calling program. The datatype of such an argument is an integer of the
size needed 1o bold any valid address in the execution environment.

2.5 Language Binding

This section defines the rules for MPI language binding in general and far For-
tran 77 and ANSI C in particular. Defined here are vafous object representa-
tions, as well as the naming conventions used [or expressing this standavd. The
actual calling sequences are defined elsewhere.

Itiz expected that any Fortran 90 and C++ implementations vse the Fortran
77 and ANEI C bindings. respectively. Although we consider it premature 1o
deling ather bindings o Fortran 90 and C++, the current bindings are designed
to encourage, rather than discourage, experimentation with better bindings that
might be adopted later.

Since the word PARAMETER is a keyword in the Fortran language, we use the
word "argument” 1o denote the arguments o a subroutine. These are normally
referred to as parameters in G, however, we expect that C programmers will
understand the word “argument” (which has no specibic meaning in C), s
allowing us to avoid unnecessary confusion for Fortran programmers.

double precision a
intagar b

call MPI_sendia,...}
call NPT _pend{k, ...}

Fig. 2.1 A&n cxample of calling a reutine with rmigsmatchad formal snd actual argumeants

There are several important language binding issues not addressed by this
standard. This standard does not discuss the interoperability of message passing
berween languages. Ivis fully expected that many implementations will have such
features, and that such features ave a sign of the guality of the Implementation.

2.5.1 FORTRAM 77 BINDING ISSUES

All MP1 names have an MPI_ prefix, and all characters are capitals, Programs must
not declare variables or functions with names beginning with the prefix, HPL.
This is mandated 1o avoid possible name collisions.

All MPI Fortran subroutines have a renern code in the last argument. A fow
MPI operations arc functions, which do not have the return code argument. The
return code value for suceessful completion is MPILSUCCESS. Other error codes
are implementation dependent; see Chapter 7.

Handles are represented in Fortran as INTEGERs. Binane-valucd variables are
of tvpe LOGICAL.

Array arguments are indexed [rom one.

Unless explicitlvstated, the MPLETY binding is consistent with ANSI standard
Fortran 77, There are several poinis where this standard diverges from the ANSI
Fortran 77 standard. These exceplions are consistent with common practice in
the Fortran community, In pacticelarn

o MPlidentifiers are limited o thirty, not six, significant characters.

o MPlidentifiers may contain underscores after the fivst character.

o An MPI subrouting with a choice argument may be called with different
argument types. An example 15 shown in Figure 2.1, This violates the
letter of the Fortran atandard, but such aviolation is common practice, An
alternative would be to have a separate version of MPLSEMD for cach data
Ly [,

e Although not required, it s strongly suggested that named MPI constants
(FARAMETERS) be provided in an include file, called mpif. b, On systems that
do not support include files, the implementation should specify the values
of named constants,

» Vendors are encouraged to provdde type declarations in the mpif .k file on
Fortran svetems: that support user-defined types. One should define, if
possible, the type MPILADDRESS, which is an INTEGER of the size necded

1 hold an address in the execution environment. On systems where type
definition is not supported, it is up w0 the user o use an INTEGER of
the right kind o represent addresses (e, INTEGER+S on 3 32 bit machine,
INTEGER=E on a G4 bit machine, eic.],

2.5.2 CEBINDING ISSUES

We use the ANS] C declaration format. All MPI names have an 821 prefix, de-
fined constants are in all capital letters, and defined vvpes and fnetions have one
capital letter after the prefix. Programs must not declare varables or functions
with names beginning with the prefix. ¥PI_. This is mandated 1o avoid possible
mame collisions.

The definition of named constants, function prototypes, and vpe definitions
must be supplied in an include file mpi.h,

Almast all C funetiens return an error code. The suceessiul remurn code will
be MPI_SUCCESS, but failure retarn cades are implementation dependent. A few
C functions do not return values, so that they can be implemented as macros,

Type declarations are provided for handles 1w cach category of opagque ob-
Jects. Either a pointer or an integer tvpe is used.

Array arguments are indexed from zero.

