The NetSolve Environment: Progressing Towards the Seamless Grid

Dorian C. Arnold and Jack Dongarra
Computer Science Department
University of Tennessee
Knoxville, TN 37996
[darnold, dongarra]@cs.utk.edu

Abstract

The NetSolve software project has matured into a
robust system that reliably manages and interconnects
disparate computational resources. Resource man-
agement and allocation policies, heterogeneity, fault-
tolerance and security are some of the issues that need
to be resolved in such environments.

This article is meant to introduce the reader to the
NetSolve system and offers a discussion of some of the
key developments that have taken place in the project
during recent months. To make the article coherent
and somewhat self-contained, brief insight is given into
some of the more fundamental aspects of NetSolve; the
newer features and enhancements are given a more de-
tailed discussion. For completion, there is a discussion
of successful uses and integrations of the NetSolve sys-
tem.

1. Introduction

Despite the fact that performance of computer pro-
cessors continues to increase in accordance with, and
even surpass, the rules of Moore’s Law, computa-
tional scientists are consuming these cycles quicker
than the computer engineers can create them. This
phenomenom has led to a tremendous thrust of re-
search interests in the concepts of Grid Computing [9].
Grids attempt to harness these cycles and other compu-
tational resources into a single, resource more powerful
than any of the individual components, whether they
be supercomputers, clusters of machines or lower-end
workstations. With the “grid” analogy being to that
of the electrical power grid, from which we garner elec-
tricity without regard for the source of this power, the
vision of computational grids is one which has users
seamlessly using widely distributed resources without
bearing much consideration for this fact.

This article is meant to discuss NetSolve’s approach
to Grid Computing. NetSolve is a software system
based on the concepts of remote procedure call (RPC)
that allows for the easy access to computational re-
sources distributed in both geography and ownership.
Section 2 of this article gives a general overview of
the NetSolve system. Sections 3 through 5 discusses
features of NetSolve’s three chief components, clients,
agents and servers, respectively. We present some ex-
amples of NetSolve usage in Sect. 6 and future research
plans in Sect. 7.

2. Network-Enabled Solvers

The NetSolve project is being developed at the Uni-
versity of Tennessee’s Innovative Computing Labora-
tory of the Computer Science Department. Its original
motivation was to alleviate the difficulties that domain
scientists encounter when trying to locate/install/use
numerical software, especially on multiple platforms.
Today, the name NetSolve has become a misnomer,
as the system has evolved into much more than a
way to access numerical solver routines. NetSolve
provides an environment that monitors and manages
computational resources, both hardware and software,
and allocates the services they provide to NetSolve-
enabled client programs. It incorporates load balanc-
ing and scheduling strategies to distribute tasks evenly
amongst servers. Built upon standard Internet proto-
cols, like TCP/IP sockets, it is available for all popu-
lar variants of the UNIX operating system, and parts
of the system are available for the Microsoft Windows
’95, 798, ’00 and NT platforms.

Figure 1 shows the infrastructure of the NetSolve
system and its relation to the applications that use it.
NetSolve and systems like it are often referred to as
Grid Middleware; this figure helps to make the reason
for this terminology clearer. The shaded parts of the
figure represent the NetSolve system. It can be seen



that NetSolve acts as a glue layer that brings the ap-
plication or user together with the hardware and/or
software it needs to complete useful tasks.

— NS
Applicati ons@ @

NS Agent
Resource Discovery Load Balancing
Resource Allocation Fayit Tolerance

G O @

Figure 1. Architectural Overview of the Net-
Solve System

Users

At the top tier, the NetSolve client library is linked
into the user’s application. The application then makes
calls to NetSolve’s application programming interface
(API) for specific services. Through the API, NetSolve
client-users gain access to aggregate resources without
the necessity of user knowledge of computer network-
ing or distributed computing. In fact, the user can
often take for granted the fact that remote resources
are involved.

