Chapter 1

OVERVIEW OF HIGH PERFORMANCE
COMPUTERS

Aad J. van der Steen
Dept. of Computational Physics

Utrecht University
3508 TD Utrecht
The Netherlands
steen@phys.uu.nl

Jack Dongarra
Computer Science Department

University of Tennessee

and

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

dongarra@cs.utk.edu

Abstract

The overview given here concentrates on the computational capabilities
of the systems discussed. To do full justice to all assets of present days
high-performance computers one should list their I/O performance and
their connectivity possibilities as well. However, the possible permu-
tations of configurations even for one model of a certain system often
are so large that they would multiply the volume of this report, which
we tried to limit for greater clarity. So, not all features of the systems
discussed will be present. Still we think (and certainly hope) that the
impressions obtained from the entries of the individual machines may
be useful to many. We also omitted some systems that may be char-
acterized as “high-performance” in the fields of database management,
real-time computing, or visualization. Therefore, as we try to give an
overview for the area of general scientific and technical computing, sys-
tems that are primarily meant for database retrieval like the AT&T GIS
systems or concentrate exclusively on the real-time user community, like
Concurrent Computing Systems, are not discussed in this report. Al-

though most terms will be familiar to many readers, we still think it
is worthwhile to give some of the definitions in section 2 because some
authors tend to give them a meaning that may slightly differ from the
idea the reader already has acquired.

1. Introduction

Before going on to the descriptions of the machines themselves, it
is important to consider some mechanisms that are or have been used
to increase the performance. The hardware structure or architecture
determines to a large extent what the possibilities and impossibilities are
in speeding up a computer system beyond the performance of a single
CPU. Another important factor that is considered in combination with
the hardware is the capability of compilers to generate efficient code to
be executed on the given hardware platform. In many cases it is hard
to distinguish between hardware and software influences and one has to
be careful in the interpretation of results when ascribing certain effects
to hardware or software peculiarities or both. In this chapter we will
give most emphasis to the hardware architecture. For a description of
machines that can be considered to be classified as “high-performance”
one is referred to (Culler et al. 1998, van der Steen 1995).

2. The main architectural classes

Since many years the taxonomy of Flynn (1972) has proven to be
useful for the classification of high-performance computers. This clas-
sification is based on the way of manipulating of instruction and data
streams and comprises four main architectural classes. We will first
briefly sketch these classes and afterwards fill in some details when each
of the classes is described.

s SISD machines: These are the conventional systems that con-
tain one CPU and hence can accommodate one instruction stream
that is executed serially. Nowadays many large mainframes may
have more than one CPU but each of these execute instruction
streams that are unrelated. Therefore, such systems still should
be regarded as (a couple of) SISD machines acting on different data
spaces. Examples of SISD machines are for instance most worksta-
tions like those of DEC, Hewlett-Packard, and Sun Microsystems.
The definition of SISD machines is given here for completeness’
sake. We will not discuss this type of machines in this report.

s SIMD machines: Such systems often have a large number of pro-
cessing units, ranging from 1,024 to 16,384 that all may execute

Overview of High Performanace Computers 3

the same instruction on different data in lock-step. So, a single
instruction manipulates many data items in parallel. Examples of
SIMD machines in this class are the CPP DAP Gamma II and the
Alenia Quadrics.

Another subclass of the SIMD systems are the vector-processors.
Vector-processors act on arrays of similar data rather than on sin-
gle data items using specially structured CPUs. When data can be
manipulated by these vector units, results can be delivered with a
rate of one, two and — in special cases — of three per clock cycle
(a clock cycle being defined as the basic internal unit of time for
the system). So, vector processors execute on their data in an al-
most parallel way but only when executing in vector mode. In this
case they are several times faster than when executing in conven-
tional scalar mode. For practical purposes vector-processors are
therefore mostly regarded as SIMD machines. An example of such
systems is for instance the Hitachi S3600.

s MISD machines: Theoretically in these type of machines multiple
instructions should act on a single stream of data. As yet no
practical machine in this class has been constructed nor are such
systems easily to conceive. We will disregard them in the following
discussions.

s MIMD machines: These machines execute several instruction
streams in parallel on different data. The difference with the multi-
processor SISD machines mentioned above lies in the fact that the
instructions and data are related because they represent different
parts of the same task to be executed. So, MIMD systems may run
many sub-tasks in parallel in order to shorten the time-to-solution
for the main task to be executed. There is a large variety of MIMD
systems and especially in this class the Flynn taxonomy proves to
be not fully adequate for the classification of systems. Systems
that behave very differently like a four-processor NEC SX-5 vector
system and a thousand processor SGI/Cray T3E fall both in this
class. In the following we will make another important distinction
between classes of systems and treat them accordingly.

s Shared-memory systems: Shared-memory systems have multi-
ple CPUs all of which share the same address space. This means
that the knowledge of where data is stored is of no concern to
the user as there is only one memory accessed by all CPUs on an
equal basis. Shared memory systems can be both SIMD or MIMD.
Single-CPU vector processors can be regarded as an example of

the former, while the multi-CPU models of these machines are

examples of the latter. We will sometimes use the abbreviations
SM-SIMD and SM-MIMD for the two subclasses.

m Distributed-memory systems: In this case each CPU has its
own associated memory. The CPUs are connected by some network
and may exchange data between their respective memories when
required. In contrast to shared-memory machines the user must be
aware of the location of the data in the local memories and will have
to move or distribute these data explicitly when needed. Again,
distributed-memory systems may be either SIMD or MIMD. The
first class of SIMD systems mentioned which operate in lock step,
all have distributed memories associated to the processors. As we
will see, distributed-memory MIMD systems exhibit a large variety
in the topology of their connecting network. The details of this
topology are largely hidden from the user which is quite helpful
with respect to portability of applications. For the distributed-
memory systems we will sometimes use DM-SIMD and DM-MIMD
to indicate the two subclasses.

As already alluded to, although the difference between shared and distri-
buted-memory machines seems clear cut, this is not always entirely the
case from the user’s point of view. For instance, the late Kendall Square
Research systems employed the idea of “virtual shared-memory” on a
hardware level. Virtual shared-memory can also be simulated at the pro-
gramming level: A specification of High Performance Fortran (HPF) was
published in 1993 (Forum 1993) which by means of compiler directives
distributes the data over the available processors. Therefore, the system
on which HPF is implemented in this case looks like a shared-memory
machine to the user. Other vendors of Massively Parallel Processing
systems (sometimes called MPP systems), like HP and SGI/Cray, also
support proprietary virtual shared-memory programming models due to
the fact that these physically distributed memory systems are able to
address the whole collective address space. So, for the user such systems
have one global address space spanning all of the memory in the system.
We will say a little more about the structure of such systems in section
7. In addition, packages like TreadMarks (Amza et al. 1996) provide a
virtual shared-memory environment for networks of workstations.
Another trend that has came up in the last few years is distributed pro-
cessing. This takes the DM-MIMD concept one step further: instead of
many integrated processors in one or several boxes, workstations, main-
frames, etc., are connected by (Gigabit) Ethernet, Fiber Channel, ATM,
or otherwise and set to work concurrently on tasks in the same program.

Overview of High Performanace Computers 5

Conceptually, this is not different from DM-MIMD computing, but the
communication between processors is often orders of magnitude slower.
Many packages to realize distributed computing are available. Examples
of these are PVM (standing for Parallel Virtual Machine) (Geist et al.
1994), and MPI (Message Passing Interface, (Snir et al. 1998, Gropp
et al. 1998)). This style of programming, called the “message passing”
model has becomes so much accepted that PVM and MPI have been
adopted by virtually all major vendors of distributed-memory MIMD
systems and even on shared-memory MIMD systems for compatibility
reasons. In addition there is a tendency to cluster shared-memory sys-
tems, for instance by HiPPI channels, to obtain systems with a very
high computational power. E.g., the NEC SX-5, and the SGI/Cray SV1
have this structure. So, within the clustered nodes a shared-memory
programming style can be used while between clusters message-passing
should be used.

3. Shared-memory SIMD machines

This subclass of machines is practically equivalent to the single-pro-
cessor vector-processors, although other interesting machines in this sub-
class have existed (viz. VLIW machines (van der Steen 1990)). In the
block diagram in Figure 1.1 we depict a generic model of a vector ar-
chitecture. The single-processor vector machine will have only one of
the vector-processors depicted and the system may even have its scalar
floating-point capability shared with the vector processor (as was the
case in some SGI/Cray systems). It may be noted that the VPU does
not show a cache. The majority of vector-processors do not employ a
cache anymore. In many cases the vector unit cannot take advantage
of it and execution speed may even be unfavorably affected because of
frequent cache overflow.

Although vector-processors have existed that loaded their operands
directly from memory and stored the results again immediately in mem-
ory (CDC Cyber 205, ETA-10), all present-day vector-processors use
vector registers. This usually does not impair the speed of operations
while providing much more flexibility in gathering operands and manip-
ulation with intermediate results.

Because of the generic nature of Figure 1.1 no details of the inter-
connection between the VPU and the memory are shown. Still, these
details are very important for the effective speed of a vector operation:
when the bandwidth between memory and the VPU is too small it is
not possible to take full advantage of the VPU because it has to wait for
operands and/or has to wait before it can store results. When the ratio

Memory
! 1 ! 1 ! 1
Instr/Data Data Vector
cache cache registers
IP/ALU FPU VPU
IP/ALU: Integer processor

FPU : Scaar floating-point unit
VPU : Vector processing unit
IOP :1/O processor

Figure 1.1. Block diagram of a vector processor.

load a

load b

(@ c=ath

storec

load a

load b

® c=ath

storec

Figure 1.2. Schematic diagram of a vector addition. Case (a) when two load- and
one store pipe are available; case (b) when two load/store pipes are available.

of arithmetic to load/store operations is not high enough to compensate
for such situations, severe performance losses may be incurred. The in-
fluence of the number of load/store paths for the dyadic vector operation
c=a+b (a, b, and ¢ vectors) is depicted in Figure 1.2. Because of the
high costs of implementing these data paths between memory and the
VPU, often compromises are sought and the number of systems that
have the full required bandwidth (i.e., two load operations and one store

Overview of High Performanace Computers 7

operation at the same time) is limited. In fact, in the vector systems
marketed today this high bandwidth thus not occur any longer. Ven-
dors rather rely on additional caches and other tricks to hide the lack of
bandwidth.

The VPUs are shown as a single block in Figure 1.1. Yet, again
there is a considerable diversity in the structure of VPUs. Every VPU
consists of a number of vector functional units, or “pipes” that fulfill
one or several functions in the VPU. Every VPU will have pipes that
are designated to perform memory access functions, thus assuring the
timely delivery of operands to the arithmetic pipes and of storing the
results in memory again. Usually there will be several arithmetic func-
tional units for integer/logical arithmetic, for floating-point addition, for
multiplication and sometimes a combination of both, a so-called com-
pound operation. Division is performed by an iterative procedure, table
look-up, or a combination of both using the add and multiply pipe. In
addition, there will almost always be a mask pipe to enable operation
on a selected subset of elements in a vector of operands. Lastly, such
sets of vector pipes can be replicated within one VPU (2 up to 16-fold
replication occurs). Ideally, this will increase the performance per VPU
by the same factor provided the bandwidth to memory is adequate.

4. Distributed-memory SIMD machines

Machines of this type are sometimes also known as processor-array
machines (Hockney and Jesshope 1987). Because the processors of these
machines operate in lock-step, i.e., all processors execute the same in-
struction at the same time (but on different data items), no synchroniza-
tion between processors is required. This greatly simplifies the design
of such systems. A control processor issues the instructions that are
to be executed by the processors in the processor array. All currently
available DM-SIMD machines use a front-end processor to which they
are connected by a data path to the control processor. Operations that
cannot be executed by the processor array or by the control processor
are offloaded to the front-end system. For instance, I/O may be through
the front-end system, by the processor array machine itself or both. Fig-
ure 1.3 shows a generic model of a DM-SIMD machine of which actual
models will deviate to some degree. Figure 1.3 might suggest that all
processors in such systems are connected in a 2-D grid and indeed, the
interconnection topology of this type of machines always includes the
2-D grid. As opposing ends of each grid line are also always connected
the topology is rather that of a torus. For several machines this is not

Tolfrom
frogt-end Control Datalinesto
Processor
front-end and 1/0 processor

Processor Array

Register Plane
Interconnection Network
Data Movement Plane

Memory — o

Figure 1.3. A generic block diagram of a distributed-memory SIMD machine.

the only interconnection scheme: They might also be connected in 3-D,
diagonally, or more complex structures.

It is possible to exclude processors in the array from executing an
instruction on certain logical conditions, but this means that for the
time of this instruction these processors are idle (a direct consequence of
the SIMD-type operation) which immediately lowers the performance.
Another factor that may adversely affect the speed occurs when data
required by processor i resides in the memory of processor j (in fact,
as this occurs for all processors at the same time this effectively means
that data will have to be permuted across the processors). To access the
data in processor j, the data will have to be fetched by this processor
and then send through the routing network to processor i. This may be
fairly time consuming. For both reasons mentioned DM-SIMD machines
are rather specialized in their use when one wants to employ their full
parallelism. Generally, they perform excellently on digital signal and
image processing and on certain types of Monte Carlo simulations where
virtually no data exchange between processors is required and exactly
the same type of operations is done on massive datasets with a size that
can be made to fit comfortable in these machines.

The control processor as depicted in Figure 1.3 may be more or less
intelligent. It issues the instruction sequence that will be executed by
the processor array. In the worst case (that means a less autonomous
control processor) when an instruction is not fit for execution on the
processor array (e.g., a simple print instruction) it might be offloaded to

Overview of High Performanace Computers 9

the front-end processor which may be much slower than execution on the
control processor. In case of a more autonomous control processor this
can be avoided thus saving processing interrupts both on the front-end
and the control processor. Most DM-SIMD systems have the possibility
to handle I/O independently from the front/end processors. This is
not only favorable because the communication between the front-end
and back-end systems is avoided. The (specialized) I/O devices for the
processor-array system is generally much more efficient in providing the
necessary data directly to the memory of the processor array. Especially
for very data-intensive applications like radar- and image processing such
I/O systems are very important.

