
HPCG Benchmark:
a New Metric for Ranking High Performance Computing Systems∗

Jack Dongarra† Michael A. Heroux‡ Piotr Luszczek§

January 14, 2015

Abstract

We describe a new high performance conjugate gra-
dient (HPCG) benchmark. HPCG is composed of
computations and data access patterns commonly
found in scientific applications. HPCG strives for a
better correlation to existing codes from the com-
putational science domain and be representative of
their performance. HPCG ismeant to help drive the
computer system design and implementation in di-
rections that will better impact future performance
improvement.
Keywords: Preconditioned Conjugate Gradient,

Multigrid smoothing, Additive Schwarz, HPC
Benchmarking, Validation and Verification

1 Introduction

Many aspects of the physical worldmay bemodeled
with Partial Differential Equations (PDEs) and lend
a hand to predictive capability to aid the scientific
discovery and engineering optimization. The

∗This research was supported by the U.S. Department of
Energy through award number 14-1589.
†Department of Electrical Engineering and Computer

Science, University of Tennessee, Knoxville, USA; Computer
Science and Mathematics Division, Oak Ridge National
Laboratory, USA; School of Mathematics and School of
Computer Science, University of Manchester, UK
‡Scalable Algorithms Department, Sandia National

Laboratories, USA
§Department of Electrical Engineering and Computer

Science, University of Tennessee, Knoxville, USA

HPCG benchmark is used to test an HPC machine’s
ability to solve these important scientific problems.
To that end, the primary scope of the project is
to measure the execution rate of Krylov subspace
solvers on distributed memory hardware. In doing
so, HPCG aims to increase the prominence of sparse
matrix methods and put them on an equal footing
with other benchmarks of high end machines.
Over the years, the field of iterative methods

has grown in significance, and today it offers a
wide range of algorithms that form the backbone
of non-linear and differential equation solvers.
HPCG aims to tackle the complexity of the field
by offering a simple test that represents the
performance characteristics of these algorithms.
In particular, the Conjugate-Gradient algorithm
and a symmetric Gauss-Seidel preconditioner were
chosen for measurement and they are used to solve
the Poisson differential equation on a regular 3D
grid discretized with a 27-point stencil.
The High Performance Conjugate Gradient

(HPCG) benchmark [1] is a tool for ranking
computer systems based on a simple additive
Schwarz, symmetric Gauss-Seidel preconditioned
conjugate gradient solver. HPCG is similar in its
purpose to High Performance LINPACK (HPL) [2]
currently used to rank systems as part of the
TOP500 project [3], but HPCG is intended to better
represent how today’s applications perform.
HPCG generates a regular sparse linear system

1

that is mathematically similar to a finite element,
finite volume or finite difference discretization
of a three-dimensional heat diffusion equation
on a semi-regular grid. The problem is solved
using domain decomposition [4] with a conjugate
gradient method that uses an additive Schwarz
preconditioner. Each subdomain is preconditioned
using a symmetric Gauss-Seidel sweep.
The High Performance LINPACK (HPL) bench-

mark [2] is one of the most widely recognized and
discussedmetric for ranking high performance com-
puting systems. When HPL gained prominence as
a performancemetric in the early 1990s there was a
strong correlation between its predictions of system
rankings and the ranking that full-scale applica-
tions would realize. Computer system vendors pur-
sued designs that would increase HPL performance,
whichwould in turn improveoverall applicationper-
formance. Presently, HPL remains tremendously
valuable as a measure of historical trends, and as
a stress test, especially for leadership class systems
that are pushing the boundaries of current technol-
ogy. Furthermore, HPL provides the HPC commu-
nity with a valuable outreach tool, understandable
to the outside world. Anyone with an apprecia-
tion for computing is impressed by the tremendous
increases in performance that HPC systems have at-
tained over the past several decades in terms ofHPL.
At the sametime,HPLrankingsof computer systems
are no longer so strongly correlated to real appli-
cation performance, especially for the broad set
of HPC applications governed by differential equa-
tions, which tend to have much stronger needs for
highbandwidthand lowlatency. This is tied to the ir-
regular access patterns todata that these codes tend
to exhibit. In fact, we have reached a point where
designing a system for good HPL performance can
actually lead to design choices that are wrong for
the real application mix, or add unnecessary com-
ponents or complexity to the system. Worse yet, we
expect the gap between HPL predictions and real
application performance to increase in the future.