Figure 2 helps to show what the programming code
would look like before and after the NetSolve API has
been integrated. In both cases, it shows a routine
matmul being called to multiply to matrices A and B
and store the result in matrix C. The (hidden) seman-
tics of a NetSolve request are:

1. Client contacts the agent for a list of capable
servers.

2. Client contacts server and sends input parameters.
3. Server runs appropriate service.

4. Server returns output parameters or error status
to client.

There are many advantages to using a system like
NetSolve. NetSolve can provide access to otherwise
unavailable software. In cases where the software is in
hand, it can make the power of supercomputers accessi-
ble from low-end machines like laptop computers. Fur-
thermore, as explained below, NetSolve adds heuris-
tics that attempt to find the most expeditious route
to a problem’s solution set. NetSolve currently sup-
ports the C, FORTRAN, Matlab, and Mathematica

A =read_matrix();
B = read_matrix();
C =matmul(A, B);

A =read_matrix();
B = read_matrix();
status = netsolve("matmul”, A, B, C);

Figure 2. Sample C code: Left side before
NetSolve, right side after NetSolve integration

programming interfaces as languages of implementa-
tion for client programs.

The NetSolve agent represents the gateway to the
NetSolve system. It serves as an information service
maintaining data regarding NetSolve servers and their
capabilities (hardware performance and allocated soft-
ware) and dynamic usage statistics. It uses this infor-
mation to allocate server resources for client requests.
The agent, in its resource allocation mechanism, at-
tempts to find the server that will service the request
the quickest, balance the load amongst its servers and
keep track of failed servers, which are marked as unus-
able. The agent also implements fault-tolerant features
that attempt to use every appropriate server until it
finds one that successfully services the request.

The NetSolve server is the computational backbone
of the system. It is a daemon process that awaits client
requests. The server can run on single workstations,
clusters of workstations, symmetric multi-processors or
machines with massively parallel processors. A key
component of the NetSolve server is a source code gen-
erator which parses a NetSolve problem description file
(PDF). This PDF contains information that allows the
NetSolve system to create new modules and incorpo-
rate new functionalities. In essence, the PDF defines
a wrapper that NetSolve uses to call the function or
program being incorporated.

Version 1.3 was released in May of 2000. Features
implemented in this release include a Java GUI to aid in
the creation of PDF's, a Microsoft Excel interface, more
object datatypes, more server modules included with
the distribution, and enhanced load balancing among
other things. NetSolve-1.3, including APIs for the
Win32 platform, can be downloaded from the project
web site at www.cs.utk.edu/netsolve. NetSolve has
been recognized as a significant effort in research and
development, and was named in R&D Magazine’s top
100 list for 1999. The reader is directed to [1] for details
of the system not discussed in this article.



3. Client Concepts

There are several features that have been imple-
mented for the NetSolve client API to provide users
with added flexibility and performance. For brevity,
this section only sheds light on some of them.

3.1. The Basics

NetSolve is a functional environment in which the
APT is used to pass NetSolve objects to and from
services as inputs and outputs. The object types
are MATRIX, a two-dimensional array, SPARSEMATRIX, a
two-dimensional array stored in a compressed row stor-
age format, VECTOR, a one dimensional array, SCALAR,
STRING, an array of characters, STRINGLIST, an ar-
ray of strings, FILE, and UPF, a user-provided func-
tion. The datatypes of these objects may be single or
double precision integers and floating point numbers,
complex numbers or characters. The NetSolve client
interface supports both synchronous and asynchronous
calls. The synchronous call transfers control to the Net-
Solve system which invokes a request on behalf of the
client and blocks until the results are available. At this
point, it returns control to the user application layer
with the results. The asynchronous version of the call
passes the request to the NetSolve system and returns
immediately. The client program is passed a handle to
the request with which it can probe to see if the results
are available and gather them when they are.

3.2. Data Persistence

Figure 3 illustrates the typical transactions that take
place during a series of NetSolve requests by a single
client. What is relevant in this example is that param-
eter A is shared as an input for the first and second
requests. Also, output parameters C and D serve as in-
puts for subsequent requests. This is exactly the type
of scenario that the work described in this section tries
to exploit.