A feature that is peculiar to this type of machines is that the proces-
sors sometimes are of a very simple bit-serial type, i.e., the processors
operate on the data items bitwise, irrespective of their type. So, e.g.,
operations on integers are produced by software routines on these simple
bit-serial processors which takes at least as many cycles as the operands
are long. So, a 32-bit integer result will be produced two times faster
than a 64-bit result. For floating-point operations a similar situation
holds, be it that the number of cycles required is a multiple of that
needed for an integer operation. As the number of processors in this
type of systems is mostly large (1024 or larger, the Alenia Quadrics is
a notable exception, however), the slower operation on floating-point
numbers can be often compensated for by their number, while the cost
per processor is quite low as compared to full floating-point processors.
In some cases, however, floating-point coprocessors are added to the
processor-array. Their number is 8-16 times lower than that of the
bit-serial processors because of the cost argument. An advantage of bit-
serial processors is that they may operate on operands of any length.
This is particularly advantageous for random number generation (which
often boils down to logical manipulation of bits) and for signal process-
ing because in both cases operands of only 1-8 bits are abundant. As
the execution time for bit-serial machines is proportional to the length
of the operands, this may result in significant speedups.

5. Shared-memory MIMD machines

In Figure 1.1 already one subclass of this type of machines was shown.
In fact, the single-processor vector machine discussed there was a special
case of a more general type. The figure shows that more than one FPU
and/or VPU may be possible in one system.

The main problem one is confronted with in shared-memory systems is
that of the connection of the CPUs to each other and to the memory. As

10

Shared Memory System

No oA wN RO

‘ Network ;
4 4
5 5
6
Memory !
Om m 0
im /I 1
2m 2
© s
(a): Crosshar (b): Q-network (c): Central Databus 4m— N—m= 4
7 N\ ¢
6w m 6
7w 7
Figure 1.4. Some ezamples of interconnection structures used in shared-memory

MIMD systems.

more CPUs are added, the collective bandwidth to the memory ideally
should increase linearly with the number of processors, while each pro-
cessor should preferably communicate directly with all others without
the much slower alternative of having to use the memory in an interme-
diate stage. Unfortunately, full interconnection is quite costly, growing
with O(n?) while increasing the number of processors with O(n). So,
various alternatives have been tried. Figure 1.4 shows some of the inter-
connection structures that are (and have been) used.

As can be seen from Figure 1.4, a crossbar uses n° connections, an
Q-network uses n log, n connections, while, with the central bus, there is
only one connection. This is reflected in the use of each connection path
for the different types of interconnections: for a crossbar each data path
is direct and does not have to be shared with other elements. In case of
the Q-network there are log, n switching stages and as many data items
may have to compete for any path. For the central data bus all data
have to share the same bus, so n data items may compete at any time.

The bus connection is the least expensive solution, but it has the
obvious drawback that bus contention may occur thus slowing down
the computations. Various intricate strategies have been devised using
caches associated with the CPUs to minimize the bus traffic. This leads
however to a more complicated bus structure which raises the costs.

2

Overview of High Performanace Computers 11

In practice it has proved to be very hard to design buses that are fast
enough, especially where the speed of the processors has been increasing
very quickly and it imposes an upper bound on the number of processors
thus connected that in practice appears not to exceed a number of 10-20.
In 1992, a new standard (IEEE P896) for a fast bus to connect either
internal system components or to external systems has been defined.
This bus, called the Scalable Coherent Interface (SCI) should provide
a point-to-point bandwidth of 200-1,000 MB/s. It is in fact used in
the HP Exemplar systems, but could also be used within a network of
workstations. The SCI is much more than a simple bus and it can act as
the hardware network framework for distributed computing, see James
et al. (1990).

A multi-stage crossbar is a network with a logarithmic complexity and
it has a structure which is situated somewhere in between a bus and a
crossbar with respect to potential capacity and costs. The Q2-network as
depicted in figure 1.4 is an example. Commercially available machines
like the IBM RS/6000 SP, the SGI Origin2000, and the Cenju-4 use
such a network structure, but a number of experimental machines also
have used this or a similar kind of interconnection. The BBN TC2000
that acted as a virtual shared-memory MIMD system used an analogous
type of network (a Butterfly-network) and it is quite conceivable that
new machines may use it, especially as the number of processors grows.
For a large number of processors the n logy n connections quickly become
more attractive than the n? used in crossbars. Of course, the switches
at the intermediate levels should be sufficiently fast to cope with the
bandwidth required. Obviously, not only the structure but also the
width of the links between the processors is important: a network using
16-bit parallel links will have a bandwidth which is 16 times higher than
a network with the same topology implemented with serial links.

In all present-day multi-processor vector-processors crossbars are used.
This is still feasible because the maximum number of processors in a sys-
tem is still rather small (32 at most presently). When the number of
processors would increase, however, technological problems might arise.
Not only it becomes harder to build a crossbar of sufficient speed for the
larger numbers of processors, the processors themselves generally also in-
crease in speed individually, doubling the problems of making the speed
of the crossbar match that of the bandwidth required by the processors.

Whichever network is used, the type of processors in principle could
be arbitrary for any topology. In practice, however, bus structured ma-
chines do not have vector processors as the speeds of these would grossly
mismatch with any bus that could be constructed with reasonable costs.
All available bus-oriented systems use RISC processors. The local caches

12

of the processors can sometimes alleviate the bandwidth problem if the
data access can be satisfied by the caches thus avoiding references to the
memory.

The systems discussed in this subsection are of the MIMD type and
therefore different tasks may run on different processors simultaneously.
In many cases synchronization between tasks is required and again the
interconnection structure is here very important. Most vector-processors
employ special communication registers within the CPUs by which they
can communicate directly with the other CPUs they have to synchro-
nize with. A minority of systems synchronize via the shared memory.
Generally, this is much slower but may still be acceptable when the
synchronization occurs relatively seldom. Of course in bus-based sys-
tems communication also has to be done via a bus. This bus is mostly
separated from the data bus to assure a maximum speed for the syn-
chronization.

6. Distributed-memory MIMD machines

The class of DM-MIMD machines is undoubtly the fastest growing
part in the family of high-performance computers. Although this type
of machines is more difficult to deal with than shared-memory machines
and DM-SIMD machines. The latter type of machines are processor-
array systems in which the data structures that are candidates for par-
allelization are vectors and multi-dimensional arrays that are laid out
automatically on the processor array by the system software. For shared-
memory systems the data distribution is completely transparent to the
user. This is quite different for DM-MIMD systems where the user has
to distribute the data over the processors and also the data exchange
between processors has to be performed explicitly. The initial reluctance
to use DM-MIMD machines seems to have been decreased. Partly this
is due to the now existing standard for communication software (Geist
et al. 1994, Snir et al. 1998, Gropp et al. 1998) and partly because, at
least theoretically, this class of systems is able to outperform all other
types of machines.

The advantages of DM-MIMD systems are clear: the bandwidth prob-
lem that haunts shared-memory systems is avoided because the band-
width scales up automatically with the number of processors. Further-
more, the speed of the memory which is another critical issue with
shared-memory systems (to get a peak performance that is comparable
to that of DM-MIMD systems, the processors of the shared-memory ma-
chines should be very fast and the speed of the memory should match it)

Overview of High Performanace Computers 13

=P

0 a

O a
TR
NN

d=3 d=4
Q=3 Q=4
Figure 1.5. 1-, 2-, 3-, and 4-dimensional hypercube connections

is less important for the DM-MIMD machines, because more processors
can be configured without the afore mentioned bandwidth problems.

Of course, DM-MIMD systems also have their disadvantages: The
communication between processors is much slower than in SM-MIMD
systems, and so, the synchronization overhead in case of communicating
tasks is generally orders of magnitude higher than in shared-memory
machines. Moreover, the access to data that are not in the local memory
belonging to a particular processor have to be obtained from non-local
memory (or memories). This is again on most systems very slow as
compared to local data access. When the structure of a problem dictates
a frequent exchange of data between processors and/or requires many
processor synchronizations, it may well be that only a very small fraction
of the theoretical peak speed can be obtained. As already mentioned,
the data and task decomposition are factors that mostly have to be dealt
with explicitly, which may be far from trivial.

It will be clear from the paragraph above that also for DM-MIMD
machines both the topology and the speed of the data paths are of
crucial importance for the practical usefulness of a system. Again, as
in the section on SM-MIMD systems, the richness of the connection
structure has to be balanced against the costs. Of the many conceivable
interconnection structures only a few are popular in practice. One of
these is the so-called hypercube topology as depicted in Figure 1.5.

A nice feature of the hypercube topology is that for a hypercube with
2¢ nodes the number of steps to be taken between any two nodes is at
most d. So, the dimension of the network grows only logarithmically
with the number of nodes. In addition, theoretically, it is possible to
simulate any other topology on a hypercube: trees, rings, 2-D and 3-
D meshes, etc. In practice, the exact topology for hypercubes does
not matter too much anymore because all systems in the market today
employ what is called “wormhole routing”. This means that when a
message is sent from node ¢ to node j, a header message is sent from
1 to j, resulting in a direct connection between these nodes. As soon

14

as this connection is established, the data proper is sent through this
connection without disturbing the operation of the intermediate nodes.
Except for a small amount of time in setting up the connection between
nodes, the communication time has become virtually independent of the
distance between the nodes. Of course, when several messages in a busy
network have to compete for the same paths, waiting times are incurred
as in any network that does not directly connect any processor to all
others and often rerouting strategies are employed to circumvent busy
links.

A fair amount of massively parallel DM-MIMD systems seem to favor
a 2- or 3-D mesh (torus) structure. The rationale for this seems to be
that most large-scale physical simulations can be mapped efficiently on
this topology and that a richer interconnection structure hardly pays
off. However, some systems maintain (an) additional network(s) besides
the mesh to handle certain bottlenecks in data distribution and retrieval
(Horie et al. 1991).

A large fraction of systems in the DM-MIMD class employ crossbars.
For relatively small amounts of processors (in the order of 64) this may
be a direct or 1-stage crossbar, while to connect larger numbers of nodes
multi-stage crossbars are used, i.e., the connections of a crossbar at level
1 connect to a crossbar at level 2, etc., instead of directly to nodes
at more remote distances in the topology. In this way it is possible
to connect in the order of a few thousands of nodes through only a
few switching stages. In addition to the hypercube structure, other
logarithmic complexity networks like Butterfly, 2, or shuffle-exchange
networks are often employed in such systems.

As with SM-MIMD machines, a node may in principle consist of any
type of processor (scalar or vector) for computation or transaction pro-
cessing together with local memory (with or without cache) and, in al-
most all cases, a separate communication processor with links to connect
the node to its neighbors. Nowadays, the node processors are mostly off-
the-shelf RISC processors sometimes enhanced by vector processors. A
problem that is peculiar to this DM-MIMD systems is the mismatch of
communication vs. computation speed that may occur when the node
processors are upgraded without also speeding up the intercommuni-
cation. In some cases this may result in turning computational-bound
problems into communication-bound problems.

7. CC-NUMA machines

As already mentioned in the introduction, a trend can be observed
to build systems that have a rather small (up to 16) number of RISC

Overview of High Performanace Computers 15

Mem. Mem. o o0 0 o Mem.

Interconnection Network

s

Figure 1.6. Block diagram of a system with a “hybrid” network: clusters of four
CPUs are connected by a crossbar. The clusters are connected by a less expensive
network, e.g., a Butterfly network

processors that are tightly integrated in a cluster, a Symmetric Multi-
Processing (SMP) node. The processors in such a node are virtually
always connected by a 1-stage crossbar while these clusters are con-
nected by a less costly network. Such a system may look as depicted in
Figure 1.6. Note that in Figure 1.6 all CPUs in a cluster are connected
to a common part of the memory. This is similar to the policy men-
tioned for large vector-processor ensembles mentioned above but with
the important difference that all of the processors can access all of the
address space. Therefore, such systems can be considered as SM-MIMD
machines. On the other hand, because the memory is physically dis-
tributed, it cannot be guaranteed that a data access operation always
will be satisfied within the same time. Therefore such machines are
called CC-NUMA systems where CC-NUMA stands for Cache Coherent
Non-Uniform Memory Access. The term “Cache Coherent” refers to the
fact that for all CPUs any variable that is to be used must have a con-
sistent value. Therefore, it must be assured that the caches that provide
these variables are also consistent in this respect. There are various ways
to ensure that the caches of the CPUs are coherent. One is the snoopy
bus protocol in which the caches listen in on transport of variables to any
of the CPUs and update their own copies of these variables if they have
them. Another way is the directory memory, a special part of memory
which enables to keep track of the all copies of variables and of their
validness.

For all practical purposes we can classify these systems as being SM-
MIMD machines also because special assisting hardware/software (such
as a directory memory) has been incorporated to establish a single sys-
tem image although the memory is physically distributed.

16

8. Recount of (almost) available systems

In this section we give a recount of all types of systems as discussed in
previous sections. When vendors market more than one type of machine
we will discuss them in distinct subsections. So, for instance, we will
discuss NEC systems under entries, SX-5 and Cenju-4 because they have
a very different structure.

The systems are presented alphabetically. The “Machine type” entry
shortly characterizes the type of system as discussed previously: Proces-
sor Array, CC-NUMA, etc.

8.1. The Alenia Quadrics

Machine type: Processor array. Models: Quadrics Qzr, QHz, z =
1,...,16.

Front-end: Almost any workstation.

Operating system: Internal OS transparent to the user, Unix on front-
end.

Connection structure: 3-D mesh (see remarks).

Compilers: TAO: a Fortran 77 compiler with some Fortran 90 and
some proprietary array extensions.

Vendors information Web page: www.quadrics.com

Year of introduction: 1994.

System parameters

Model Qz QHzx
Clock cycle 40 ns 40 ns
Theor. peak performance

Per Proc. (32-bits) 50 Mflop/s | 50 Mflop/s
Maximal (32-bits) 6.4 Gflop/s | 100 Gflop/s
Main memory <2 GB <32 GB
No. of processors 8-128 128-2048
Communication bandwidth

Per Proc. 50 MB/s 50 MB/s
Aggregate local <6 GB/s <96 GB/s
Aggregate non-local <1.5GB/s | <24 GB/s

Remarks: The Quadrics is a commercial spin-off of the APE-100 project
of the Italian National Institute for Nuclear Physics. Systems are avail-
able in multiples of 8 processor nodes in the Q-model where up to 16
boards can be fitted into one crate or in multiples of 128 nodes in the
QH-model by adding up to 15 crates to the minimal 1-crate system.
The interconnection topology of the Quadrics is a 3-D grid with inter-
connections to the opposite sides (so, in effect a 3-D torus). The 8-node

Overview of High Performanace Computers 17

floating-point boards (FPBs) are plugged into the crate backplane which
provides point-to-point communication and global control distribution.
The FPBs are configured as 23 cubes that are connected to the other
boards appropriately to arrive at the 3-D grid structure.