Potentially, the fast track to a computer systemwith
the potential to runHPLat 1 Eflop/s¹ is a design that
may be very unattractive for our real applications.
Without some intervention, future architectures tar-
geted toward good HPL performance will not be a
goodmatch forourapplications. Asa result,weseek
a newmetric that will have a stronger correlation to
our application base andwill therefore drive system
designers indirections thatwill enhanceapplication
performance for a broader set of HPC applications.

2 Related Work

Similar benchmarks have been proposed and used
before. In particular, the NAS Parallel Benchmarks
(NPB) [5, 6, 7] includes a CG benchmark. It shares
many attributes with HPCG. Despite the wide use
of this benchmark, it has the critical design decision
that the matrix is chosen to have a random sparsity
pattern with a uniform distribution of entries per
row. This choice has led to the known side effect
that a two-dimensional distribution of the matrix
achieves optimal performance. Therefore, the
computational and communication patterns are
non-physical. Furthermore, no preconditioning
is present, so the important features of a local
sparse triangular solve is not represented and is
not easily introduced, again because of the choice
of a non-physical sparsity pattern. Although NPB
CG has been extensively used for HPC analysis, it
does meet the criteria for our target application
mix and, consequently, we do not consider as an
appropriate as a broad metric for our effort.
A lesser-known but nonetheless relevant

benchmark, the Iterative Solver Benchmark [8]
specifies the execution of a preconditioned CG and
GMRES (Generalized Minimal RESidual) iteration
using physically meaningful sparsity patterns
and several preconditioners. As such, its scope
is broader than what we propose here, but this
benchmark does not address scalable distributed

¹1018 floating-point calculations per second

2

memory parallelism or nested parallelism.
High Performance LINPACK benchmark [2] has

been a yardstick of supercomputing performance
for over 4 decades and a basis for biannual TOP500
[3] list of the 500 world’s fastest supercomputer
for over 3 decades. HPCG has a similar aim by
measuring the computation and communication
patterns currently prevalent in a vast number of
applications of computational science at multiple
scales of deployment. HPCG measures the
performance of the sparse iterative solver in order
to reward balanced system design as opposed to
stressing a specific hardware components exercised
by HPL. This has been elaborated in detail above.
The HPC Challenge (HPCC) benchmark suite

[9, 10, 1] has established itself as a performance
measurement framework with a comprehensive set
of computational and, more importantly, memory-
access patterns that build on the popularity and
relevance of HPL but adds a much richer view
of the benchmarked hardware. In comparison
to HPCG, the most differentiating factor tends
to be the focus on a multidimensional view of
the tested system that does not focus on a single
figure of merit. Instead, HPC Challenge delivers
a suite of performance metrics that may be filtered
out, combined, or singled out according to the
end user needs and application profiles. Also of
importance is the fact that HPC Challenge does not
include a component that measures sparse solver
performance directly but instead it would have to
be derived out of various bandwidth and latency
measurements performed across the memory
hierarchy and the communication interconnect.

3 Background and Goals

HPCG is designed to measure performance that
is representative of many important scientific
calculations, with low computation-to-data-access
ratios, which we call Type 1 data access patterns.
To simulate these patterns that are commonly
found in real applications, HPCG exhibits the

same irregular accesses to memory and fine-grain
recursive computations.
In contrast to the new HPCGmetric, HPL is a pro-

gram that factors and solves a large dense system of
linear equations using Gaussian Elimination with
partial pivoting. The dominant calculations in this
algorithm are dense matrix-matrix multiplication
and related kernels, which we call Type 2 patterns.
With proper organization of the computation,
data access is predominantly unit-stride and its
cost is mostly hidden by concurrently performing
computations on previously retrieved data. This
kind of algorithm strongly favors computers
with very high floating-point computation rates
and adequate streaming memory systems. The
performance issues related to the Type 1 patterns
maybe fully eliminatedwhen the codeonly exhibits
the Type 2 patterns and this may lead the hardware
designers not to include the Type 1 patterns in the
design decisions for the next generations systems.
In general, we advocate that a well-rounded