We have explored a technique we call request se-
quencing in an attempt to maximize request through-
put by minimizing data transmission between NetSolve
components. This interface allows the user to group
two or more regular NetSolve requests into a sequence.
The system then analyzes the input and output pa-
rameters of the sequence to determine when the same
parameter occurs more than once and keeps those pa-
rameters persistent at or near the server(s) that are
servicing the requests. More specifically, we construct
a directed acyclic graph (whose nodes represent com-
putational modules and arcs represent the data depen-

command1(A, B)

Client Serverl
result C

commandl1(A, C)

Client Server2
result D

commandl1(D, E)

Client Server3
result F

Figure 3. Client-server interactions during a
typical regest scenario.

dencies of those modules) and schedule this DAG for
execution. Our hypothesis is that this reduction in data
traffic will yield enough performance improvements to
outweigh the overhead of the DAG construction and
make sequencing worthwhile. Figure 4 shows the re-
duction in data flow that occurs when the sequencing
mode is employed.

sequence(A, B, E)
Client Serverl

intermediate
result C + input A

Server2

intermediate
result D + input E

Client Server3
result F

Figure 4. Client-server interactions during a
“request sequence”.

[2] discusses this interface and gives some experi-
mental results that were achieved using this data per-
sistence technique. The results support our theories
that this is a very good way to optimize the use of Grid
resources, especially when bandwidth is of the essence,
data sets are very large, or both.

3.3. Client Proxies

There are several motivating factors that have led to
the implementation of client proxies to act on behalf of
the NetSolve client. The proxy, a separate process that
resides on the client host, handles (almost) all inter-
actions with the underlying metacomputing resources.
The primary reasons for the addition of a proxy to the
NetSolve framework are:



e Lightening the client libraries
By separating the interactions with meta-
computing resources from the NetSolve client in-
terface, it becomes much more lightweight. One
advantage of this scenario is that it increases the
uniformity with which the supported client inter-
faces can be developed. In other words, this mod-
ularity means that whenever a feature is added or
an enhancement made at the proxy level or below,
it only need be implemented once and immediately
becomes available to all interfaces.

e More flexibility on the client side

Since the proxy is a separate process with its own
thread of control, it is able to interact with meta-
computing resources, independently of client in-
teraction. This makes it possible to do things
like query the information service, even before the
client makes a request, and cache results locally so
they can be made immediately available.

e Integration with other systems

One of the philosophies of the NetSolve project
is to leverage existing services whenever feasible.
Having a proxy negotiate for metacomputing re-
sources on behalf of the client means that differ-
ent proxies can negotiate for different services. So
far, we have implemented proxies to negotiate for
Globus services and, of course, the standard Net-
Solve services. Other systems like Legion are soon
to be integrated in this fashion.

e Supporting more client languages
With a standard interface between the client and
all proxies, it is possible, especially for third party
developers, to easily add new language support to
the NetSolve system. They would simply write
libraries that interface the NetSolve proxies from
their language of choice, allowing programs of that
language to become NetSolve-enabled.

Figure 5 depicts the main idea behind the proxy.
The client libraries interact with the proxy thanks to a
standard API and the proxy interacts with the meta-
computing system using system-specific mechanisms.
The NetSolve proxy, for instance, uses the agent to
discover services, contacts the appropriate server and
establishes a session with that server who then receives
input data from the client, executes his service and
return output data.

3.4. Task Farming

This interface addresses applications that have sim-
ple task-parallel structures but require large number of

Meta-Computing
Resources

(GRID)

Data

System-specific
Operations

)/(Standard

i ! AP
1 Client
Process

Figure 5. Proxy Architecture

computational resources. Monte-Carlo simulations and
parameter-space searches are some popular examples of
these applications which are called task farming ap-
plications. Within the NetSolve system, we designed
and built an easily accessible computational framework
for task farming applications. As the middleware, Net-
Solve becomes responsible for the details of managing
the Grid services — resource selection and allocation,
data movement, I/O, and fault-tolerance.

The task farming interface allows the user to make
a single call to netsolve, requesting multiple instances
of the same problem. Rather than single parameters,
the user passes arrays of parameters as input/output
and designates how NetSolve should iterate across the
arrays for the task farm. The main challenge in this
effort is scheduling. Indeed, for long running farming
applications it is to be expected that the availability
and workload of resources within the server pool will
change dynamically. [8] discusses the design and vali-
dation of the NetSolve task farming interface. It also
presents an adaptive scheduling algorithm used by the
task farming interface to assign tasks to the server re-
sources.