The basic floating-point processor, the so-called MAD chip, contains
a register file of 128 registers. Of these registers the first two hold per-
manently the values 0 and 1 to be able to express any addition or mul-
tiplication as a “normal operation”, i.e., a combined multiply-add oper-
ation, where a multiplication is of the form, a x b+ 0 and an addition is
a X 1+ b. In favorable circumstances the processor can therefore deliver
two floating-point operations per cycle. Instructions are centrally issued
by the controller at a rate of one instruction every two clock cycles.

Communication is controlled by the Memory Controller and the Com-
munication Controller which are both housed on the backplane of a crate.
When the Memory Controller generates an address it is decoded by the
Communication Controller. In case non-local access is desired, the Com-
munication Controller will provide the necessary data transmission. The
memory bandwidth per processor is 50 MB/s which means that every
2 cycles an operand can be shipped into or out of a processor. The
bandwidth for non-local communication turns out to be only four times
smaller than local memory access.

The Quadrics communicates with the front-end system via a T805
transputer-based interface system, called the Local Asynchronous Inter-
face (LAI). The interface can write and read the memories of the nodes
and the Controller. Presently, the bandwidth of the interface to the
front-end processor is not very large (1 MB/s). It is expected that this
can be improved by about a factor of 30 in the near future. I/O has to
be performed via the front-end system and will therefore be relatively
slow.

The TAO language has several extensions to employ the SIMD fea-
tures of the Quadrics. Firstly, floating-point variables are assumed to
be local to the processor that owns them, while integer variables are
assumed to be global. Local variables can be promoted to global vari-
ables. Other extensions are the ANY, ALL, and WHERE/END WHERE key-
words that can be used for global testing and control. Processors that
not meet a global condition effectively skip the operation(s) that are as-
sociated with it. For easy referencing nearest-neighbor locations special
constants LEFT, RIGHT, UP, DOWN, FRONT, and BACK are provided. In ad-
dition, new data types and operators on these data types are supported
together with overloading of operators. This enables very concise code
for certain types of calculations.

18

Measured performances: No measured performances have been
reported for this machine.

8.2. The Avalon A12

Machine type: RISC-based distributed-memory multi-processor.
Models: Avalon A12.

Operating system: AVALON micro kernel based Unix (Image com-
patible with Digital Unix).

Connection structure: Multistage variable (see remarks).
Compilers: Fortran 77, Fortran 90 extensions, HPF, ANSI C.
Vendors information Web page: www.teraflop.com/

Year of introduction: 1996.

System parameters

Model Al12
Clock cycle 2.5 ns
Theor. peak performance

Per Proc. (64-bits) 800 Mflop/s
Maximal 1.3 Tflop/s
Memory/node <1GB
Memory/maximal 1.7 TB
No. of processors 12-1680
Communication bandwidth

Point-to-point 128-400 MB/s
Bisectional (maximal) 10 GB/s

Remarks: The A12 is be based on the DEC Alpha 21164 RISC proces-
sor. The processor used in the system has a clock cycle of 2.5 ns. How-
ever, most of the information given at the vendors Web page still uses
the data for a node processor with a 3.3 ns clock to describe the configu-
ration properties. The Web information is therefore internally somewhat
inconsistent. Because the Alpha 21164 has dual floating-point arithmetic
pipes it will deliver a theoretical peak performance of 800 Mflop/s. The
maximum configuration of the system is given as 1680 processors The
first and second level cache reside on chip, a 1 MB third level cache is
provided on each A12 CPU card. The bandwidth to/from the first level
cache is sufficient to transport two operands to the CPU and to ship one
result back in one cycle. The second level cache has two-thirds of this
bandwidth, while the third level cache has the capability of providing
an 64-bit word every two cycles. The bandwidth to/from memory is
400 MB/s or one 64-bit word every 8 cycles. The memory has two-way
interleaved banks of a memory that can be up to 1 GB/node.

Overview of High Performanace Computers 19

Each CPU card contains a Alpha 21164 processor, the third level or
B cache and the local memory for that node. Twelve CPU cards can
be housed in one crate which has a full crossbar backplane. This yields
a inter-node bandwidth of slightly under 400 MB/s between the cards
within one crate. Apart from the 12 slots for CPU cards, there are two
extra dual channel slots that can accommodate communication cards
that provide the connections with other crates. For the in-crate crossbar
CMOS technology is used. However, for the inter-crate connections ECL
logic is employed. The actual connections between crates are made by
coaxial cables. This way of connection provides a large flexibility in
the overall interconnection topology: one could build trees or toruses
or a secondary level crossbar (in the last case one crate should be filled
entirely with communication cards to build a 144 processor system). The
communication speed between crates is less fast (but still respectable):
128 MB/s. Various configurations are described at the Web-address
given above.

I/O can be configured in various ways: It is possible to put 32-bit or
64-bit PCI expansion cards on each CPU card to obtain what Avalon
calls “Type 1 I/O nodes”. Also, a direct switch connection via a variant
of the communication card can be made to the outside world. Depending
on the number of cards the bandwidth is 400 or 800 MB/s for this type 3
I/O node. The type 21/0 node is in fact a dedicated TCP /IP connection
as needed for the control workstation required by the system.

Measured Performances: A 140-node A12 was installed by the end
of 1996 at Los Alamos National Laboratory of which the processors had
a faster clock: 1.88 ns, instead of 2.5 ns. In Dongarra (1999) a speed of
48.6 Gflop/s was reported for this configuration on the solution of a full
linear system of order 62720, 33% of the Theoretical Peak Performance.

8.3. The Cambridge Parallel Processing
Gamma 11

Machine type: Processor array.

Models: Gamma II Plus 1000, Gamma, IT Plus 4000.

Front-end: DEC, HP, or Sun workstation, stand-alone for dedicated
applications.

Operating system: Internal OS transparent to the user, Unix on front-
end.

Connection structure: 2-D mesh, row- and column data paths (see
remarks).

Compilers: FORTRAN-PLUS (a Fortran 77 compiler with some For-
tran 90 and some proprietary array extensions), C++.

20

Vendors information Web page: www.cppus.com
Year of introduction: 1995.

System parameters

Model Gamma, IT Plus 1000 | Gamma IT Plus 4000
Clock cycle 33 ns 33 ns
Theor. peak performance

Per Proc. (32-bits) 0.6 Mflop/s 0.6 Mflop/s
Maximal (32-bits) 0.6 Gflop/s 2.4 Gflop/s
1-bit (Gop/s) 30.7 122.8
8-bit (Gop/s) 30.7 122.8
Program memory <4 MB <4 MB
No. of processors <128 MB <512 MB
Internal communication speed

Across row, column 120 MB/s 480 MB/s
Memory to PE 3.84 GB/s 15.4 GB/s

Remarks: In November 1995 the new Gamma II Plus models have
been announced by CPP. In essence there is not much difference with
its predecessor the DAP Gamma. However, the clock cycle has tripled
to 33 ns with an equivalent rise in the peak performance of the systems.

The Gamma, IT is presented as the fourth generation of this type of ma-
chine. Indeed, the macro architecture of the systems has hardly changed
since the first ICL DAP (the first generation of this system) was con-
ceived. As in the ICL DAP in the Gamma 1000 models the 1024 pro-
cessors are ordered in a 32x32 array, while the Gamma 4000 has 4096
processors arranged in a 64x64 square.

The systems are able to operate byte parallel on appropriate operands
to speed up floating-point operations, however, for logical operations
bit-wise operations are possible, which makes the machines quite fast in
this respect. As the byte parallel code consists of separate sequences of
microcode instructions, the bit processor plane and the byte processor
plane are in fact independent and can work in parallel. This is also
the case for I/O operations. Also character-handling can be done very
efficiently. This is the reason that Gamma systems are often used for
full text searches.

As in all processor-array machines, the control processor (called the
Master Control Unit (MCU) in the DAP) has a separate memory to
hold program instructions while the data are held in the data memory
associated with each Processing Element (PE) in the processor array.
So, for a Gamma 1000 with 128 MB of data memory each PE has 128
KB of data memory directly associated to it. To access data in other

Overview of High Performanace Computers 21

PEs memories these must be brought up to the data routing plane and
shifted to the appropriate processor.

As already mentioned under the heading of the connection structure,
there are two ways of connecting the PEs. One is the 2-D mesh that
connects each element to its North-, East-, West-, and South neighbor.
In addition there are row- and column data paths that enable the fast
broadcast of a row or column to an entire matrix by replication. Con-
versely, they can be used for row or column-wise reduction of matrix
objects into a column or row-vector of results from, e.g., a summing or
maximum operation.

Separate I/O processors and disk systems can be attached to the
Gamma directly thus not burdening the front-end machine (and the
connection between front-end and Gamma) with I/O operations and
unnecessary data transport. One of these I/O devices is the GIOC that
can transport data to the data memory at a sustained rate of 80 MB/s
transposing the data to the vertical storage mode of the data memory
on the fly. Also, a direct video interface is available to operate a frame
buffer.

A nice (non-standard) feature of the FORTRAN-PLUS compiler is the
possibility to use logical matrices as indexing objects for computational
matrix objects. This enables a very compact notation for conditional
execution on the processor array. Since 1997 also C++ is available.

Measured Performances: In Flanders (1991) the speed of matrix
multiplication on various DAP models (precursors of the Gamma sys-
tems) is analyzed. The documentation states 32-bit floating-point add
speed of 1.68 Gflop/s on 4096 PEs, while a 32-bit 1,024 complex FFT
would attain 2.49 Gflop/s. No independent performance figures for the
Gamma II Plus systems are available.

8.4. The C-DAC PARAM OpenFrame system

Machine type: RISC-based distributed-memory multi-processor.
Models: PARAM OpenFrame 9000 system.

Operating system: PARAS micro kernel based Unix (compatible with
Sun’s Solaris).

Connection structure: Multistage variable (see remarks).
Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++.

Vendors information Web page: www.soft.net/cdac/

Year of introduction: 1996.

22

System parameters

Model OpenFrame 9000
Clock cycle 3 ns (see remarks)
Theor. peak performance

Per Proc. (64-bits) 600 Mflop/s (see remarks)
Maximal 600 Gflop/s (see remarks)
Memory/node —
Memory/maximal —

No. of processors 1-1024
Communication bandwidth

Point-to-point 80 MB/s
Aggregate bandwidth 3.2 GB/s

Remarks: The OpenFrame 9000 system is the fourth generation of
CDAC machines that is developed by CDAC, the Centre for Devel-
opment of Advanced Computing, an institute in India that has as its
mission to develop an manufacture ”state-of-the-art open architecture
supercomputers”. This system is the second generation that is mar-
keted abroad. In the predecessor, the PARAM 9000/SS SuperSPARC
IT processors were used. In the present model Sun UltraSPARCs or
DEC/Compaq Alpha chips are employed or even mixtures of these. Also,
the maximum possible number of processors has been increased from 200
to 1024 in replicatable units of 32 processors. As the type of processor
and the clock cycle are not fixed, no theoretical peak performance can be
specified. When the same basic processors are assumed as Sun employs
in most of its Enterprise servers, the estimates as given in the parameter
list above seem more or less indicative. The documentation also does
not reveal any details of the type of the interconnection network except
that cut-through wormhole routing is used. A point-to-point communi-
cation bandwidth of 80 MB/s (bi-directional) is quoted. The aggregate
bandwidth for a maximal configuration is 3.2 GB/s.

The amount of available software shows that the PARAM OpenFrame
9000 is not a first-generation system. Apart from Fortran 77, Fortran 90,
HPF, and C++ are available and the CORE, MPI, and PVM message
passing interfaces are available. There is a parallel debugger, a propri-
etary performance evaluation tool called AIDE, while TOTALVIEW can
be delivered on request.

In addition, a library of parallel routines, PARUL, is available. This
library contains PVM versions of dense linear algebra routines, eigen-
value routines, and FFTs.

Measured Performances: No measured performances of the PARAM
OpenFrame 9000 are available at this moment for any configuration.

Overview of High Performanace Computers 23

8.5. The Compaq/DEC GS60/140

Machine type: RISC-based shared-memory multiprocessor.
Models: GS60, GS140, Cluster.

Operating system: Digital Unix (DEC’s flavor of Unix).
Compilers: Fortran 77, HPF, C, C++.

Vendors information Web page: www.digital.com/info/hpc
Year of introduction: 1998.

System parameters

Model GS60 GS140 Cluster
Clock cycle 1.66 ns 1.66 ns 1.66 ns
Theor. peak performance

Per Proc. 1.2 Gflop/s | 1.2 Gflop/s | 1.2 Gflop/s
Maximal 7.2 Gflop/s | 16.8 Gflop/s | 67.2 Gflop/s
Memory <12 GB <28 GB <112 GB
No. of processors <6 <14 < 56
Memory bandwidth

Processor/memory 1.87 GB/s 1.87 GB/s 1.87 GB/s
Between cluster nodes — — 100 MB/s

Remarks: The GS60 and GS140 are almost identical to their predeces-
sors, the AlphaServers 8200 and 8400. The difference lies in the processor
that is used: instead of the Alpha 21164 at a clock rate of 1.6 ns in the
new systems an Alpha 21264 with a clock rate of 1.66 ns is used. Note
that this leads to a decrease in the theoretical peak performance from
1.25 to 1.2 Gflop/s per processor. However, Compagq claims that the new
processor will generally give a performance increase of a factor 2.5 with
respect to the Alpha 21164 which is not unlikely with the improvements
made in the chip.