Logical f|’|E“~ are integers with value O meaning “false™ and a non-rera value
meaning “true.”

Choice arguments are pointers of type voids.

Address arguments are of MPI defined tvpe MPLAInt. This 15 defined o be
an int of the size needed 1o hold any valid address on the argen architecuore,

2.6 Procasses

An MPI program consists of autonomous progesses, executing their own code,
i an MIMD siyle. The codes executed by each process need not be identical.
The precesses communicate via calls to MPL communication primitives, Typi-
cally, each process executes in i own address space, although shared-memory
implementations of MPare possible. This doeciment specifies the behavior of a
parallel program assuming that only MPI@calls are used for communication. The
interaction of an MPI program with other possible means of communication
[e.g., shared memaory]) is nod specified,

MPI does not specify the execution model for each process. A process can
be sequential, or can be mult-threaded, with threads possibly executing con-
currently. Care has been taken to make MPI *thread-sale,” by avoiding the use
of implicit state. The desived interaction of MPI with threads is that concurrent
threads be all allowed w exeoure MPI calls, and callz be reentrant; a blocking
MPI call blocks only the invoking thread, allowing the scheduling of another
thread,

MEI does not provide mechanisms to specify the initial allocation of processes
tex an MPl computation and their binding to physical processors, It is expected

LA

that vendors will provide mechanisms 1o do so either at load time or atmn dme.
Such mechanisms will allow the specification of the initial number of required
processes, the code o be execured by each initial process, and the allocation of
processes to processors. Also, the current proposal does not provide for dynamic
creglien or deletion of processes during program execution (the tomal number of
processes is fixed), although it is intended to be consistent with such extensions.
Finally, we alwayz klenily processes according 1o their relative rank in a group,
that iz, consecutive integers in the range 0. . growpeize-1.

2.7 Error Handling

MP| provides the user with reliable message transmission. A message sent is
alwavs received carrectly, and the user does not need o check for transmission
eTrors, time-outs, or other error conditons. In other words, MP| doces not pro-
vidle mechamisms for dealing with Giluces in the communication system, 10 the
MP| implementation is built on an unreliable underlying mechanism, then it is
the job of the implementar of the MPI@ subsysiem o insulate the user from this
unreliability, or to reflect unrecoverable errors as failures. " Whenever possible,
such filures will be rellected az ervors in the relevant communication call. Sim-
ilarly, MP1 itself provides no mechanisms for handling processor failures, The
error handling fcilities described in Section 7.2 can be wsed 1o restrict the scope
of an unrecoverable error, or design error recovery at the application level.

Of courcse, MPI progeams may sl be erroneous, A program ersor can ocour
when an MPI call is called with an incorrect argument (non-existing destination
in a send operaton, buffer too small in a receive operation, eic.). This rvpe
of error would occur in any implementation. In addition, a resource error
may socur when a program exceeds the amount of available system resources
(number of pending messages, system buffers, ewe). The occurrence of this
vpe of ervor depends on the amount of available resources in the sysiem and
the resource allocation mechanism used; this may differ from system o system,
A high-quality implementation will provide generous limits on the important
resources so as o alleviate the portability problem this represents,

Almost all MPI calls return a code that indicates successful completion of
the operation. Whenever possible, MPI calls returm an error code, if an ervor
peeurced during the call, By delauly, an error derecied during the execution of
the MPI library canses the parallel computation to abort, However, MP provides
mechanizms for vzers o change this delault and o handle recoverable errors,
The user may specify that no error 15 fatal, and handle ervor codes returned
by MPI callz by himsell or berselll Alse, the user may provide bis or her own
crrorhandling routines, which will be invoked whenever an MPI call returms
abnormally, The MPL ervor handling cilities are described in Section 7.2,

Several factors limic the ability of MPI calls to return with meaningful error
codez when an ercor occurs, MPDmay not e able o detect some errors; other
errors may be too expensive to detect in normal execution mode; finally some

errors may be “catastrophic” and may prevent MPI from returning contral o the
caller in a consistent state.