3.5. Transparent Algorithm Selection

Through NetSolve, users are given access to com-
plex algorithms that solve a variety of types of prob-
lems, one instance being linear systems solvers. All
solvers, however, are not built alike; depending on the
characteristics of the matrix being solved some perform
poorly and others not at all. NetSolve has incorporated
a large number of solver algorithms from a variety of
packages like PETSc [5] and Aztec [10]. We have fur-
ther created an interface that allows the user to gener-
ically call a “LinearSolve” routine which transparently
analyzes the input matrix and determines which algo-
rithm to use based on input characteristics. [3] further



discusses this interface and the heuristics and decisions
that are involved in the algorithm selection process.
This interface allows the non-expert user to properly
and efficiently use solver algorithms without climbing
the steep learning curve that would otherwise be in-
volved. This feature exemplifies the ease-of-computing
that is only one of the benefits of using a system like
NetSolve.

4. The Agent

Though the NetSolve system is merely based upon
the concept of remote procedure call (RPC), one may
easily overlook the other features it entails and con-
sider it just an RPC system. NetSolve is a robust en-
vironment that is able to discover, maintain and con-
trol a heterogeneous environment of vastly distributed
computational resources. The purpose of the agent is
to be that point in the system from which to man-
age and access the resources. The agent always has a
complete view of the status of all NetSolve server com-
ponents and the interactions they may be having with
clients. It keeps track of the software capabilities of
the servers and is able to direct client requests to ap-
propriate servers. Most all information is “pushed” to
the agent; however, previously registered servers must
periodically contact the agent, if only to say “I am
alive.” The agent uses this fixed periodicity to de-
termine when a server seems to have gone away and
updates the database accordingly.

4.1. Network Weather Service Forecasters

When allocating resources, the agent has two goals:
i) to choose the best-suited computational server for
each incoming request and ii) to keep the load as bal-
anced amongst the servers as possible. The scheduling
policies used to make the allocation decisions are fully
discussed in [7]; however, we have employed the use of
the Network Weather Service (NWS) [13] to help us
gather the information necessary to make these deci-
sions. The NetSolve agent calls upon the services of
NWS forecasters to predict future availability of server
hosts based upon previously collected availability data
(see Section 5.2). The forecasters are actually an in-
terface to a variety of prediction modules which take
as input a time series of measurements and returns a
prediction of the next value. High levels of accuracy
are achieved since a prediction error of each module
is calculated, and the prediction with the lowest error
is used. Previously, NetSolve would look at the last
recorded value of a servers status and use that to rep-
resent the resources that a server would have available

to service a request. NWS allows NetSolve to do a
much better job of “guessing” what a server’s avail-
ability will be, especially when servers experience high
variations in workload.

5. Server Stuff
5.1. Access Control Mechanism

Interaction in a Grid or any distributed environment
ultimately demands that there are reassuring mecha-
nisms in place to restrict and control access to com-
putational resources and sensitive information. In the
latest version of NetSolve, we have introduced the abil-
ity to generate access control lists which are used to
grant and deny access to the NetSolve servers. We use
Kerberos V5 [11] services to add this functionality to
NetSolve, as it is one of the most trusted and popu-
lar infrastructures for authentication services. Using
Kerberos, the “administrator” of the server identifies
authorized clients using their Kerberos principal, or
id. He places his list of clients in a file that is read-
able only by the user-id that will be used to run the
NetSolve server. The only other interaction needed to
“kerberize” the server is to create a principal that is
used to identify the NetSolve service within the Ker-
beros realm. Every other involvement needed is just
as it would be in non-Kerberos mode. This feature
has been implemented such that kerberized and non-
kerberized client and server components can gracefully
interact with each other. Kerberized servers simply
deny service to non-authenticated clients, while clients
configured to send authentication credentials will only
do so upon demand by a kerberized server.