The GS60 and GS140 are symmetric multi-processing systems. The
GS60 model is a somewhat smaller copy of the GS140 model: in the
GS60 a maximum of 6 CPUs can be accommodated while this number
is 14 for the GS140 model. Also, there is room for at most 12 GB of
memory in the GS60 while the GS140 can house 28 GB. However, the
amount of CPUs and memory is not independent. For instance, the
GS140 has 9 system slots. One of these is reserved for I/O and one
will have to contain at least one CPU module which can contain 1 or 2
CPUs. From the remaining slots 7 can be used either for memory or for
a CPU module. So, one has to choose for either higher computational
power or for more memory. This can potentially be a problem for large
applications that require both.

24

The GS systems (GS stands for Global Server) can be clustered using
PCI bus MemoryChannel link cables that are connected to a hub. The
systems need not be of the same model. The bandwidth of this inter-
connect is slightly over 100 MB/s. Up to four systems can be coupled in
this way. To support this kind of cluster computing, HPF and optimized
versions of PVM and MPI are available.

Measured Performances: For the the GS60 and GS140 no perfor-
mance figures are available yet.

8.6. The Fujitsu AP3000

Machine type: RISC-based distributed-memory multi-processor.
Models: AP3000.

Operating system: Cell OS (transparent to the user) and Solaris
(Sun’s Unix variant) on the front-end system.

Connection structure: 2-D torus.

Compilers: Parallel Fortran/AP, Fortran 90, HPF, C, C++.
Vendors information Web page: www.fujitsu.com

Year of introduction: 1996.

System parameters

Model AP3000
Clock cycle 3.3 ns
Theor. peak performance

Per Proc. (64-bits) 600 Mflop/s
Maximal 614 Gflop/s
Memory/node <2GB
Memory/maximal <2TB
No. of processors 4-1024
Communication bandwidth

Point-to-point 200 MB/s

Remarks: The AP3000 is the successor of the earlier AP1000 system.
Although the name could suggest otherwise, few characteristics of the
AP1000 have been retained except that Sun SPARC processors are used
in the nodes. No front-end processor is required anymore as in the former
system.

Also the communication network has been simplified considerably
with respect to that in the earlier model: where three different networks
were present in the AP1000 (see Horie et al. (1991)), in the AP3000
the nodes are connected in a 2-D torus structure with a bi-directional
bandwidth of 200 MB/s and there is a separate control network. The
maximum amount of memory is huge: a full 1024 node system can ac-
commodate 2 TB.

Overview of High Performanace Computers 25

Another difference with the AP1000 system is that the fastest nodes
(the U300 nodes described here) can have either 1 or 2 CPUs as opposed
to only one CPU in the AP1000. The two CPUs share the on-board
memory.

The available software for the AP3000 is extensive: Parallel For-
tran/AP is a Fortran 77 with extensions that offers a shared-memory-like
programming model for the system. In addition, HPF is available and
the machine can also be used with a message passing model as cus-
tomized MPI/AP and PVM/AP are offered. As sequential languages to
be used with the message passing libraries Fortran 90, C and C++ are
available.

Measured Performances: The system has been announced in March
1996 and installations have been done in Japan, the University of Sin-
gapore and at the Australian National University but as yet no perfor-
mance figures are published.

8.7. The Fujitsu VPPT700 series

Machine type: Distributed-memory vector multi-processor.

Models: VX-E, VPP300-E, VPP700-E.

Operating system: UXP/V (a V5.4 based variant of Unix).
Connection structure: Full distributed crossbar.

Compilers: Fortran 90/VP (Fortran 90 Vector compiler), Fortran 90/
VPP (Fortran 90 Vector Parallel compiler), C/VP (C Vector compiler),
C, C++.

Vendors information Web page: www.fujitsu.com

Year of introduction: VX, VPP300: 1995, VPP700: 1996.

System parameters

Model VX-E VPP300-E VPP700-E
Clock cycle 6.6 ns 6.6 ns 6.6 ns
Theor. peak performance

Per Proc. (64-bits) 2.4 Gflop/s | 2.4 Gflop/s 2.4 Gflop/s
Maximal 9.6 Gflop/s | 38.4 Gflop/s | 614.4 Gflop/s
Memory/node <2GB <2GB <2GB
Memory/maximal < 8GB <32 GB <512 GB
No. of processors 14 1-16 8256
Memory bandw./proc. 19.6 GB/s 19.6 GB/s 19.6 GB/s
Communication bandwidth

Point-to-point 615 MB/s 615 MB/s 615 MB/s

Remarks: The VX-E, VPP300-E, and VPP700-E systems (with E for
extended) are “midlife kickers”: minor extensions of the VX, VPP300,

26

and VPP700. The only difference is a slightly faster system clock: 6.6
ns in the E models instead of the 7 ns in the former systems. There
are no architectural changes. The VPP300 is a successor to the earlier
VPP500. It is a much cheaper CMOS implementation of its predecessor
with some important differences. First, no VPX200 front-end system
is required anymore. Second, the crossbar that is used to connect the
vector nodes is distributed. Therefore, the cost of a system is scalable:
one does not need to buy a complete enclosure with the full crossbar
for only a few nodes. The VX series is in fact a smaller version of the
VPP300 with a maximum of 4 processors. Both the VX machines and
the VPP300 systems are air-cooled.

The architecture of the VPP300 nodes is almost identical to that of
the VPP500: Each node, called a Processing Element (PE) in the system
is a powerful (2.4 Gflop/s peak speed with a 6.6 ns clock) vector proces-
sor in its own right. The vector processor is complemented by a Large
Instruction Word scalar processor with a peak speed of 300 Mflop/s.
The scalar instruction format is 64 bits wide and may cause the execu-
tion of three operations in parallel. Each PE has a memory of up to
2 GB while a PE communicates with its fellow PEs at a point-to-point
speed of 570 MB/s. This communication is cared for by separate Data
Transfer Units (DTUs). To enhance the communication efficiency, the
DTU has various transfer modes like contiguous, stride, sub array, and
indirect access. Also translation of logical to physical PE-ids and from
Logical in-PE address to real address are handled by the DTUs. When
synchronization is required each PE can set its corresponding bit in the
Synchronization Register (SR). The value of the SR is broadcast to all
PEs and synchronization has occurred if the SR has all its bits set for
the relevant PEs. This method is comparable to the use of synchroniza-
tion registers in shared-memory vector processors and much faster than
synchronizing via memory.

The VPP700 is a logical extension of the VPP300. While the proces-
sors in the latter machine are connected by a full crossbar, the maximum
configuration of a VPP700 consists of 16 clusters of 16 processors con-
nected by a level-2 crossbar. So, a fully configured VPP700 consists in
fact of 16 full VPP300s. Because the diameter of the network is 2 (for
the larger configurations) instead of 1 as in the VPP300, the communi-
cation time between processors will be slightly larger. At the moment
this worst case increase is not exactly known to the author.

The Fortran compiler that comes with the VPP300/700 has extensions
that enable data decomposition by compiler directives. This evades in
many cases restructuring of the code. The directives are different from
those as defined in the High Performance Fortran Proposal but it should

27

Overview of High Performanace Computers

be easy to adapt them. Furthermore, it is possible do define parallel
regions, barriers, etc., via directives, while there are several intrinsic
functions to enquire about the number of processors and to execute
POST/WAIT commands. Furthermore, also a message passing program-
ming style is possible by using the PVM or PARMACS communication
libraries that are available. Of course the software for the VPP700 and
the VPP300 is exactly the same and the systems can run each others
executables.

Measured Performances: Of the VX-E, VPP300-E, and VPP700-E
no performance figures are known but in Dongarra (1999) results for
the VX, the VPP300, and the VPP700 are given. The speed for solving
dense linear system of sizes 28,800 59,200, and 111,360 was 8.6, 34.1,
and 213 Gflop/s on a 4 proc. VX, a 16 proc. VPP300, and a 116 proc.
VPP700, respectively.

8.8. The Hitachi S3600 series

Machine type: Vector-processor

Models: S3600/120, S3600/140, S3600/160, S3600/180

Operating system: VOS3/HAP/ES (IBM MVS compatible) and OSF/1
Compilers: FORT77/HAP vectorizing Fortran 77, C, C++.

Vendors information Web page: none.

Year of introduction: 1994.

System parameters
Model S3600/120 S3600/140 S3600/160 S3600/180
Clock cycle VPU 4 ns 4 ns 4 ns 4 ns
Clock cycle scal. proc. 8 ns 8 ns 8 ns 8 ns
Theor. peak perform. | 0.25 Gflop/s | 0.25 Gflop/s | 1.0 Gflop/s 2.0 Gflop/s
Main memory 128-256 MB | 256-512 MB | 256-512 MB | 512-1024 MB
Extended memory <6 GB <16 GB <16 GB <16 GB

Remarks: The S3600 system is the only single-CPU vector-processor
that is still marketed and it might be withdrawn soon in favor of the
Hitachi SR8000 (see below).

The speed differences between the different models stem from replication
of the multiply/add pipe in the models S3600/120-180. The /160 and
/180 models have respectively two- and four-fold sets of a separate add-
and a multi-functional multiply/add vector pipes. This should lead to a
maximum of 3 results per clock cycle per pipe set. So, contrary to the
information given by the vendor, the maximum performance of, e.g., the
/180 should in some situations be 3 Gflop/s instead of 2.

28

All configurations of the S3600, as in its direct predecessor the S-820,
are air cooled while most machines in this class rely at least on water
cooling.

Unlike the S-820 series, the S3600 series is also marketed worldwide,

and not only in Japan.
Measured performances: In Dongarra (1999) a speed of 851 Mflop/s
for the solution of a full linear system of order 1000 is reported for the
S3600/160. The S3600/180 attains a performance of 1672 Mflop/s on
the same problem.

8.9. The Hitachi SR8000

Machine type: RISC-based distributed-memory multi-processor.
Models: SR8000.

Operating system: HI-UX/MPP (Micro kernel Mach 3.0).
Connection structure: Multi-dimensional crossbar (see remarks).
Compilers: Fortran 77, Fortran 90, Parallel Fortran, HPF, C, C++.
Vendors information Web page:
www.hitachi.co.jp/Prod/comp/hpc/eng/sr8le.html

Year of introduction: 1998.

System parameters

Model SR8000
Clock cycle 4.0 ns
Theor. peak performance

Per Proc. (64-bits) 8 Gflop/s
Maximal 1 Tflop/s
Memory/node <8GB
Memory/maximal <1TB
No. of processors 4-128
Communication bandwidth
Point-to-point 1 GB/s

Remarks: The SR8000 is the third generation of distributed-memory
parallel systems of Hitachi. It is to replace both its direct predecessor,
the SR2201 and the late top-vector-processor, the S-3800 (see 9).

The basic node processor is a 4 ns clock PowerPC node with major
enhancements made by Hitachi. E.g., a hardware barrier synchroniza-
tion is added and the additions required for “Pseudo Vector Processing”
(PVP). The latter means that for operations on long vectors one does not
incur the detrimental effects of cache misses that often ruin the perfor-
mance of RISC processors unless code is carefully blocked and unrolled.
This facility was already available on the SR2201 and experiments have
shown that this idea seems to work well (see Hit (2001)).

Overview of High Performanace Computers 29

The peak performance per basic processor, or IP, can be attained
with 2 simultaneous multiply/add instructions resulting in a speed of
1 Gflop/s. However, eight basic processors are coupled to form one
processing node all addressing a common part of the memory. For the
user this node is the basic computing entity with a peak speed of 8
Gflop/s. Hitachi refers to this node configuration as COMPAS, Co-
operative Micro-Processors in single Address Space. In fact this is a
kind of SMP clustering as discussed in sections 2 and 7. A difference
with most of these systems is that for the user the individual processors
in a cluster node are not accessible. Every node also contains an SP, a
system processor that performs system tasks, manages communication
with other nodes and a range of I/O devices.

The SR8000 has a multi-dimensional crossbar with a bi-directional
link speed of 1 GB/s. From 4-8 nodes the cross-section of the network
is 1 hop. For configurations 1664 it is 2 hops and for a 128-node system
it is 3 hops.

Like in some other systems as the SGI/Cray T3E (8.17), Meiko CS-
2 (8.12), and the NEC Cenju-4 (8.13), one is able to directly access
the memories of remote processors. Together with the fast hardware-
based barrier synchronization this should allow for writing distributed
programs with very low parallelization overhead.

The following software products are supported in addition to those al-
ready mentioned above: PVM, MPI, PARMACS, Linda, and FORGE90.
In addition several numerical libraries like NAG and IMSL are offered.
Measured Performances: As of January 1999 the first installations
were planned. A maximal configuration has just been placed at the
University of Tokyo Computing Centre. At this moment no performance
figures are available.

8.10. The HP Exemplar V2500

Machine type: RISC-based CC-NUMA system.

Models: Exemplar V2500.

Operating system: HP-UX (HP’s usual Unix flavor).

Connection structure: Ring.

Compilers: Fortran 77, Fortran 90, Parallel Fortran, HPF, C, C++.
Vendors information Web page: www.hp.com

Year of introduction: 1998.

30

System parameters

Model Exemplar V2500
Clock cycle 2.27 ns
Theor. peak performance

Per Proc. (64-bits) 1.76 Gflop/s
Maximal 225.3 Gflop/s
Memory /node <1GB
Memory /maximal <16 GB
No. of processors 2-128
Communication bandwidth

Aggregate (per cabinet) 15.36 GB/s
Aggregate (inter-cabinet) 3.84 GB/s

Remarks: The V2500 is the latest in the series of Exemplar systems
that have been offered first by Convex and later by HP since 1995 (see
section 9). The architecture, however, has not radically changed: up to
32 PA-RISC 8500 chips are clustered via a crossbar to form an SMP
node. The PA-RISC 8500 CPUs run at a clock cycle of 2.27 ns. As
a CPU contains 2 floating-point units that are able do execute a com-
bined floating multiply-add instruction, in favorable circumstances four
flops/cycle can be achieved and a Theoretical Peak Performance of 1.76
Gflop/s per CPU can be attained. Per SMP node the peak speed is
56.32 Gflop/s.

Up to four SMP nodes can be coupled by a so-called SCA HyperLink,
uni-directional SCI rings with an aggregate bandwidth of 3.84 GB/s,
while the aggregate bandwidth within an SMP node is 15.36 GB/s.
The HyperLinks tolerate multiple outstanding requests and, in addition,
there is a “HyperLinkcache” that both help in hiding the communication
latency in inter-node communication.