computer system should be designed to execute
both Type 1 and Type 2 patterns efficiently, as this
combination allows the system to run a broad mix
of applications and run them well. Consequently,
for a meaningful metric to test the true capabilities
of a general-purpose computer, it should stress
both Type 1 and Type 2 patterns. However, HPL
only stresses Type 2 patterns, and, as a metric, is
incapable of measuring Type 1 patterns.
Another issue with existing performance metrics

stems from the emergence of accelerators, which
are extremely effective (relative to CPUs)with Type
2 patterns, but much less so with Type 1 patterns.
This is related to the divide that exists between
massively parallel throughput workloads and the
latency-sensitive ones. For many users, HPL results
show a skewed picture relative to Type 1 application
performance, especially on machines that are heav-
ily Type 2 biased, like a machine that features accel-
erators for themajority of the computational power.
For example, the Titan system at Oak Ridge

3

National Laboratory has 18,688 nodes, each with a
16-core, 32 GiB AMDOpteron processor and a 6GiB
NVIDIA K20 GPU [11]. Titan was the top-ranked
system on TOP500 in November 2012 using HPL.
However, in obtaining the HPL result on Titan, the
Opteron processors played only a supporting role
in the result. All floating-point computation and all
data were resident on the GPUs. In contrast, real
applications, when initially ported to Titan, will typ-
ically run solely on the CPUs and selectively off-load
computations to the GPU for acceleration [12, 13].
The HPCG Benchmark can help alleviate many of

the problems described above using the following
principles:
• Provides coverage of the major communica-

tion and computational patterns: the major
communication patterns (both global and neigh-
borhood collectives) and computational patterns
(vector updates, dot products, sparse matrix-
vector multiplications, and local triangular
solves) fromour production differential equation
codes, both implicit and explicit, are present in
this benchmark. Emerging asynchronous collec-
tives and other latency-hiding techniques can be
explored in the context of HPCG and aid in their
adoption and optimization on future systems.

• Represents a minimal collection of the major
patterns: HPCG is the smallest benchmark code
containing these major patterns, while at the
same time representing a real mathematical
computation (which aids in Validation and
Verification efforts).

• Rewards investment in high-performance
of collectives: neighborhood and all-reduce
collectives represent essential performance
bottlenecks for our applications that can benefit
from high-quality system design. Improving
the performance of HPCG will improve the
performance of real applications.

• Rewards investment in local memory system
performance: the local processor performance
of HPCG is largely determined by the effective

use of the local memory system. Improvements
in the implementation of HPCG data structures,
compilation of HPCG code, and the performance
of the underlying system will improve HPCG
benchmark results and real application perfor-
mance, and will inform application developers
on new approaches to optimizing their own
implementations.
Any newmetric we introduce must satisfy a num-

ber of requirements. Two overarching goals are:
1. Accurately predict system rankings for target

suite of applications: the ranking of computer
systems using the new metric must correlate
strongly to how our real applications would
rank these same systems.

2. Drive improvements to computer systems to
benefit relevant applications: the metric should
be designed so that, as we try to optimize
metric results for a particular platform, the
changes will also lead to better performance in
the identified real applications. Furthermore,
computation of the metric should drive system
reliability in ways that help the applications.

4 CG Iteration Setup and Execution

The HPCG benchmark generates a synthetic
discretized three-dimensional partial differential
equation model problem [14], and computes
preconditioned conjugate gradient iterations for
the resulting sparse linear system. The model
problem can be interpreted as a single degree of
freedomheat diffusion equationwith zero Dirichlet
boundary conditions. The PDE is discretized with
a finite difference scheme on a 3D rectangular grid
domain with fixed spacing of the nodes.
The global domain dimensions are

(nx ×Px)×(ny ×Py)×(nz×Pz) where nx ×ny ×nz
are the local subgrid dimensions in the x , y and
z dimensions, respectively, assigned to each MPI
process. The local grid dimensions are read from
the data file hpcg.dat, or could also be passed
in as command line arguments. The dimensions

4

Algorithm 1: Preconditioned Conjugate
Gradient algorithm used by HPCG.