5.2. NWS CPU Sensors

NetSolve servers must be able to attain and report
information regarding their workload so that the agent
can determine which servers represent the best choice
to service a request. NetSolve has its own version of
a workload manager that uses UNIX system services
like uptime to query for workload information. Sec-
tion 4.1 discusses our integration of NWS forecasters
and motivates our use of the NWS CPU sensors as well.
There are several features that make this NWS compo-
nent attractive to the NetSolve project. The NetSolve
workload manager was a simple way for the system to
implement a feature that at the time was not available
any other way; NWS is a project whose purpose is to
make this type of service available, and thus much time
and expertise has been invested to make sure the re-
ports are as accurate as possible. Secondly, NWS sen-



sors interact with a separate process, called a memory
to store the data being collected. This process need
not be run on the host being monitored, therefore, we
can conveniently place the NWS memory on the host
running the NetSolve agent (and NWS forecaster) mak-
ing the information readily available when a forecast is
needed. Finally, it offers the uniformity of using the
NWS components together. Otherwise, we would have
to modify the NetSolve system so it is somehow able
to feed the relevant information to the forecaster that
helps the agent allocate resources.

6. NetSolve Examples
6.1. Sub-surface Modelling

The implicit parallel accurate reservoir simulator,
TIPARS, developed at the University of Texas’ Insti-
tute for Computational and Applied Mathematics, is
a framework for developing parallel models of subsur-
face flow and fluid transport through porous media.
It simulates single phase (water only), two phase (wa-
ter and oil) or three phase (water, oil and gas) flow
through a multi-block 3D porous medium. IPARS can
be applied to model water table decline due to over-
production near urban areas, or enhanced oil and gas
recovery in industrial applications.

CLIEMT Interfaces to IPARS Simulator
FORTRAN

Web Mathematica

MATLAB

IPARS-Enabled Servers
Single Processor Clusters
MPPs and SMPs =

Figure 6. Integrating a fluid flow simulator
with NetSolve.

A NetSolve interface to the IPARS system (Fig. 6)
allows wusers to access IPARS (including post-
processing of the output to create animated images
that exhibit the variations of concentration, pressure,
etc. of relevant fluids) [4]. The interface is primar-
ily used from handy machines like laptop computers to
run real-time simulations on clusters of workstations
that allow for much quicker execution. IPARS runs
primarily on LINUX; NetSolve makes it readily acces-
sible from any platform. In addition, we have created

a problem solving environment (PSE) interfaced by a
web browser which one can use to enter input param-
eters and submit a request for execution of the IPARS
simulator to a NetSolve system. The output images are
then brought back and displayed by the web browser.
This interaction shows how the NetSolve system can
be used to create a robust grid computing environment
in which powerful modeling software, like IPARS, be-
comes both easier to use and administrate.

6.2. Cellular Microphysiology

MCell is a general Monte Carlo simulator of cellu-
lar microphysiology which uses Monte Carlo diffusion
and chemical reaction algorithms in 3D to simulate the
complex biochemical interactions of molecules inside
and outside of living cells. MCell is a collaborative
effort between the Terry Sejnowski lab at the Salk In-
stitute, and the Miriam Salpeter lab at Cornell Univer-
sity.

NetSolve’s farming interface is very well suited to
MCell’s needs. One of the central pieces of that frame-
work is a scheduler that takes advantage of MCell input
data requirements to minimize execution turn-around
time. This scheduler is part of the larger AppLeS [6]
at the University of California, San Diego. The use
of NetSolve isolates the scheduler from the resource-
management details and allows researchers to focus on
the scheduler design.

6.3. Nuclear Engineering

The goal of this project is to develop a prototype en-
vironment for the Collaborative Environment for Nu-
clear Technology Software (CENTS). CENTS aims to
lay the foundation for a Web-based distance comput-
ing facility for executing nuclear engineering codes.
Through its Web-based interfaces, CENTS will allow
users to focus on the problem to be solved instead of
the specifics of a particular nuclear code. Via the Web,
users will submit input data with computing options
for execution, monitor the status of their submissions,
retrieve calculational results, and use CENTS tools for
viewing and analyzing result data.