As in the former systems a shared memory parallel model is supported.
HP is a partner in the OpenMP organization and will therefore make
available this style of shared-memory parallel programming in addition
to (and later on instead of) its proprietary parallel model. The shared-
memory parallelism is not confined to the SMP nodes: a multi-node
system can be addressed globally making the Exemplar a CC-NUMA
system. The memory latency within and between nodes differs by about
a factor of 3-3.5.

Measured Performances: In Dongarra (1999) a speed of 31.59 Gflop/s
is reported for a 1-cabinet, 32 processor system when solving a 41,000-
order dense linear system, an efficiency of 56% on this problem.

Overview of High Performanace Computers 31

8.11. The IBM RS/6000 SP

Machine type: RISC-based distributed-memory multi-processor.
Models: IBM RS/6000 SP.

Operating system: AIX (IBM’s Unix variant).

Connection structure: Q-switch.

Compilers: XL Fortran (Fortran 90), HPF, XL C, C++.
Vendors information Web page:
www.rs6000.ibm.com/hardware/largescale/index.html.

Year of introduction: 1998 (POWER3 SMP), 1997 (P2SC).

System parameters

Model RS/6000 SP POWER3 SMP RS/6000 SP P2SC
Clock cycle 3 ns 6.25 ns

Theor. peak perform.

Per Proc. (64-bits) 666 Mflop/s 640 Mflop/s
Maximal variable (see remarks) variable (see remarks)
Memory/node <4 GB <1/2 GB (see remarks)
Memory/maximal <0.5 TB <1TB

No. of processors 8-512 8-512

Comm. bandwidth

Point-to-point 160 MB/s 160 MB/s

Remarks: The variety in the types of nodes that are available for the
RS/6000 SP is short of bewildering (IBM provides a 48 page document
for selecting the appropriate nodes in an SP system). We only discuss
the subset that is most relevant for scientific and technical computation,
i.e., the P2SC thin nodes and the POWER3 SMP thin and wide nodes.
The P2SC nodes can deliver 4 floating-point results per clock cycle. As
the fastest of the P2SC nodes has a clock cycle of 6.25 ns, it has a
peak performance of 640 Mflop/s while a single POWERS3 processor can
attain 666 Mflop/s at maximum with 2 floating-point units. Another
difference is that the P2SC nodes have a primary data cache of 128 KB
while it is only 64 KB on the POWERS chip. On the other hand, the
P2SC has no secondary cache while the POWERSJ has an up to 16 MB
secondary cache.

IBM positions the P2SC-based and POWERS systems primarily for
the technical/scientific market. In the parameter list above we included
the presently fastest P2SC and the POWERS3 processors. POWER3s
can be combined into a 2-way SMP cluster with a peak performance of
1.33 Gflop/s.

The SP configurations are housed in columns, “tall” or “short” frames,
of which the tall frames can contain 8-16 processor nodes and short

32

frames half of the tall frames. How many actually are installed depends
on the type of node employed: a thin node occupies half of the space
of a wide node. Although the processors in these nodes are basically
the same there are some differences. At the time of writing no 6.25
ns clock P2SC wide nodes were available yet. The fastest in this class
feature a clock cycle of 7.4 ns giving a peak speed of 540 Mflop/s. For
the POWERS nodes there is no difference in speed between thin and
wide nodes. Each frame is recommended to be configured with at least
one wide node, although a frame completely filled with thin nodes seems
possible according to the documentation.

POWER3 wide nodes have 10 PCI slots against only 2 PCI slots in
the thin node. The P2SC-based nodes use MicroChannel instead of PCI
busses and wide nodes have a double amount of MicroChannel slots (8
instead of 4) as compared to the thin nodes. Furthermore, the maximum
memory of a P2SC wide node can be 2 GB whereas the maximum for
thin nodes is 1 GB. For POWERS3 nodes there is no difference between
thin and wide nodes with respect to the maximum amount of memory.
IBM envisions the wide node more or less as a server for a frame and rec-
ommends configurations of one wide node packaged with 14 thin nodes
per column (although this may differ with the needs of the user). The
RS/6000 SP is accessed through a front-end control workstation that
also monitors system failures. Failing nodes can be taken off line and
exchanged without interrupting service. In addition, file servers can be
connected to the system while every node can have up to 2 GB. This
can greatly speed up applications with significant I/O requirements.

The so-called high-performance switch that connects the nodes is an
Q-switch as described in section 5 and, although we mentioned only
the highest speed option for the communication, the high-performance
switch, there is a wide range of other options that could be chosen in-
stead: Ethernet, Token Ring, FDDI, etc., are all possible. The best
measured speeds of the high-performance switch are about 110 MB/s
in point-to-point communication while a bandwidth for the communica-
tion ports of 160 MB/s is quoted for P2SC nodes and of 480 MB/s for
POWERS nodes. Unfortunately, the online (semi)technical information
of IBM is not very helpful in providing more detailed information with
regard to the other properties of the switch so, for instance, a bisec-
tion bandwidth cannot be provided at this point. The high-performance
switch has some redundancy built into it for greater reliability.

Applications can be run using PVM or MPI. Also High Performance
Fortran is supported, both a proprietary version and a compiler from
the Portland Group. IBM uses its own PVM version from which the
data format converter XDR has been stripped. This results in a lower

Overview of High Performanace Computers 33

overhead at the cost of generality. Also the MPI implementation, MPI-
F, is optimized for the RS/6000 SP systems.

Commercially, systems up to 512 nodes are marketed, but larger sys-

tems are possible. In fact, the POWERS3 node is a first commercial
spin-off of the ASCI Blue Pacific system with more than 1300 proces-
sors (see ASCI (2001)).
Measured Performances: In Dongarra (1999) a performance of 547.0
Gflop/s for a 475 604e based node (1900 processor) system is reported
for solving a 244000-order dense linear system, while a POWERS3 based
system with 1344 processors attained a speed of 468.2 Gflop/s on a
similar problem of order 205000. This amounts to efficiencies of 43 and
52%, respectively.

8.12. The Meiko Computing Surface 2

Machine type: Distributed-memory multi-vector-processor.

Models: Computing Surface 2.

Operating system: Internal OS transparent to the user, Solaris (Sun’s
Unix variant) on the front-end system.

Connection structure: Multistage crossbar.

Compilers: Extended Fortran 77, ANSI C.

Vendors information Web page: www.meiko.com.

Year of introduction: 1994.

System parameters

Model Computing Surface 2
Clock cycle 20 ns

Theor. peak performance

Per Proc. (64-bits) 200, 40 Mflop/s
Maximal 204.8 Gflop/s
Memory/node 32-128, 32-512 MB
Memory/maximal <128 GB

No. of processors 8-1024
Communication bandwidth

Point-to-point (bi-directional) 50 MB/s

Remarks: The CS-2 features 8-1,024 processor elements (PEs) which
can be either scalar or vector nodes. Apart from a separate communica-
tions module, these PEs contain either a SuperSPARC or a SuperSPARC
+ 2 pVP vector-processors. The speed of a scalar PE is estimated to
be 40 Mflop/s (at a 20 ns clock) and 200 Mflop/s for the vector PEs
for 64-bit precision. The pVP modules are manufactured by Fujitsu.
The speed at 32-bit precision is doubled with respect to 64-bit operation

34

and, unlike the early Fujitsu VP products, use IEEE 754 floating-point
format. The memory has 16 banks and to avoid memory bank conflicts
the CS-2 has the interesting option to have scrambled allocation of ad-
dresses, thus guaranteeing good access at potential problematic strides
2, 4, etc.

The point-to-point communication speed is 100 MB/s (50 MB/s in
each direction). Because the communication happens through multi-
level crossbars, called “layers” by Meiko, the aggregate bandwidth of
the system scales with the number of PEs, with a latency of 200 ns
per layer. As the maximum configuration of the machine contains 1,024
PEs, the theoretical peak performance at 64-bit precision is about 200
Gflop/s. It is possible to connect each PE to its own I/O devices to have
scalable parallel I/O with the scaling of other resources.

The Portland Group which has won some renown for its excellent
i860 compilers has developed the compilers for the CS-2. These include
Fortran 77, Fortran 90, and ANSI C. The compiler offers HPF data
distribution directives. Furthermore, some optimized standard linear
algebra and FFT routines are offered via a proprietary numerical library.

In the USA the machine is marketed by Meiko. In 1996 Meiko has

merged with Alenia, the same firm that also markets the Alenia Quadrics.
Although the new marketing policy never has been made clear, it may
be assumed that Alenia will market the system in Europe and the rest
of the world (see www.quadrics.com).
Measured Performances: In Dongarra (1999) a speed of 5.0 Gflop/s
on a 64 processor CS-2 is reported for the solution of an order 18688
dense linear system. From the NAS parallel benchmarks (NPB 1997)
some results on a 128 processor machine are given for class B problems:
EP took 21.16 seconds while 6.52 seconds was measured for the MG
problem.

8.13. The NEC Cenju-4

Machine type: RISC-based distributed-memory multi-processor.
Models: Cenju-4.

Operating system: Cenjuiox (Mach micro-kernel based Unix flavor).
Connection structure: Multistage crossbar.

Compilers: Fortran 77, Fortran 90, HPF (subset), ANSI C.
Vendors information Web page:
kiefer.gmd.de:8002/popcorn/services/0Overview.html.

Year of introduction: 1998.

Overview of High Performanace Computers 35

System parameters

Model Cenju-4
Clock cycle 5 ns
Theor. peak performance

Per Proc. (64-bits) 400 Mflop/s
Maximal 410 Gflop/s
Memory/node <512 MB
Memory/maximal <512 GB
No. of processors 8-1024
Communication bandwidth

Point-to-point 200 MB/s

Remarks: The name Cenju-4 suggests that there have been predeces-
sors, Cenju-1, Cenju-2, and Cenju-3. This is indeed the case but the first
two systems have only been used internally by NEC for research purposes
and were never officially marketed. The Cenju-3 was also placed exter-
nally but, again, mostly for evaluation purposes. The same is the case
for the present Cenju-4: it is not actively marketed, although NEC will
have no objections to selling it. Officially, the Cenju-series is regarded
by NEC as systems to gain experience in massively parallel computing
and to develop the proper tools for it.

The Cenju-4 is based on the MIPS R10000 RISC processor. All pro-
cessors have, apart from their on-chip 32 KB primary data and instruc-
tion cache, a secondary cache of 1 MB to mitigate the problems that
arise in the high data usage of the CPU.

The interconnection type used in the Cenju is a multistage crossbar
build from 4 x4 modules that are pipelined. So, in a full configuration the
maximal number of levels in the crossbar to be traversed is six. The peak
transfer rate of the crossbar is quoted as 200 MB/s irrespective of the
data placement. Preliminary measurements of the author of this report
show that the practical transfer rate for point-to-point communication
is at least 175 MB/s with MPI; a quite high efficiency.

The system needs a front-end processor like the NEC EWS4800 (func-
tionally equivalent to Silicon Graphics workstations) or SUN. The I/0
requirements have to be fulfilled by the front-end system as the Cenju
does not have local (distributed) I/O capabilities.

There is some software support that should make the programmer’s
life somewhat easier. The library PARALIB/CJ contains proprietary
functions for forking processes, barrier synchronization, remote proce-
dure calls, and block transfer of data. Like on the Cray T3E (8.17), the
Hitachi SR8000 (8.9), and on the Meiko CS-2 (8.12) the programmer has
the possibility to write/read directly to/from non-local memories which
avoids much message passing overhead.

36

Measured Performances: No systematic performance measurement
have been done yet on the Cenju-4. However, from comparative studies
it seems that the speed on some applications is presently about 2/3 of
an equivalent SGI R10000 node due to a different compiler technology
(Cassirer and Steckel 1998). Nagel reports a speed of 90-100 Mflop/s
for in-cache matrix-matrix multiplication in Fortran 90 per node (Nagel
1998).

8.14. The NEC SX-5 series

Machine type: Shared-memory multi-vector-processor.

Models: SX-5/8 SX-5/16, SX-5M.

Operating system: Super-UX (Unix variant based on BSD V.4.3
Unix).

Compilers: Fortran 90, HPF, ANSI C, C++.

Vendors information Web page: www.ess.nec.de — SX-5 Series.
Year of introduction: 1998.

System parameters

Model SX-5/8 SX-5/16 | SX-5Mz
Clock cycle 4 ns 4 ns 4 ns
Theor. peak performance

Per Proc. (64-bits) 8 Gflop/s 8 Gflop/s | 8 Gflop/s
Maximal

Single frame: 64 Gflop/s | 128 Gflop/s —
Multi frame: — — 4 Tflop/s
Main Memory (per frame) | <64 GB <128 GB <4 TB
No. of processors 4-8 8-16 8-512

Remarks: The SX-5 series is offered is three models: a single-frame
model that can house at most 8 CPUs (SX-5/8), a single-frame model
containing up to 16 CPUs (SX-5/16), and multi-frame models (SX-5Mz)
where £ = 2,...,32 in which 2-32 single-frame systems are coupled
into a larger system. There are two ways to couple the SX-5 frames
in a multi-frame configuration: NEC provides a full crossbar, the so-
called IXS crossbar to connect the various frames together at a speed
of 16 GB/s for point-to-point out-of-frame communication (128 GB/s
bi-sectional bandwidth for a maximum configuration). In addition, a
HiPPI interface is available for inter-frame communication at lower cost
and speed.

Every CPU contains 16 functional unit pipe sets. As the clock cycle is
4 ns and each pipe set is able to deliver 2 floating-point results per cycle,
the total maximum performance is 8 Gflop/s per CPU. The bandwidth

37

Overview of High Performanace Computers

from memory to the CPUs is 32 64-bit words per cycle per CPU. With a
replication factor of 16 pipe sets this is enough to provide two operands
per pipe set but it is not sufficient to transport the results back to
the memory at the same time. So, some trade-offs with the re-use of
operands have to be made to attain the peak performance.

In contrast with its predecessor, the SX-4, the SX-5 is not offered
anymore with faster, but more expensive and bulkier SRAM memory.
The systems are exclusively manufactured with Synchronous DRAM
memory.

The technology used is CMOS. This lowers the fabrication costs and
the power consumption appreciably (the same approach is being used in
the Fujitsu VPP700 and the SGI/Cray SV1, see section 8.7 and 8.16)
and all models are air cooled.