~p0←~x0, ~r0←~b−A~p0
for i=1,2, to max_iterations do

~zi←M−1~ri−1
if i=1 then

~pi←~zi
αi←dot_prod(~ri−1,~zi)

else
αi←dot_prod(~ri−1,~zi)
βi←αi/αi−1
pi←βi~pi−1+~zi

αi←dot_prod(~ri−1,~zi)/dot_prod(~pi ,A~pi)
~xi+1←~xi+αi~pi
~ri←~ri−1−αiA~pi
if ‖~ri‖2< tolerance then

STOP

Px × Py × Pz , constitute a factoring of the MPI
process space that is computed automatically in the
HPCG setup phase. We impose ratio restrictions on
both, the local and global x , y, and z dimensions,
which are enforced in the setup phase of HPCG.
HPCG then performsm sets of n iterations, using

the same initial guess each time, wherem andn are
sufficiently large to test the system resilience and
ability to remain operational. By doing this, we
can compare the numerical results for “correctness”
at the end of each of the m sets. A single-set
computation is shown in Algorithm 1.
The setup phase constructs a logically global,

physically distributed sparse linear system using a
27-point stencil at each grid point in the 3D domain
such that the equation at point (i,j,k) depends on
the values at its location and its 26 surrounding
neighbors. The matrix is constructed to be weakly
diagonally dominant for interior points of the

global domain, and strongly diagonally dominant
for boundary points, reflecting a synthetic con-
servation principle for the interior points and the
impact of zero Dirichlet boundary values on the
boundary equations. The resulting sparse linear
system has the following properties:
• A sparse matrix with 27 nonzero entries per row

for interior equations and 7 to 18 nonzero terms
for boundary equations.

• A symmetric, positive definite, nonsingular
linear operator.

• The boundary condition is reflected by
subtracting 1 from the diagonal.

• A generated known exact solution vector with
all values equal to 1.0.

• Amatching right-hand-side vector.
• An initial guess of all zeros.
The central purpose of defining this sparse linear

system is to provide a rich vehicle for executing a col-
lection of important computational kernels. How-
ever, the benchmark is not about computing a high
fidelity solution to this problem. In fact iteration
counts are fixed in the benchmark code and we do
not expect convergence to the solution, regardless
of problem size. Wedouse the spectral properties of
both the problem and the preconditioned conjugate
gradient algorithm as part of software verification.
The CGmethod allows the code to maintain the

orthogonality relationship with a short three-term
recurrence formula. This in turn, allows the
linear system data to be scaled arbitrarily without
worrying about the excessive growth of storage
requirements for the orthogonal basis.
The regularity of the discretization grid of the

model PDE gives plenty of opportunity to optimize
the sparse data structure for efficient computation.
There are known results of how to optimally
partition and reorder the mesh points to achieve
good load balance, small communication volume,
and good local performance. We feel that allowing
such optimizations would violate the spirit of the
benchmark and trivialize its results. Instead, we

5

insist that the knowledge of the regularity of the
problem should not be taken into consideration
when porting and optimizing the code for the user
machine. The discretization should be treated as
a generic mesh without any properties known a
priori. In exchange, the users may take advantage
of the simplicity of the mesh to find problems
with their optimizations since many aspects of the
optimal solution are known in closed-form and can
serve as a useful debugging tool.
In a similar fashion, we prohibit the use of

knowledge of the problem when performing the
CG iteration. But we recognize that the users may
wish to use the knowledge of the spectrum of the
discretization matrix to estimate the accuracy of
their optimized solver.