For computational services, CENTS employs a col-
lection of heterogeneous computer systems logically
clustered and managed for optimal resource utilization.
The prototype environment was accomplished by inte-
grating the NetSolve system and using Monte Carlo
Neutral Particle (MCNP) codes via NetSolve’s frame-
work. The user is required only to supply the input
problem for the MCNP code. After the user supplies
the input, NetSolve sends the problem to the most suit-



able workstation in the environment; the problem is
solved, and the output (4 files) is sent back to the user
via the web interface.

7. Current Happenings

The NetSolve model is currently being evaluated to
determine how we can architect the system to meet
the needs of our users. Our vision is that NetSolve
will be used mostly by computational scientists who
are not, particularly interested in the mathematical al-
gorithms used in the computational solvers, but use
them only as means to do research and simulations in
their respective domains, whether it is nuclear engi-
neering or computational chemistry. NetSolve will be
especially helpful when lots of computational power is
needed to do “embarassingly parallel” tasks, though as
discussed below, we will continue to support the effi-
cient execution of parallel jobs in which message pass-
ing is eminent. We see NetSolve as an infrastructure
that enables scientific communities at different organi-
zations to leverage each others resources and corporate
in such a way that aggregates their computational re-
sources into a seamless network that they all benefit
from. This section discusses features that are being
investigated by the NetSolve project to achieve these
ends.

7.1. Dynamically Extensible Servers

One issue that needs to be resolved when creating a
giant corporation of NetSolve systems is that of soft-
ware availability. Especially when the collaboration is
an interdisciplinary one, the desired software modules
may not always be available at servers to which the
client has access. The solution is twofold: i) design and
implement servers such that new software modules can
be added to their configuration on-the-fly and ii) design
and implement a strategy which can be used to publish
the availability of new software modules to the servers.
In today’s version of NetSolve the binding between the
server’s hardware and software components is config-
ured at server compilation and is statically fixed once
the server is running. Our new approach will be to
allow the server to do a just-in-time binding of these
components when a request is to be serviced. What
we must do is generalize a plug-in interface that al-
lows users to dynamically extend and customize the
environment’s features; one way of doing this would
be to implement the modules as dynamically linked li-
braries (dll) and attaching them to a driver when their
services are called upon. We are also developing a soft-
ware repository component that will be used to house

the dlls. Servers will be able to obtain software dy-
namically from trusted repositories, while repository
administrators will be able to control the policies re-
garding the addition of software.

7.2. Enhanced Client Flexibility

The introduction of the NetSolve client proxy
(Sect. 3.3) already progresses us toward a very flexible
client layer, that is able to interact with other meta-
computing environments. Standardizing the interface
between the client and proxy allows third party devel-
opers to easily extend NetSolve’s client language sup-
port. By writing the very thin layer that interfaces our
proxies, one can easily interface NetSolve from other
languages as well as GUI toolkits and other PSEs. This
is depicted in Fig. 7.

Application | Java Octave
Layer SCIRun PSES

The Client i
Proxy

NetSolve Resources
Servers Services

Agent .
. Load Balancing
Resource Allocation

Computational Modules

Figure 7. Adding new languages to the Net-
Solve client interface is as simple as imple-
menting a wrapper in that language to interact
with the proxy.

Efforts to improve the flexibility of the client inter-
actions also include the addition of multiple scheduling
policies that allow the user to more precisely determine
which resources they should use during an execution.
Currently, the NetSolve agent handles all scheduling
policies based mainly on network and CPU character-
istics, however, the client user may be aware of more
specific scheduling information like the fact that a par-
ticular code may perform better on a certain architec-
ture, or that he is farming a multitude of tasks and the
system need not be concerned with starvation amongst
particular requests, but rather the turnaround time of
the entire task farm. The AppLeS [6] project has done
much research in application specific schedulers, and
are currently developing templates that are able to ef-
ficiently schedule generic classes of applications, (for in-



stance, independently parallel.) These scheduling tem-
plates will be the foundation of our schedulers; users
will be able to use a particular template based on the
nature of their NetSolve interactions.