For distributed computing there is an HPF compiler and for message
passing optimized MPI (MPI/SX) is available.

Measured Performances: The first systems just have been delivered
(Dec. 1998). Therefore, no independent performance figures are avail-
able at this time.

8.15. The Silicon Graphics Origin series

Machine type: RISC-based CC-NUMA system.

Models: Origin 200, Origin 2000.

Operating system: IRIX (SGI’s Unix variant).
Connection structure: Crossbar, hypercube (see remarks).
Compilers: Fortran 77, Fortran 90, HPF, C, C++, Pascal.
Vendors information Web page:
www.sgli.com/Products/hardware/servers/index.html.
Year of introduction: 1996.

System parameters

Model Origin 200 | Origin 2000
Clock cycle 4 ns 4 ns
Theor. peak performance

Per Proc. (64-bits) 500 Mflop/s | 500 Mflop/s
Maximal 2 Gflop/s 64 Gflop/s
Memory <4 GB <256 GB
No. of processors 1-4 2-128
Communication bandwidth

Point-to-point 780 MB/s 780 MB/s
Aggregate peak 3.1 GB/s 99.8 GB/s
Bisectional 1.6 GB/s 82 GB/s

38

Remarks: The Origin 2000 is the latest high-end parallel server mar-
keted by SGI. The basic processor is the MIPS R10000 which is now
offered at a clock cycle of 4 ns. A maximum of 128 processors can be
configured in the system. The interconnection is somewhat hybrid: 4
CPUs on two node cards can communicate directly with the memory
partitions of each other via the hub, a 4-ported non-blocking crossbar.
Hubs can be coupled to other hubs in a hypercube fashion. Although
the standard maximal configuration of an Origin2000 contains 128 pro-
cessors, on special request larger systems can be build with the same
technology. This was for instance done for the ASCI Blue Mountain
project (ASCI 2001).

The machine is a typical representative of the CC-NUMA class of sys-
tems. The memory is physically distributed over the node boards but
there is one system image. Because of the structure of the system, the
bi-sectional bandwidth of the system remains constant from 4 processors
on: 82 GB/s. This is a large improvement over the earlier PowerChal-
lenge systems which possessed a 1.2 GB/s bus.

The Origin 200 is a smaller configuration, using the same crossbar as
the Origin 2000 but without the need for the hypercube connections used
in the latter. Effectively, it is a SMP system because of the uniform ac-
cess of the memory modules. Therefore, also the bi-sectional bandwidth
is identical to the point-to-point bandwidth: 1.6 GB/s.

Parallelization is done either automatically by the (Fortran or C) com-
piler or explicitly by the user, mainly through the use of directives. All
synchronization, etc., has to be done via memory. This may cause po-
tentially a fairly large parallelization overhead. Also a message passing
model is allowed on the Origin using the optimized SGI versions of PVM,
MPI, and the SGI/Cray-specific shmem library. Programs implemented
in this way will possibly run very efficiently on the system.

A nice feature of the Origins is that it may migrate processes to nodes

that should satisfy the data requests of these processes. So, the overhead
involved in transferring data across the machine are minimized in this
way. The technique is reminiscent of the late Kendall Square Systems
although in these systems the data were moved to the active process.
SGI claims that the time for non-local memory references is on average
about 3 times longer than for local memory references.
Measured Performances: In Dongarra (1999) a speed of 1.608 Tflop/s
out of 2.52 was measured on a system with 5040 processors on the ASCI
Blue Mountain machine for the solution of a linear system with a size
of 374400, an efficiency of 64%. Furthermore, an extensive benchmark
report from the EuroBen Foundation is available for the regular Ori-
gin2000 configuration (van der Steen 1998).

Overview of High Performanace Computers 39

8.16. The SGI/Cray Research Inc. SV1

Machine type: Shared-memory multi-vector-processor.
Models: SGI/Cray SV1-A, SV1-1, SV1 Supercluster.
Operating system: UNICOS (Cray Unix variant).
Compilers: Fortran 90, C, C++, Pascal, ADA.
Vendors information Web page: www.sgi.com/sv1/
Year of introduction: 1998.

System parameters

Model SGI/Cray SV1-A | SGI/Cray SV1-1 | SV1 Supercluster
Clock cycle 3.33 ns 3.33 ns 3.33 ns
Theor. peak perform.

Per Proc. 1.2/4.8 Gflop/s 1.2/4.8 Gflop/s 1.2/4.8 Gflop/s
Maximal 19.2 Gflop/s 38.4 Gflop/s 1.2 Tflop/s
Memory <16 GB <32 GB <1 TB
No. of processors 8-16 8-32 <1024
Memory bandwidth

Memory—Cache 7.7 GB/s 7.7 GB/s 7.7 GB/s
Cache-CPU 9.6 GB/s 9.6 GB/s 9.6 GB/s
Aggregate 30.7 GB/s 61.4 GB/s —
Node-node (bi-direct.) — — 1 GB/s

Remarks: The SGI/Cray SV1 is the successor both to the CMOS-based
Cray J90 and the Cray T90 which was based on ECL technology. The
SV1 systems are CMOS-based and therefore much cheaper to manu-
facture than the ECL-based systems. In this respect SGI is following
the trend set in by Fujitsu and NEC a few years ago with their vector
systems (see 8.7 and 8.14).

The single-cabinet configurations come in two sizes, the SV1-A and
the SV1-1 that can house 4 and 8 processor boards, respectively. Each
processor board contains 4 CPUs that can deliver a peak rate of 4
floating-point operations per cycle, amounting to a theoretical peak per-
formance of 1.2 Gflop/s per CPU. However, 4 CPUs can be coupled
across CPU boards in a configuration to form a so-called Multi Stream-
ing Processor (MSP) resulting in a processing unit that has effectively
a theoretical peak performance of 4.8 Gflop/s. The configuration into
MSPs and/or single CPU combinations can be done via software at start-
up time. The vector start-up time for the single CPUs is smaller than
for MSPs, so for small vectors single CPUs might be preferable while for
programs containing long vectors the MSPs should be of advantage. The
number of combinations that can be made is large but at least 8 CPUs
must be configured as single 1.2 Gflop/s CPUs. So a full SV1-1 cabinet

40

may be configured as 32 single 1.2 Gflop/s CPUs or as 1-6 MSPs with
the remaining processors as single CPUs.

Another new feature in the SV1 is a combined scalar and vector cache
of 256 KB per CPU. This cache is important because the bandwidth of
7.7 GB/s per CPU board amounts to only 0.8 eight-byte operands per
cycle. The cache can ship 1 operand per cycle to a CPU. This relative
bandwidth is much smaller than what was offered in the former Cray
systems which makes the cache all the more important.

Like in the NEC SX-5 single cabinets can be combined to form a clus-
ter (Supercluster in SGI/Cray terminology) by a so-called GigaRing.
The GigaRing, which is also used to coupled I/O sub-systems, is com-
prised of two counter-rotating rings with a bandwidth of 1 GB/s each.
Where the systems in a cabinet are SM-MIMD systems, a multi-cabinet
Supercluster is an DM-MIMD system and can be operated in parallel
only by some parallel programming model like MPI or HPF.
Measured Performances: The importance of the cache is well illus-
trated by the performance of a matrix-matrix multiplication as occurs in
the EuroBen Benchmark. With a single processor (called Single Stream
Processing, SSP, by SGI) and with the cache a peak speed of 999 Mflop/s
is observed at a matrix order of n = 300 and decreasing to a speed of 666
Mflop/s at an order of n = 1000. Without the cache the speed reaches
at an order of n = 300 a speed of 625 Mflop/s and slowly increases to
about 650 Mflop/s at n = 1000. In MSP mode this behavior is simi-
lar: with cache the speed at n = 100 is 2.61 Gflop/s, decreasing to 1.41
Gflop/s at n = 1000. Without the cache the observed speed at n = 100
is 1.0 Gflop/s and rises to 1.4 Gflop/s at n = 1000. This means that
for modestly sized problems the cache can boost the performance with
a factor 1.5-2. The efficiency in MSP mode is presently not too high:
just over 50% in a favorable situation. As the MSP facility is very new,
one may expect that the efficiency will increase considerably in the near
future.

8.17. The SGI/Cray Research Inc. T3E

Machine type: RISC-based distributed-memory multi-processor.
Models: T3E, T3E-900, T3E-1200.

Operating system: UNICOS/mk (micro kernel-based Unix).
Connection structure: 3-D Torus.

Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++.
Vendors information Web page:
www.cray.com/products/systems/crayt3e/

Overview of High Performanace Computers

System parameters

Year of introduction: T3E, T3E-900: 1996, T3E-1200: 1997.

41

Model T3E-900 T3E-1200
Clock cycle 2.2 ns 1.67 ns
Theor. peak performance

Per Proc. (64-bits) 900 Mflop/s | 1200 Mflop/s
Maximal 1843 Gflop/s | 2458 Gflop/s
Memory/node <2GB <2GB
Memory /maximal <4TB <4TB
No. of processors 62048 6-2048
Communication bandwidth

Point-to-point 300 MB/s 300 MB/s

Remarks: The T3E is the second generation of DM-MIMD systems
from SGI/Cray. Lexically, it follows in name after its predecessor T3D
which name referred to its connection structure: a 3-D torus. In this
respect it has still the same interconnection structure as the T3D. In
many other respects, however, there are quite some differences. A first
and important difference is that no front-end system is required anymore
(although it is still possible to connect to SGI/Cray vector systems).
The systems up to 128 processors are air-cooled. The larger ones, from
256-2048 processors, are liquid cooled.

The T3E uses the DEC Alpha 21164 for its computational tasks just
like the Avalon A12 (see 8.2). In 1997, a T3E-1200 was introduced that
uses 21164 A processors at a clock rate of only 1.67 ns but that is identical
in any other aspect to the T3E-900. SGI stresses, that the processors
are encapsulated in such a way that they can be exchanged easily for
any other (faster) processor as soon as this would be available without
affecting the macro-architecture of the system.

Each node in the system contains one processing element (PE) which
in turn contains a CPU, memory, and a communication engine that takes
care of communication between PEs. The bandwidth between nodes
is quite high: 300 MB/s, bi-directional. Like the T3D, the T3E has
hardware support for fast synchronization. E.g., barrier synchronization
takes only one cycle per check.

In the micro-architecture most changes have taken place with the
transition from the T3D to the T3E. Firstly, there is only one CPU
per node instead of two, which removes a source of asymmetry between
processors. Secondly, the new node processor has a 96 KB 3-way set-
associative secondary cache which may relieve some of the problems of
data fetching that were present in the T3D where only a primary cache
was present. Third, the Block Transfer Engine has been replaced by a

42

set of E-registers and streaming registers that are much more flexible
and that remove some odd restrictions on the size of shared arrays and
the number processes when using Cray-specific PVM. An interesting
additional feature is the availability of 32 contexts per processor which
opens the door for multiprocessing.

In the T3D all I/O had to be handled by the front-end, a system
at least from the Cray Y-MP/E class. In the T3E distributed I/O is
present. For every 8 PEs an I/O channel can be configured in the air-
cooled systems and 1 I/O channel per 16 nodes in the liquid-cooled
systems. The maximum bandwidth for a channel is about 1 GB/s, the
actual speed will be in the order of 700 MB/s.

The T3E supports various programming models. Apart from PVM3

and MPI for message passing and HPF for data distribution, a Cray
proprietary one-sided communication library, the so-called shmem library
can be employed for message passing. In addition, the BSP library (see
Hill et al. (1997)), also a one-sided message passing library is available.
The shmem library is implemented close to the hardware and shows a
very low latency of only 1.6 us.
Measured Performances: In Dongarra (1999) a speed of 1.127 Tflop/s
is reported for the solution of a dense linear system of order 148800 on
a T3E-1200 with 1488 processors. The efficiency for such an exercise is
63%.

8.18. The Sun E10000 Starfire

Machine type: RISC-based shared-memory multiprocessor.
Models: E10000 Starfire.

Operating system: Solaris (Sun’s Unix flavor).
Compilers: Fortran 77, Fortran 90, C, C++.

Vendors information Web page:
www.sun.com/servers/ultra enterprise/10000/

Year of introduction: 1997.

System parameters

Model E10000
Clock cycle 4 ns
Theor. peak performance

Per Proc. (64-bits) 500 Mflop/s
Maximal 32 Gflop/s
Main Memory <64 GB
No. of processors 16-64

Overview of High Performanace Computers 43

Remarks: The Starfire E10000 is the largest of a series of Ez000 servers,
where z can be 3, 4, 5, 6, 10. We only discuss this largest model as Sun
has clearly positioned this machine themselves as a system for large-scale
high performance computing. The basic processor is a 4 ns cycle Ultra-
SPARC processor with a theoretical peak performance of 500 Mflop/s.
Up to 64 processors are connected by a 64x64 crossbar, the largest
crossbar employed commercially. This crossbar, called the Gigaplane-
XB, also makes it different from the lower-end models from the Ex000
series as these systems use a bus interconnect between processors. The
system is built up from system boards each containing up to 4 proces-
sors, 2 level-2 caches (< 4 MB) and 4 memory banks that plug into the
Gigaplane crossbar which thus acts as a backplane. The caches are kept
coherent by a “snoopy bus” protocol, i.e., each cache is aware of the
(in)validation of data by continuous monitoring the data on the back-
plane and updating their copies accordingly.

The Gigaplane crossbar connects to the processors with separate data
and address lines which recognizes the fact that most data transfers
are essentially point-to-point transfers while addresses often have to be
broadcasted to many or all processors. The effective aggregate band-
width for data is 102.4 GB/s with a point-to-point speed of 1.6 GB/s
(theoretical peak).

The Starfire is a typical SMP machine with provisions for shared-
memory parallelism in the Fortran and C(++) compilers by directives
in the source code. Sun has joined the OpenMP consortium for standard-
izing the shared-memory programming model. Of course it is possible
to cluster E10000s servers and use such a cluster in a DM-MIMD way.
Measured Performances: In Dongarra (1999) a speed of 26.45 Gflop/s
is reported for a 64 processor machine in solving an order 19968 linear
system. The efficiency for this problem is 83%. In Dongarra (1999) also
results for a 4-way cluster with a clock cycle of 3 ns are reported. This
256 processor system reached a speed of 123.9 Gflop/s in solving a linear
system of order 80640. This amounts to an efficiency of 72%.