5 Elements of Multigrid and Coarse Grid Solve

The Multigrid method is considered by many as be-
ing ideally suited for elliptic PDEs but by varying the
discretization it is possible to apply successfully to a
much larger class of linear and non-linear PDEs [15,
p.2]. As described so far, HPCGdoesdirectly charac-
terize all of the computational and communication
patterns exhibited bymultigrid solvers. Specifically,
the dominant performance bottleneck at coarse
grid levels is latency rather than bandwidth that
dominates the message exchanges at the fine grid
levels and dot-products of the preconditioned CG
method. For that reason, version 2.0 of HPCG
introduced a multigrid component in the reference
code to model the behavior of multi-level methods.
The problem that we faced when introducing this
new functionality was a potential of a substantial
increase in the code complexity. To minimize
the impact of the change, we reused the existing
components and recast them in terms of commonly
used parts of a typical multigrid solver. The
smoother/solver for all of the levels of our simu-
lated geometric multigrid is Gauss-Seidel (locally)
preconditioned CG solver. The mesh coarsening
and refinement (restriction and prolongation) is

done based halving the number of points in every di-
mension and thus each coarse grid level has 8 times
as few points as the neighboring fine grid level.
Justwas the casewith the preconditionedCG, our

goal is only to provide basic components rather than
a complete a multigrid solver. Consequently, we do
not include neither the full V nor W cycles (named
after their shape in the grid mesh hierarchy) and
neitherwe performan accurate solve at the coarsest
grid level. Instead we limit the number of grid
levels to 3, which results in 256-fold reduction in the
number of grid points, which is sufficient to address
most of the bandwidth-latency bottlenecks and
expose the performance of common algorithmic
trade-offs. We also captured in this limited
implementation the prevalent recursive patterns of
code execution and the integer arithmetic required
to capture some of the mesh manipulation.

6 Validation and Verification Components

HPCG detects and measures variances from
bitwise identical computations because it is widely
believed that future computer systems will not
be able to provide deterministic execution paths
for floating-point computations. Because floating
point addition is not associative, thus we may
not have bitwise reproducible results, even when
running the same exact computation twice on the
same number of processors of the same system.
This is in contrast with many of our MPI-only
applications today, and presents a big challenge to
applications that must certify their computational
results and conduct debugging in the presence
of bitwise variability. HPCG makes the deviation
from bitwise reproducibility apparent.
To detect anomalies during the iteration phases,

HPCG computes preconditions, post-conditions,
and invariants. These are likely to eliminate a
majority of errors that might creep in when imple-
menting an optimized version of the benchmark.
The computational kernels in HPCG may be

optimized by the end user to fully take advantage

6

of the tested hardware. A reference code that
we provide is focused on portability, which may
often have negative effects on performance on
a specific system. To validate the user-provided
kernels, HPCG includes a symmetry test for the
sparsematrix multiply with discretizationmatrixA:
|x tAy−ytAx |, and for the symmetric Gauss-Seidel
preconditionerM: |x tMy−ytMx |.
A spectral test is also included in HPCG to test for

fast convergence of the CG algorithm on a modified
matrix A that is close to being diagonal. The the-
oretical framework underlying the CG solver [16]
guarantees a short and fixed number of iterations
for such matrices and the invalid optimizations
attempted by the user should violate this property.
The spectral test is meant to detect potential
anomalies in the optimized implementation related
to inaccurate calculations and convergence rate
changes due to user-defined matrix ordering.

7 Allowed and Disallowed Optimizations

Good performance results from an HPCG run
may only be achieved after hardware specific
optimizations. Unfortunately, in the reference
implementation of the benchmark, it is nearly
impossible to keep up with the hardware progress
and include the optimizations required on the con-
temporary supercomputing platforms. Instead, we
aim at simplicity of the reference implementation
and offer here a number of ideas for improving
performance for user runs.
Oneof theperformance-criticalaspectsofefficient

sparse computations is partitioning and ordering
of the mesh points. By default, HPCG uses the lexi-
cographical ordering, however the user can change
this in order to achievemore optimal results. For ex-
ample, using red-black ordering is especially benefi-
cial in the Gauss-Seidel preconditioner that is inher-
ently sequential without appropriate renumbering
of elements. The numbering scheme established
by the user before the iterations begin is carried
throughout the timed computations in user-defined