Ancther zubtle issue arises because of the nature of asynchronous commu-
nications: MPI calls may initiate operations that continue asmchronously after
the call returned, Thus, the cperation may return with a code indicating suc-
cesfnl completion, vet later cause an crror exception o be mised, If there is a
subsegquent call thal relates w the same operation (e.g., a call that verifies that
an asynchronous operation hias completed) then the error argument associated
with this call will be used 1o indicate the nawre of the error. [n a few cases, the
error may occur after all calls that relate to the operation have completed, so
that no ervoc value can be wused o indicate the nature of the error {e.g., an error
in a send with the ready mode). Such an error must be reated as fatal, since
information cannet be returned for the user (o recover from i

This document does not specify the state of a computation after an erroneous
PP call baz occurred. The desired bebavior is that & relevant ermor code be
returned, and the effect of the error be localized wo the greatest possible extent.
E.g., itz highlv desirable that an erroneous receive call will not cause any part of
the receiver's memory to be overwritten, beyond the area specified for receiving
the message,

Implementations may go beyond this document in supporting in a mean-
ingful manner MP calls that are defined here to be erroncous. For example,
MP1 specities strict type matching rules between matching send and receive op-
eratons iLiz erroneous [send a loating peint variable and receive an integer.
Implementations may go beyond these wpe matching rules, and provide auto-
malic ype conversion in such situations. [t will be helpliel to generate warnings
for such nonconforming behavior.

2.8 Implementation Issues

There are a number of arcas where an MPl implementation may interact with
the operaling environment and system, While MPI does not mandate that any
services (such as [0 hor sigmal handling) be provided, itdoes strongly sugrest the
behavior to be provided if those services are available, This is an important point
in achicving portability across platforms that provide the same set of services.

2.82.1 INDEFPEMDENCE OF BASIC RUNTIME ROUTIMES
MPI programs require that library routines that are part of the basic language
environment {such as date and erize in Fortran and printf and mallocin AMNSLC)
and are executed after MPI_INIT and before MPI_FINALIZE operate independently
and that their comfdetion iz independent of the action of other processes in an
MPI program.

Note that this in no way prevents the creation of library routines that provide
parallel services whose operation is collective, However, the following program

is expected to complete in an ANSI C environment regardless of the size of
MPT COMM WORLD (assuming that 170 is available al the execuing nodes).

int ranok:

MPI_Initl arge, argy J;

HMPI _Comn_rank(HPI_COMM_WORLE, krank 1;

if {rank == 0} printf{ "Starting progran‘n" };

HPI_Fipalizal);

The corresponding Fortran 77 program is also expected (o complete,

An example of what is %wef required is any particular ordering of the action
of these routines when called by several tasks. For example, MPl makes neither
requirements nor recommendations for the output from the following program
[again assuming that 170 is available at the executing nodes),

MPI _Comm_rank{ MPI_COMH_WORLD, Erank J;
printf("Dutput from task cank Bdia", rank };

In addition, calls that fail because of resource exhaustion or other error are
not considered a violation of the requirements here (however, they are required
o complete, just not o complete successtullyv),

282 INTERACTION WITH SIGMNALS IM POSIX

MP1 does not specifv either the interaction of processes with signals, in a UNIX
environment, or with other events that do not relate to MPI communication.
That iz, signals are not significant from the viewpaint of MPL, and implementors
should attempt to implement MP| so that signals are transparent: an MP| call
sispended by a signal should resume and complete after the signal is hamdled.
Generally, the state of a computation that is visible or significant from the view-
point of MP| should only he affected by MPI calls.

The intent of MP e be thread and signal safe bas a number of sulile effects,
For example, on Unix systems, a catchable signal such as S1GALEM (an alarm
sigmal) must not cause an MPI routineg to behave differently than it would have
in the ahsence of the signal. OFf course, if the signal handler issues MPI calls or
changes the environment in which the MPI routine is operating (for example,
consuming all available memory space), the MPI routine should behave as ap-
propriate for that situatoen (n particelan, in this case, the bebavior should be
the same as for a muld-threaded MP1implementation).