8.19. The Tera MTA

Machine type: Distributed-memory multi-processor.

Models: MTA-zC, z =1,...,256.

Operating system: Unix BSD4.4 + proprietary micro kernel.
Compilers: Fortran 77 (Fortran 90 extensions), HPF, ANSI C, C++.
Vendors information Web page: www.tera.com/

Year of introduction: 1997.

44

System parameters

Model MTA-zC
Clock cycle 3 ns
Theor. peak performance

Per Proc. (64-bits) 1 Gflop/s
Maximal 256 Gflop/s
Main Memory < 256 GB
No. of processors 16-256

Remarks: Although the memory in the MTA is physically distributed,
the system is emphatically presented as a shared-memory machine (with
non-uniform access time). The latency incurred in memory references
is hidden by multi-threading, i.e., usually many concurrent program
threads (instruction streams) may be active at any time. Therefore,
when for instance a load instruction cannot be satisfied because of mem-
ory latency the thread requesting this operation is stalled and another
thread of which an operation can be done is switched into execution.
This switching between program threads only takes 1 cycle. As there
may be up to 128 instruction streams per processor and 8 memory ref-
erences can be issued without waiting for preceding ones, a latency of
1024 cycles can be tolerated. References that are stalled are retried from
a retry pool. A construction that worked out similarly was to be found
in the late Stern Computing Systems SSP machines (see in section 9).

The connection network connects a 3-D cube of p processors with sides
of p'/3 of which alternately the z- or y axes are connected. Therefore, all
nodes connect to four out of six neighbors. In a p processor system the
worst case latency is 4.5p'/3 cycles; the average latency is 2.25p/3 cycles.
Furthermore, there is an I/O port at every node. Each network port is
capable of sending and receiving a 64-bit word per cycle which amounts
to a bandwidth of 5.33 GB/s per port. In case of detected failures, ports
in the network can be bypassed without interrupting operations of the
system.

Although the MTA should be able to run “dusty-deck” Fortran pro-
grams because parallelism is automatically exploited as soon as an op-
portunity is detected for multi-threading, it may be (and often is) worth-
while to explicitly control the parallelism in the program and to take
advantage of known data locality occurrences. MTA provides handles
for this in the form of compiler directives, library routines, including
synchronization, barrier, and reduction operations on defined groups of
threads. Controlled and uncontrolled parallelism approaches may be
freely mixed. Furthermore, each variable has a full/empty bit associ-
ated with it which can be used to control parallelism and synchronization

Overview of High Performanace Computers 45

with almost zero overhead. HPF will also be supported for SPMD-style
programming.

Measured Performances: The company has presently delivered a 4-
processor system to the San Diego Supercomputing Center. This system
runs at a clock cycle of 4.4 ns instead of the planned 3 ns. Consequently,
the peak performance of a processor is 450 Mflop/s. Using the EuroBen
Benchmark (van der Steen 1991) a performance of 388 Mflop/s out of
450 Mflop/s was found for an order 800 matrix-vector multiplication,
an efficiency of 86%. On 4 processors a speed of 1 Gflop/s out of 1.8
Gflop/s was found, an efficiency of 56% on the same problem. For 1-D
FFTs up to 1 million elements a speed of 106 Mflop/s was found on
1 processor and the about the same speed on 4 processors due to an
insufficient availability of parallel threads.

9. Systems that disappeared from the list

As already stated in the introduction the list of systems is not com-
plete. On one hand this is caused by the sheer number of systems that
are presented to the market and are often very similar to systems de-
scribed above (for instance, the Volvox system not listed was very similar
but not equivalent to the former C-DAC system and there are numerous
other examples). On the other hand, there are many systems that are
still in operation around the world, often in considerable quantities that
for other reasons are excluded. The most important reasons are:

m The system is not marketed anymore. This is generally for one of
two reasons:

— The manufacturer is out of business.

— The manufacturer has replaced the system by a newer model
of the same type or even of a different type.

m The system has become technologically obsolete in comparison to
others of the same type. Therefore, listing them is not sensible
anymore.

Below we present a table of systems that fall into one of the categories
mentioned above. We think this may have some sense to those who come
across machines that are still around but are not the latest in their fields.
It may be interesting at least to have an indication how such systems
compare to the newest ones and to place them in context.

It is good to realism that although systems have disappeared from
the section above they still may exist and are actually sold. However,
their removal stems in such cases mainly from the fact that they are not
serious candidates for high-performance computing anymore.

46

The table is, again, not complete and admittedly somewhat arbitrary.
The data are in a highly condensed form: the system name, system type,
theoretical maximum performance of a fully configured system, and the
reason for their disappearance is given. The arbitrariness lies partly in
the decision which systems are still sufficiently of interest to include and
which are not.

We include also both the year of introduction and the year of exit of
the systems when they were readily accessible. These time-spans could
give a hint of the dynamics that governs this very dynamical branch of
the the computer industry.

m Machine: The Alex AVX 2.

— Year of introduction: 1992.

— Year of exit: 1997.

Type: RISC-based distributed-memory multi-processor.

Theoretical Peak performance : 3.84 Gflop/s.

Reason for disappearance: System is obsolete, there is no
new system planned.

= Machine: Alliant FX/2800.

— Year of introduction: 1989.
— Year of exit: 1992.

— Type: Shared-memory vector-parallel, max. 28 processors.

Theoretical Peak performance: 1120 Mflop/s.

Reason for disappearance: Manufacturer out of business.
m Machine: The AxilSCC.

— Year of introduction: 1996.
— Year of exit: 1997.

— Type: RISC-based distributed-memory system, max. 512
processors.

— Theoretical Peak performance : 76.8 Gflop/s.

— Reason for disappearance: System is not marketed any-
more by Axil.

m Machine: BBN TC2000.

— Year of introduction: ?

Overview of High Performanace Computers 47

Year of exit: 1990.

— Type: Virtual shared-memory parallel, max. 512 processors.

Theoretical Peak performance: 1 Gflop/s.

Reason for disappearance: Manufacturer has discontin-
ued marketing parallel computer systems.

m Machine: Cambridge Parallel Processing DAP Gamma.

— Year of introduction: 1986.
— Year of exit: 1995.
— Type: Distributed-memory processor array system, max. 4096

— processors. Theoretical Peak performance: 1.6 Gflop/s
(32-bit).

— Reason for disappearance: replaced by newer Gamma II
Plus series (8.3).

s Machine: C-DAC PARAM 9000/SS.

— Year of introduction: 1995.
Year of exit: 1997.

— Type: Distributed-memory RISC based system, max. 200
Processors.

— Theoretical Peak performance: 12.0 Gflop/s.

Reason for disappearance: replaced by newer PARAM
OpenFrame series (8.4).

= Machine: Convex SPP-1000/1200/1600.

Year of introduction: 1995 (SPP-1000).
— Year of exit: 1996 (SPP-1600).

— Type: Distributed-memory RISC based system, max. 128
Processors.

Theoretical Peak performance: 25.6 Gflop/s

Reason for disappearance: replaced by newer HP Exem-
plar V2500 system (8.10).

s Machine: Cray Computer Corporation Cray-2.

— Year of introduction: 1982.
— Year of exit: 1992.

48

Type: Shared-memory vector-parallel, max. 4 processors.
Theoretical Peak performance: 1.95 Gflop/s.

Reason for disappearance: Manufacturer out of business.

m Machine: Cray Computer Corporation Cray-3.

Year of introduction: 1993.

Year of exit: 1996.

Type: Shared-memory vector-parallel, max. 16 processors.
Theoretical Peak performance: 16 Gflop/s.

Reason for disappearance: Manufacturer out of business.

m Machine: Cray Research Inc. APP.

Year of introduction: 1993.
Year of exit: 1995.

Type: Shared-memory RISC based system, max. 84 proces-
SOrs.

Theoretical Peak performance: 6.7 Gflop/s.

Reason for disappearance: Product line discontinued, gap
was filled by Cray J90 (see below).

m Machine: Cray T3D.

Year of introduction: 1994.
Year of exit: 1996.

Type: Distributed-memory RISC based system, max. 2048
Processors.

Theoretical Peak performance: 307 Gflop/s.

Reason for disappearance: replaced by newer Cray T3E
(8.17).

» Machine: Cray T3E Classic.

Year of introduction: 1996.
Year of exit: 1997.

Type: Distributed-memory RISC based system, max. 2048
processors.

Theoretical Peak performance: 1228 Gflop/s.

Overview of High Performanace Computers 49

— Reason for disappearance: replaced Cray T3Es with faster
clock. (8.17).

m Machine: Cray J90.

— Year of introduction: 1994.
— Year of exit: 1998.
— Type: Shared-memory vector-parallel, max. 32 processors.

— Theoretical Peak performance: 6.4 Gflop/s.

Reason for disappearance: replaced by newer SGI/Cray
SV1 (8.16).

s Machine: Cray Research Inc. Cray Y-MP, Cray Y-MP M90.

— Year of introduction: 1989 (Cray Y-MP).
— Year of exit: 1994 (Cray Y-MP M90).
— Type: Shared-memory vector-parallel, max. 8 processors.
— Theoretical Peak performance: 2.6 Gflop/s.
— Reason for disappearance: replaced by newer C90 (see
below).
s Machine: Cray Y-MP C90.

— Year of introduction: 1994.
— Year of exit: 1996.
— Type: Shared-memory vector-parallel, max. 16 processors.

— Theoretical Peak performance: 16 Gflop/s.

Reason for disappearance: replaced by newer T90 (see
below).

s Machine: Cray Y-MP T90.

Year of introduction: 1995.
Year of exit: 1998.

Type: Shared-memory vector-parallel, max. 32 processors.

Theoretical Peak performance: 58 Gflop/s.

Reason for disappearance: replaced by newer SGI/Cray
SV1 (8.16).

m Machine: Digital Equipment Corp. Alpha farm.

— Year of introduction: —.

50

Year of exit: 1994.

Type: Distributed-memory RISC based system, max. 4 pro-
Cessors.

Theoretical Peak performance: 0.8 Gflop/s.

Reason for disappearance: replaced by newer AlphaServer
clusters (see below).

m Machine: Digital Equipment Corp. AlphaServer 8200 & 8400.

Year of introduction: —.
Year of exit: 1998.

Type: Distributed-memory RISC based systems, max. 6
processors

(AlphaServer 8200) or 14 (AlphaServer 8400). Theoretical
Peak performance: 7.3 Gflop/s, resp. 17.2 Gflop/s.

Reason for disappearance: replaced by newer Compaq
GS60 and GS140 (8.5).

s Machine: Fujitsu AP1000.

Year of introduction: 1991.
Year of exit: 1996.

Type: Distributed memory RISC based system, max. 1024
Processors.

Theoretical Peak performance: 5 Gflop/s.

Reason for disappearance: replaced by the AP3000 sys-
tems (8.6).

s Machine: Fujitsu VPP500 series.

Year of introduction: 1993.
Year of exit: 1995.

Type: Distributed-memory multi-processor vector-processors,
max.

222 processors. Theoretical Peak performance: 355 Gflop/s.

Reason for disappearance: replaced by the VPP300/700
series (8.7).

s Machine: Fujitsu VPX200 series.

Year of introduction: —.

Overview of High Performanace Computers 51

Year of exit: 1995.

— Type: Single-processor vector-processors.

— Theoretical Peak performance: 5 Gflop/s.

Reason for disappearance: replaced by the VPP300/700
series (8.7).

m Machine: Hitachi S-3800 series.

Year of introduction: 1993.
Year of exit: 1998.

— Type: Shared-memory multi-processor vector-processors, max.
4

— processors. Theoretical Peak performance: 32 Gflop/s.
— Reason for disappearance: Replaced by the SR8000 (8.9).

m Machine: Hitachi SR2001 series.

Year of introduction: 1994.
Year of exit: 1996.

— Type: Distributed-memory RISC based system, max. 128
Processors.

— Theoretical Peak performance: 23 Gflop/s.
— Reason for disappearance: Replaced by successor SR2201
(see below).

m Machine: Hitachi SR2201 series.

— Year of introduction: 1996.
— Year of exit: 1998.

— Type: Distributed-memory RISC based system, max. 1024
Processors.

— Theoretical Peak performance: 307 Gflop/s.
— Reason for disappearance: Replaced by the newer SR8000
(8.9).
= Machine: HP/Convex C4600 series.

— Year of introduction: 1994.
— Year of exit: 1997.

— Type: Shared-memory vector-parallel, max. 4 processors.

52

Theoretical Peak performance: 3.24 Gflop/s.

Reason for disappearance: HP does not market the vector
product line anymore.

= Machine: IBM ES/9000 series.

Year of introduction: 1991.
Year of exit: 1994.

Type: Shared-memory vector-parallel system, max. 6 pro-
Cessors.

Theoretical Peak performance: 2.67 Gflop/s.

Reason for disappearance: IBM does not pursue high-
performance computing by this product line anymore.

m Machine: IBM SP1 series.

Year of introduction: 1992.
Year of exit: 1994.

Type: Distributed-memory RISC based system, max. 64
processors.

Theoretical Peak performance: 8 Gflop/s.

Reason for disappearance: Replaced by the newer RS/6000
SP (8.11).

s Machine: Intel Paragon XP.

Year of introduction: 1992.
Year of exit: 1996.

Type: Distributed-memory RISC based system, max. 4000
Processors.

Theoretical Peak performance: 300 Gflop/s.

Reason for disappearance: Except for a non-commercial
research system (the ASCI Option Red system at Sandia Na-
tional Labs.) Intel is not in the business of high-performance
computing anymore.

s Machine: Kendall Square Research KSR2.

Year of introduction: 1992.

Year of exit: 1994.

Overview of High Performanace Computers 53

— Type: Virtually shared-memory parallel, max. 1088 proces-
Sors.

— Theoretical Peak performance: 400 Gflop/s.
— Reason for disappearance: Kendall Square has terminated
its business.

m Machine: Kongsberg Informasjonskontroll SCALI.

— Year of introduction: 1996.
— Year of exit: 1997.

— Type: Distributed-memory RISC based system, max. 512
processors.

Theoretical Peak performance: 76.8 Gflop/s.

Reason for disappearance: Kongsberg does not market
the system anymore.

s Machine: MasPar MP-1, MP-2.