data structures and is passed to the computational
kernels that may then take advantage of the user
ordering by providing a specialized kernel.
Another likely source of improved performance

could be the use of system-specific communication
infrastructure: both the hardware and the software
that takes full advantage of the communication net-
work. The reference implementation uses a small
set of theMessagePassing Interface (MPI) functions
that are very likely toportable across awide rangeof
distributed memory systems and, if optimized, will
deliver a good portion of the optimal performance.
But the custom implementations of HPCG are
likely to contain a bigger variety of communication
options. In MPI, there is a possibility to improve
performance with various communication modes
such as one-sided, buffered, ready, or persistent.
It is also possible to use newer additions to the MPI
standard such as the neighborhood collectives [17],
which has by nowbecomemuchmore prevalent and
thus are likely to be optimized for the interconnect
hardware by the system vendors or integrators.
There of course also exists the possibility to go
beyond the MPI standard and use lower-level APIs
such as the Common Communication Interface
(CCI). This might not be an option for large code
bases but it would be feasible within the context
of HPCG where only a handful of communication
scenarios are used. We do not envision at this point
the need of using vendor-specific interfaces and
the reference implementation is restricted to the
widely implemented subset of the MPI standard.
The commonly used optimization in sparse

iterative methods is aimed at the matrix-vector
multiplication [18, 19, 20, 21]. As with other
optimizations, we opted for not including
hardware-specific code in the reference implemen-
tation and instead we provide the user with a set of
interfaces and data structures that allow the user to
easily include many of the existing implementation
of this computational kernels.
In order to maintain wide applicability of the

7

HPCG results and optimizations, we explicitly
prohibit the use of knowledge of either the sparsity
pattern of the discretization of the matrix (this
includes the symmetry of the discretization),
its structure and connectivity pattern, nor the
dimensionality of the domain. In our view, this
invites the use of generic methods for matrix
partitioning and hardware-specific optimization
of the computational kernels.
At a higher level of abstraction, the knowledge

of the spectral properties of the matrix that could
be used to artificially accelerate the CG iterations
or provide nearly optimal preconditioner. This
might strike as an artificial constrain because in
practice it is always beneficial to take advantage of
any numerical properties of the matrix. However,
for an unknown problem structure and spectrum
it is usually more costly to obtain this kind of
information rather than to perform CG iteration
barring any knowledge that can come from the
domain that originated the PDE. In a similar vein,
wedonot allow theuse of variants of theCGmethod
that completely bypass the challenging aspects
of the classic rendition of the algorithm. One
example of this would be the reordered variants
of CG [22, 23, 24, 25, 26] or pipelined CG [27].

8 Performance Results

HPCG has already been run on a number of
large-scale supercomputing installations in Europe,
Japan, and the US. It is not feasible to list them
all here for lack of space but also due to the early
nature of the results as the community is gaining
experience in running the code. Instead, we are
presenting very preliminary results from a fairly
small-scale deployment. This is presented in Fig-
ure 1 and should not be interpreted as an official for
the tested system but rather as a preliminary com-
parison between the results that can be expected
from HPCG and what is commonly reported as a
result for HPL. The figure clearly shows a number
of trends. Firstly, HPL follows relatively closely the

1 2 4 8 16 32
0

1000

2000

3000

4000

5000

6000

Peak
HPL
HPCG

Nodes (16 cores each)

G
f
o
p

/s

1 2 4 8 16 32
1

10

100

1000

10000

Peak
HPL
HPCG

Nodes (16 cores each)

G
f
o
p

/s

Figure 1: One of the early performance results from
running HPCG and HPL on up to 32 nodes or 512
MPI processes. Two version are provided: with the
semi-logarithmic scale (top) and logarithmic scale
(bottom).

peak performance of themachine – a fact well know
to the benchmarking practitioners and most HPC
experts. Secondly, HPCG exhibits performance
levels that are far below the levels seen by HPL.
Again, this hardly comes as a surprise to anybody
in the high-end and supercomputing fields and
may be attributed to many factors with the most
commonly cited one being the so called “memory
wall”. Finally, it is worth noting that despite low
absolute values, HPCG scales equally well when
compared with HPL, which might be attributed to
the custom interconnect of the tested system.