Asecond effect is that a signal handler than performs MPL calls muost not
interfere with the operation of MPIL. For example, an MPI receive of any tvpe that
ovcurs within a signal handler must nol cause erroneous behavior by the MPI
implementation. Mote that an implementation is permitied o prohibit the use
of MPI calls from within a signal handler, and is not required w detect such use,

It is highly desirable that MPl not usc SIGALEM, 2IGFPE, or 3IGI0. An imple-
mentation is reguired 0 clearly document all of the signals that the MPl imple-
mentation uses; a good place for this informaton iz a Unix “nae” page on ¥FLL

CHAFTER 2

POINT-TO-POINT COMMUNICATION

2.1

Introduction

Sending and receiving of messages by proceszes is the basic MPI coammunicaton

mechanizm, The basic point-to-point communication operations are send and
receive. Their use is llustrated in the example below,

#includa "mpi.h"

nain{ arge, argy)

AT

char *+argy;

1

ArES s

clhar neesags[20] ;
int myrank;
MPI_Status status;
MPI_Init{ karpc, kargw ¥
MFI_Comm_rank(MPI_COMM_WIRLD, kmyrank };
if (myrank == {} f* gode for process zaro =
1
strcpy (message, *Hella, thera'):
"’I:l_SBr.-;!.fl.r.QSt:age. sl..:'_er.i:'.ussagn}. MPT_CHAR, 1, 92, MPI_CDMM_WORLDY

}

alse fv code for process oneo
MFI_Recvi{message, 20, WPI_CHAR, O, 99, MPI_COHM_WORLD, Estatus);
priotf|"roceived :As:\n", messagel;

3

MFPI _Fipalizaf);:

In this example, process zero (myrank = 0) sends a message 1o process ane

using the send aperation MPILLSEND. The operation specifies a send buffer in
the sender memory from which the message data is taken. In the example above,

the

send bulfer consisis of the storage containing the variable message in the

memory of process zero, The location, size, and type of the send buffer are
specified by the first three parameters of the send operation. The message sent
will contain the 13 characters of this variable, In addition, the send operation
associates an envelope with the message. This envelope specifies the message
destination and contains distinguishing informaton that can be used by the
receive operation o select a particular message. The last three parameters of
the send operation specify the envelope for the message sent.

Process onc (myrank = 1} receives this message with the receive operation
MPI_LRECY. The message to be received is selected according to the value of
its envelope. and the message data is stored into the receive buffer. In the
example above, the receive buffer consists of the storage containing the string
message in the memory of process one. The first three parameters of the receive
operation specily the location, size, and type of the receive buffer, The next three
parameters are used for selecting the incoming message. The last parameter is
used o return information on the message just received.

The next sections describe the blocking send and receive operations. We dis-
cuss send, receive, blocking communication semantics, type matching require-
ments, type conversion in heterogeneous environmenis, and more general com-
munication mades, Nonblocking communication is addressed next, followed by
channellike constructs and send-receive operations. We then consider general
datarypes that allow one o ransfer efficiently helerogeneous and noncontigu-
ous data. We conclude with the description of calls for explicit packing and
unpacking of messages,

3.2 Blocking Send and Receive Operations
3.2.1 BLOCKING SEND

The syntax of the blocking send operation is given helow.

MPI_SEND{buf, count, datatype, dest, tag, comm)

[baaf imitial address of send bulfer (chaoice)

[caunt nuwmber of elements i send boffer (nonnegative
i1||_|_'gq:|':|

[datatype datarype of sach send boffer clement (Qandle)

[dest rank of destinaiion [i.|11¢:g|'1'}

[tag ncssage g (inleger)

[coamm conmmaenicikor {handle)

int MPI_Send{wvoid* buf, int count, MPI Datatype datatype, int dest, iot tag,
HPI Comm Cofm)

HFI_SERD(EUF, COUNT, DATATYFE, DEST, TAG, T0MM, IERROR)
<typar BUF{*)
INTEGER DOUNT, DATATYPE, DEST, TAG, COHH, IEAROE

The blocking semantics of this call are described in Section 3.4,