7.3. Parallel Programming Support

One of the key features of NetSolve is its ability
to seamlessly connect users to a host of parallel al-
gorithms and codes. We are increasing our support
of the “service” developers by implementing a variety
of data distribution/collection schemes particularly for
the NetSolve environment. These schemes will be de-
signed to counter current strategies that collect all the
data at a single node and then distribute, which de-
feats the purpose of distributing large jobs whose data
is too large to be contained at a single node. When-
ever possible, we will marshall the data directly from
the client to all computational nodes involved, and col-
lect results in a similar fashion. The distribution suite
will include popular algorithms like block distribution,
multi-dimensional block distributions and block cyclic
distributions.

For parallelizing programs from the client-end, using
either the asynchronous, sequencing or task farming
interfaces, we are investigating the use of distributed
storage facilities like IBP [12] to make it possible for the
user to pre-store commonly used data strategically near
server(s) before execution begins; furthermore, he will
be able to conveniently use handles to these locations as
parameters in NetSolve requests. We will also continue
the development of these interfaces which in some cases
attempt to do some data staging automatically.

8. Conclusion

As researchers continue to investigate feasible ways
to harness computational resources, the NetSolve sys-
tem is emerging into one of the more popular solu-
tions. Its light weight and ease of use make it an ideal
candidate for middleware. As we discover the needs
of computational scientists, the NetSolve system will
be molded to facilitate these users. It is built from
the user’s perspective — convenient interface design and
ease of administration are most important in the Net-
Solve philosophy, and every effort is made not to sac-
rifice these elements as the system evolves.

References

[1] D. Arnold, S. Blackford, and J. Dongarra. Users’
Guide to NetSolve V1.3. Technical report, Computer
Science Dept., University of Tennessee, May 2000.

2]

[10]

[11]

[12]

[13]

D. C. Arnold, D. Bachmann, and J. Dongarra. Re-
quest Sequencing: Optimizing Communication for the
Grid. In Euro-Par 2000 — Parallel Processing, August
2000.

D. C. Arnold, S. Blackford, J. Dongarra, V. Eijkhout,
and T. Xu. Seamless Access to Adaptive Solver Algo-
rithms. August 2000.

D. C. Arnold, W. Lee, J. Dongarra, and M. Wheeler.
Providing Infrastructure and Interface to High-
Performance Applications in a Distributed Setting.
In A. Tentner, editor, High Performance Computing
2000, pages 248-253. Society for Computer Simula-
tion International, April 2000.

S. Balay, W. D. Gropp, and B. F. Smith. Modern Soft-
ware Tools in Scientific Computing, pages 163-202.
Birkhauser Press, 1997.

F. Berman, R. Wolski, S. Figueira, J. Schopf, and
G. Shao. Application-Level Scheduling on Distributed
Heterogeneous Networks. In Proc. of Supercomput-
ing’96, Pittsburgh, PA, November 1996.

H. Casanova and J. Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems.
The International Journal of Supercomputer Applica-
tions and High Performance Computing, 1997.

H. Casanova, M. Kim, J. S. Plank, and J. Dongarra.
Adaptive Scheduling for Task Farming with Grid Mid-
dleware. The International Journal of Supercomputer
Applications and High Performance Computing, 1999.
to appear.

I. Foster and C. Kesselman, editors. The Grid,
Blueprint for a New computing Infrastructure. Mor-
gan Kaufmann Publishers, Inc., 1998.

S. A. Hutchinson, S. J. N, and T. R. S. Aztec user’s
guide: Version 1.1. Technical Report SAND95-1559,
Sandia National Laboratories, 1995.

B. C. Neuman and T. Ts’o. Kerberos: An Authen-
tication Service for Computer Networks. IEEE Com-
munications, 32(9):33-38, September 1994.

J. Plank, M. Beck, W. Elwasif, , T. Moore, M. Swany,
and R. Wolski. IBP — The Internet Backplane Proto-
col: Storage in the Network. In NetStore ’99: Network
Storage Symposium, Seatle, WA, October 1999.

R. Wolski. Dynamically Forecasting Network Perfor-
mance Using the Network Weather Service. Technical
Report TR-CS96-494, U.C. San Diego, October 1996.