8

9 Future Work

The future work includes a thorough validation
testing of the HPCG benchmark against a suite of
applications on current high-end systems using
techniques similar to those identified in the
Mantevo project [28]. Furthermore, we plan to
fully specify opportunities and restrictions on
changes to the reference version of the code to
ensure that only changes that have relevance to
our application base are permitted.

Acknowledgments

The authors thank the Department of Energy
National Nuclear Security Agency for funding
provided for this work.
We also thank Simon Hammond, Mahesh Rajan,

Doug Doerfler and Christian Trott for their efforts
to test early versions of HPCG and give valuable
feedback.

References

[1] Jack Dongarra andMichael Heroux. Toward a
newmetric for rankinghighperformance com-
puting systems. Technical Report SAND2013-
4744, Sandia National Laboratories, 2013.

[2] Jack J. Dongarra, Piotr Luszczek, and Antoine
Petitet. The linpack benchmark: Past, present,
and future. Concurrency and Computation:
Practice and Experience, 15(9):803–820,
August 10 2003. DOI: 10.1002/cpe.728. ISSN
1532-0634.

[3] Hans W. Meuer, Erich Strohmaier, Jack J.
Dongarra, andHorstD. Simon. TOP500 super-
computer sites, 42nd edition, November 2013.
The report can be downloaded from http:
//www.netlib.org/benchmark/top500.html
(accessed 10 August 2015).

[4] Barry F. Smith, Petter E. Bjørstad, and
William D. Gropp. Domain Decomposition,
Parallel Multilevel Methods for Elliptic Partial

Differential Equations. Cambridge University
Press, Cambridge, MA, USA, 1996.

[5] David Bailey, Eric Barszcz, J. Barton,
D. Browning. R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski,
R. Schreiber, Horst Simon, V. Venkatakrish-
nan, and S. Weeratunga. The nas parallel
benchmarks. Technical Report NAS Technical
Report RNR-94-007, NASA Ames Research
Center, Moffett Field, CA, 1994.

[6] D.H. Bailey, T. Harris, W.C. Saphir, R. F. Van
der Wijngaart, A.C. Woo, and M. Yarrow.
The nas parallel benchmarks 2.0. Technical
Report NAS-95-020, NASA Ames Research
Center, Moffett Field, CA, 1995.

[7] Rob F. Van der Wijngaart. Nas parallel
benchmarks version 2.4. NAS Technical
Report NAS-02-007, Computer Sciences Cor-
poration, NASA Advanced Supercomputing
(NAS) Division, NASA Ames Research Center,
Moffett Field, CA 94035-1000, October 2002.

[8] J. Dongarra, V. Eijkhout, and H. van der
Vorst. Iterative solver benchmark. Scientific
Programming, 9(4):223–231, 2001.

[9] Piotr Luszczek, Jack Dongarra, and Jeremy
Kepner. Design and implementation of the
HPCC benchmark suite. CTWatch Quarterly,
2(4A):18–23, November 2006.

[10] Piotr Luszczek and Jack Dongarra. Analysis of
various scalar, vector, and parallel implemen-
tations of RandomAccess. Technical Report
Technical Report, ICL-UT-10-03, Innovative
Computing Laboratory (ICL), June 2010.

[11] ORNL Leadership Computing Facil-
ity. Introducing Titan — the world’s
#1 open science supercomputer, 2013.
Cited 2013 May 29, 2013. Available from:
http://www.olcf.ornl.gov/titan.

9

http://www.netlib.org/benchmark/top500.html
http://www.netlib.org/benchmark/top500.html
http://www.olcf.ornl.gov/titan

[12] Wayne Joubert, Douglas Kothe, and Hai Ah
Nam. Preparing for exascale: ORNL
leadership computing facility application
requirements and strategy. Technical Report
ORNL/TM-2009/308, Oak Ridge National
Laboratory, December 2009.

[13] ORNL Leadership Computing Facility.
Annual report 2012-2013, December 2013.
https://www.olcf.ornl.gov/wp-content/
uploads/2014/03/2013_ARv2M.pdf
(accessed 10 August 2015).