— Year of introduction: 1991 (MP-1).
— Year of exit: 1996.
— Type: Distributed-memory processor array system, max. 16384

— processors. Theoretical Peak performance: 2.4 Gflop/s
(64-bit, MP-2).

— Reason for disappearance: Systems are not marketed any-
more.

m Machine: Matsushita ADENART.

Year of introduction: 1991.
Year of exit: 1997.

— Type: Distributed-memory RISC based system, 256 proces-
sors.

Theoretical Peak performance: 2.56 Gflop/s.

Reason for disappearance: Machine is obsolete and no
new systems are developed in this line.

m Machine: Meiko CS-1 series.

— Year of introduction: 1989.
— Year of exit: 1995.
— Type: Distributed-memory RISC based system.

54

Theoretical Peak performance: 80 Mflop/s per processor.

Reason for disappearance: Replaced by the newer CS-2
(8.12).

m Machine: nCUBE 28S.

Year of introduction: 1993.

Year of exit: 1998.

Type: Distributed-memory system, max. 8192 processors.
Theoretical Peak performance: 19.7 Gflop/s.

Reason for disappearance: NCUBE has withdrawn from
the scientific and technical market. The nCUBE 2S is now
offered as a parallel multimedia server.

s Machine: nCUBE 3.

Year of introduction: — .

Year of exit: —

Type: Distributed-memory system, max. 10244 processors.
Theoretical Peak performance: 1 Tflop/s.

Reason for disappearance: Was announced several times
as the successor of the nCUBE 2S (see above) but was never
realized.

s Machine: NEC Cenju-3.

Year of introduction: 1994.

Year of exit: 1996.

Type: Distributed-memory system, max. 256 processors.
Theoretical Peak performance: 12.8 Gflop/s.

Reason for disappearance: replaced by newer Cenju-4 se-
ries (8.13).

m Machine: NEC SX-3R.

Year of introduction: 1993.
Year of exit: 1996.

Type: Shared-memory multi-processor vector processors, max.
4

Processors.
Theoretical Peak performance: 25.6 Gflop/s.

Overview of High Performanace Computers 55

— Reason for disappearance: replaced by newer SX-4 series
(see below).

s Machine: NEC SX-4.

— Year of introduction: 1995.
Year of exit: 1996.

— Type: Distributed-memory cluster of SM-MIMD vector pro-
Cessors,

— max. 256 processors. Theoretical Peak performance: 1
Tflop/s.

— Reason for disappearance: replaced by newer SX-5 series
(8.14).
m Machine: Parsys SN9000 series.

— Year of introduction: 1993.
— Year of exit: 1995.
— Type: Distributed-memory RISC based system, max. 2048.
— Theoretical Peak performance: 51.2 Gflop/s.
— Reason for disappearance: Replaced by the newer TA9000
(but see below).
m Machine: Parsys TA9000 series.

— Year of introduction: 1995.
— Year of exit: 1996.

— Type: Distributed-memory RISC based system, max. 512
processors.

— Theoretical Peak performance: 119.3 Gflop/s.

— Reason for disappearance: Parsys does not offer complete
system anymore. Instead it sells node cards based on the
TA9000 for embedded systems.

» Machine: Parsytec GC/Power Plus.

— Year of introduction: 1993.
— Year of exit: 1996.
— Type: Distributed-memory RISC based system.

Theoretical Peak performance: 266.6 Mflop/s per pro-
Cessor.

56

— Reason for disappearance: System has been replaced by
the Parsytec CC systems (see below).

» Machine: Parsytec CC series.

— Year of introduction: 1996.
— Year of exit: 1998.
— Type: Distributed-memory RISC based system.

Theoretical Peak performance: unspecified.

Reason for disappearance: Vendor has withdrawn from
the High-Performance computing market.

m Machine: Siemens-Nixdorf VP2600 series.

Year of introduction: ?
Year of exit: 1995.

Type: Single-processor vector-processors.

Theoretical Peak performance: 5 Gflop/s.

Reason for disappearance: replaced by the VPP300/700
series (8.7).

m Machine: Silicon Graphics PowerChallenge.
— Year of introduction: 1994.
— Year of exit: 1996.

— Type: Shared-memory multi-processor, max. 36 processors.

— Theoretical Peak performance: 14.4 Gflop/s.

Reason for disappearance: replaced by the SGI Origin
2000 (8.15).

m Machine: Stern Computing Systems SSP.

Year of introduction: 1994.
Year of exit: 1996.

Type: Shared-memory multi-processor, max. 6 processors.

Theoretical Peak performance: 2 Gflop/s.

Reason for disappearance: Vendor terminated its business
just before delivering first systems.

= Machine: Thinking Machine Corporation CM-2(00).

— Year of introduction: 1987.

Overview of High Performanace Computers 57

Year of exit: 1991.

Type: SIMD parallel machine with hypercube structure, max.
64K

— processors. Theoretical Peak performance: 31 Gflop/s.

Reason for disappearance: was replaced by the newer CM-
5 (but see below).

m Machine: Thinking Machine Corporation CM-5.

— Year of introduction: 1991.
Year of exit: 1996.

— Type: Distributed-memory RISC based system, max. 16K
processors.

Theoretical Peak performance: 2 Tflop/s.

Reason for disappearance: Thinking Machine Corpora-
tion has stopped manufacturing hardware and hopes to keep
alive as a software vendor.

10. Systems under development

Although we mainly want to discuss real, marketable systems and not
experimental, special purpose, or even speculative machines, we want to
include a section on systems that are in a far stage of development and
have a fair chance of reaching the market. For inclusion in section 3
we set the rule that the system described there should be on the market
within a period of 6 months from announcement. The systems described
in this section will in all probability appear within one year from the
publication of this report. However, there are vendors who do not want
to disclose any specific data on their new machines until they are actually
beginning to ship them. We recognize the wishes of such vendors (it is
generally wise not to stretch the expectation of potential customers too
long) and will not disclose such information.

Below we discuss systems that may lead to commercial systems to be
introduced on the market between somewhat more than half a year to a
year from now. The commercial systems that result from it will some-
times deviate significantly from the original research models depending
on the way the development is done (the approaches in Japan and the
USA differ considerably in this respect) and the user group which is
targeted.

The year 1998 has been fruitful in terms of new systems: 3 large
vendors came out with new systems: Hitachi with the SR8000, NEC with

58

the SX-5, and SGI/Cray with the SV1. However, new ASCI contracts
have been made and other vendors are due to come up with new systems.

10.1. Compaq/DEC

The present Compaq/DEC GS60 and GS140 servers (8.5) are in fact
relabeled AlphaServers 8200 and 8400. They are still bus-based systems
that cannot be scaled up effectively. As Compaq/DEC has won an ASCI
contract to build a 30 Tflop/s machine by 2001, it is clear that the
structure of the system has to change. Although such plans are not
officially released it seems certain that a multi-level crossbar based on
the fast DEC Memory Channel will be used. For instance, using an 8x8
crossbar an aggregate bandwidth of 8 GB/s per crossbar level could be
reached. Using the next generation EV7 Alpha chip at a 0.9 ns clock
cycle an 8-way cluster would provide a 35.2 Gflop/s building block. The
system will probably be presented as a CC-NUMA machine.

10.2. Fujitsu

Fujitsu is the only large vector-processor vendor that did not present
a new system by the end of 1998. The introduction of the successor
to the VPP700 is expected in the spring of this year. As usual Fujitsu
has been extremely tight-lipped about the new systems and no details
are known. As the VPP700 has been a reasonably successful machine
it stands to reason that the structure of its successor will be (almost)
the same: vector-processors connected by a multi-level crossbar. The
speed of both components will have undoubtly increased. In contrast to
NEC and SGI/Cray, Fujitsu did not present a shared-memory image for
the first-level clusters in its VPP700, except by its proprietary extended
Fortran and HPF. In the next generation system this omission will very
probably be mended.

10.3. Hewlett-Packard

The HP Exemplar systems consist of 32-CPU cluster nodes that are
connected by 1 GB/s SCI rings to increase the system size (8.10). Al-
though the speed of the PA-RISC processors have increased much over
the years, the bandwidth of the rings stayed the same. This is obviously
becoming a bottleneck in the scalability of the HP systems. Therefore,
in the near future a new system with a different structure may be ex-
pected. In keeping with the majority of systems that are built presently
one may expect that also HP will decide to connect its SMP clusters by a
multi-level crossbar. As the point-to-point bandwidth between clusters

Overview of High Performanace Computers 59

certainly not will decrease, e.g., a 16x16 crossbar would need at least
an aggregate bandwidth of 16 GB/s. As the present Exemplars already
are CC-NUMA systems, the next generation certainly will also be of
this class. At the moment HP keeps the options open whether the next
system will be based on the next generation of the PA-RISC system or
that the new IA-64 chip will be used.

10.4. IBM

IBM was, together with Intel and SGI/Cray one of the first ASCI
contractors and has as such built the ASCI Blue Pacific machine with
a peak speed of more than 1 Tflop/s. This system is based on the
POWERS chip (see 8.11). In following contracts IBM ventures to make
a 100 Tflop/s system based on the successor of the POWERS3 chip and
with a higher level of clustering. At this moment the ASCI Blue machine
has four-way clustered nodes. This might stay the same in the near
future. With an increase in the clock speed from 3.3 to 2.2 ns a single
CPU with four floating-point units already would have a peak speed
of 1.8 Gflop/s which would give an four-way node a performance of
7.2 Gflop/s. It is to be expected that the switching fabric also will be
altered. The High-Performance switch, as it is, would clearly form a
bottleneck for the scalability. So, as in most other new systems (and in
the present RS/6000 SP) a multi-level crossbar is highly probable. A
new system could for instance consist of packages of 4 four-way nodes of
approximately 30 Gflop/s peak performance which in turn are four-way
connected, etc.

10.5. SGI

After the introduction of the SGI/Cray SV1 a new RISC processor
based machine may be expected to replace the successful Origin2000
system. As SGI has loosened its ties with MIPS, the current source of
Origin CPUs, SGI might choose another chip to base the Origin successor
on. As SGI is also developing on Intel platforms now, the Intel TA-64
might be a possible choice when no MIPS processors would be employed.
Whatever is chosen, the nodes need a to have speed of 1 Gflop/s or
greater to be competitive with similar systems available around the year
2000. In most other respects the system might have largely the structure
of the Origin2000. According to the SGI road map, the T3E line will at
least for the next generation not be fused with the Origin successor and
so will have a distinct architecture. What is sure is that the new system
will retain the successful CC-NUMA concept of the present machine.

60

For SGI the integration of the machine lines is of extreme importance.
Only a few vendors have as much as 2 product lines that are marketed
(Fujitsu, Hitachi, NEC) where it is not always clear what are the benefits
of one product line over the other. SGI still maintains no less than three
product lines in high-performance computing, each with its own virtues
and customer base. It is a highly complicated balancing act to reduce
the product lines to two or even one without disappointing a part of the
customers.

Acknowledgments

It is not possible to thank all people that have been contributing to
this overview. Many vendors and people interested in this project have
been so kind to provide me with the vital information or to correct us
when necessary. Therefore, we will have to thank them here collectively
but not less heartily for their support.

Special thanks are due to Greg Astfalk of Hewlett-Packard for valu-
able comments on the architecture section and on the HP Exemplar in
particular.

Bibliography

C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, Honghui Lu, R. Raja-
mony, Weimin Yu, and W. Zwaenepoel. TreadMarks: Shared Memory
Computing on Networks of Workstations. IEEE Computer, 29:18-28,
1996.

ASCI. The asci program, 2001. http://www.1l1lnl.gov/asci/.

K. Cassirer and B. Steckel. Block-Structured Multigrid on the Cenju.
In 2nd Cenju Workshop, 1998.

D.E. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers Inc.,
1998.

J.J. Dongarra. Performance of various computers using standard linear
equations software. Technical Report CS-89-85, Computer Science
Department, Univ. of Tennessee, 1999.

P. Flanders. Matrix Multiplication on ’C’ series DAPs, 1991. AMT
Document TR40.

M.J. Flynn. Some computer organisations and their effectiveness. IEEE
Trans. on Comp., C-21:948-960, 1972.

High Performance Fortran Forum. High Performance Fortran Language
Specification. Scientific Programming, 2:1-170, 1993.

A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sun-
deram. PVM: A Users’ Guide and Tutorial for Networked Parallel
Computing. MIT Press, 1994.

W. Gropp, S. Huss-Ledermann, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir. MPI: The Complete Reference, Vol. 2, The
MPI Ezxtensions. MIT Press, 1998.

61

62

J.M.D. Hill, W. McColl, D.C. Stefanescu, M.W. Goudreau, K. Lang,
S.B. Rao, T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP
Programming Library. Technical Report PRG-TR-29-9, Oxford Uni-
versity Computing Laboratory, 1997.

2001. www.hitachi.co.jp/Prod/comp/hpc/eng/srl.html.

R. W. Hockney and C. R. Jesshope. Parallel Computers I1I. Adam Hilger,
1987.

T. Horie, H. Ishihata, T. Shimizu, S. Kato, S. Inano, and M. Ikesaka.
AP1000 architecture and performance of LU decomposition. In Proc.
Internat. Symp. on Supercomputing, pages 46-55, 1991.

D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi. Scalable Coher-
ent Interface. IEEE Computer, 23:74-77, 1990.

W.E. Nagel. Applications on the Cenju: First Experience with Effective
Performance. In 2nd Cenju Workshop, 1998.

Web page for the NAS Parallel benchmarks NPB2, 1997.
http://science.nas.nasa.gov/Software/NPB/.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI:
The Complete Reference, Vol. 1, The MPI Core. MIT Press, 1998.

A.J. van der Steen. Exploring VLIW: Benchmark tests on a Multiflow
TRACE 14/300. Technical Report TR-31, Academic Computing Cen-
tre Utrecht, 1990.

A.J. van der Steen. The benchmark of the EuroBen Group. Parallel
Computing, 17:1211-1221, 1991.

A.J. van der Steen, editor. Aspects of computational science. 1995.

A.J. van der Steen. Benchmarking the Silicon Graphics Origin2000 Sys-
tem. Technical Report WFI-98-2, Dept. of Computational Physics,
Utrecht University, 1998. The report can be downloaded from:
www.phys.uu.nl/~steen/euroben/reports/.