[14] R. M. M. Mattheij, S. W. Rienstra, and J. H. M.
ten Thije Boonkkamp. Partial Differential
Equations, Modeling, Analysis, Computation.
SIAM, Philadelphia, 2005.

[15] Ulrich Trottenberg, Cornelis W. Oosterlee,
and Anton Schüller. Multigrid. Academic
Press, London NW1 7BY, UK, 2001.

[16] Yousef Saad. Iterative Methods for Sparse
Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2nd
edition, 2003.

[17] T. Hoefler, P. Gottschling, A. Lumsdaine, and
W. Rehm. Optimizing a Conjugate Gradient
Solver with Non-Blocking Collective Opera-
tions. Elsevier Journal of Parallel Computing
(PARCO), 33(9):624–633, Sep. 2007.

[18] Richard Vuduc, James Demmel, and Kather-
ine Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Proceedings of
SciDAC 2005, 26-30 June 2005, San Francisco,
CA, USA, Journal of Physics: Conference Series,
volume 16, pages 521–535. IOPscience, Bristol,
UK, June 2005.

[19] Jong-Ho Byun, Richard Lin, Katherine A.
Yelick, and JamesDemmel. Autotuning sparse
matrix-vector multiplication for multicore.

Technical Report UCB/EECS-2012-215, Electri-
cal Engineering and Computer Sciences Uni-
versity of California at Berkeley, November 28
2012. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-215.html.

[20] Eun-Jin Im, Katherine Yelick, and Richard
Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. Int. J. High Perform.
Comput. Appl., 18(1):135–158, February 2004.

[21] Xing Liu, Mikhail Smelyanskiy, Edmond
Chow, and Pradeep Dubey. Efficient sparse
matrix-vector multiplication on x86-based
many-core processors. In ICS’13, Eugene,
Oregon, USA, June 10-14 2013. ACM.

[22] Jack Dongarra and Victor Eijkhout. Finite-
choice algorithm optimization inconjugate
gradients. Technical Report 159, LAPACK
Working Note (LAWN), January 2003.

[23] A. Chronopoulos and C. Gear. s-step iterative
methods for symmetric linear systems.
Journal of Computational and Applied
Mathematics, 25:153–168, 1989.

[24] E. D’Azevedo, V. Eijkhout, and C. Romine.
Lapack working note 56: Reducing com-
munication costs in the conjugate gradient
algorithm on distributed memory multi-
processor. Technical Report CS-93-185,
Computer Science Department, University
of Tennessee, Knoxville, 1993.

[25] V. Eijkhout. Lapack working note 51: Qual-
itative properties of the conjugate gradient
and Lanczos methods in a matrix framework.
TechnicalReportCS92-170,ComputerScience
Department, University of Tennessee, 1992.

[26] G. Meurant. Multitasking the conjugate
gradient method on the CRAY X-MP/48.
Parallel Computing, 5:267–280, 1987.

10

https://www.olcf.ornl.gov/wp-content/uploads/2014/03/2013_ARv2M.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2014/03/2013_ARv2M.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-215.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-215.html

[27] Pieter Ghysels and W. Vanroose. Hiding
global synchronization latency in the pre-
conditioned Conjugate Gradient algorithm.
Technical Report 12.2012.1, Intel Labs Europe,
December 2012. Presented at PRECON13,
June 19-21, 2013, Oxford, UK.

[28] Michael A. Heroux, Douglas W. Doerfler,
Paul S. Crozier, James M. Willenbring,
H. Carter Edwards, Alan Williams, Mahesh
Rajan, Eric R. Keiter, Heidi K. Thornquist,
and Robert W. Numrich. Improving per-
formance via mini-applications. Technical
Report SAND2009-5574, Sandia National
Laboratories, September 2009.

11

	Introduction
	Related Work
	Background and Goals
	CG Iteration Setup and Execution
	Elements of Multigrid and Coarse Grid Solve
	Validation and Verification Components
	Allowed and Disallowed Optimizations
	Performance Results
	Future Work

