
NetSolve: Grid Enabling Scientific Computing
Environments

Keith Seymour, Asim YarKhan, Sudesh Agrawal, and Jack Dongarra

Computer Science Department, University of Tennessee, Knoxville, TN 37919 USA

Abstract

The purpose of NetSolve is to create the middleware necessary to provide a seamless bridge
between the simple, standard programming interfaces and desktop systems that dominate
the work of computational scientists and the rich supply of services supported by the emerg-
ing Grid architecture, so that the users of the former can easily access and reap the benefits
(shared processing, storage, software, data resources, etc.) of using the latter.

1 Introduction

Researchers today are becoming increasingly reliant on the availability of computa-
tional resources to assist in their research and quantify their findings. The creation
of Grids has helped increase the availability of such resources by combining the
computing power and storage resources of many computers into one. However,
harnessing these combined resources is still a challenge and out of reach for many
scientists. As a mechanism for providing access to various distributed hardware
and software resources, NetSolve reduces the complexity of locating, accessing,
and using the computational resources necessary for conducting timely research.
To accomplish this goal, NetSolve provides the middleware necessary to provide a
seamless bridge between the simple, standard programming interfaces and desktop
systems that dominate the work of computational scientists and the rich supply of
services supported by the emerging Grid architecture, so that the users of the for-
mer can easily access and reap the benefits (shared processing, storage, software,
data resources, etc.) of using the latter. This vision of the broad community of sci-
entists, engineers, research professionals and students, working with the powerful
and flexible tool set provided by their familiar desktop computing environment,
and yet able to easily draw on the vast, shared resources of the Grid for unique or
exceptional resource needs, or to collaborate intensively with colleagues in other
organizations and locations, is the vision that NetSolve is designed to realize.

Preprint submitted to Elsevier Science 12 May 2005

Fig. 1. Overview of NetSolve

2 Overview of NetSolve

NetSolve is a client-agent-server system which provides remote access to hardware
and software resources from a variety of scientific problem solving environments
such as Matlab, Mathematica, and Octave, as well as traditional programming lan-
guages like C and Fortran. In this section, we provide an overview of the architec-
ture and features of NetSolve.

2.1 NetSolve Architecture

A NetSolve system consists of three entities, as illustrated in Figure 1.

� The Client, which needs to execute some remote procedure call. As we men-
tioned, the client may be invoked from an interactive problem solving environ-
ment or by a standalone program written in a traditional programming language.

� The Server executes functions on behalf of the clients. The server hardware can
range in complexity from a uniprocessor to a MPP system and the functions
executed by the server can be arbitrarily complex. Server administrators can
straightforwardly add their own services without affecting the rest of the Net-
Solve system.

� The Agent is the focal point of the NetSolve system. It maintains a list of all
available servers and performs resource selection for client requests as well as
ensuring load balancing of the servers.

2

In practice, from the user’s perspective the mechanisms employed by NetSolve
make the remote procedure call fairly transparent. However, behind the scenes, a
typical call to NetSolve involves several steps, as follows:

(1) The client queries the agent for an appropriate server that can execute the
desired function.

(2) The agent returns a list of available servers, ranked in order of suitability.
(3) The client attempts to contact a server from the list, starting with the first

and moving down through the list. The client then sends the input data to the
server.

(4) Finally the server executes the function on behalf of the client and returns the
results.

In addition to providing the middleware necessary to perform the brokered remote
procedure call, NetSolve aims to provide mechanisms to interface with other ex-
isting Grid services. This can be done by having a client that knows how to com-
municate with various Grid services or by having servers that acts as a proxies to
those Grid services. NetSolve provides some support for the proxy server approach,
while the client-side approach would be supported by the emerging GridRPC stan-
dard API [1]. We briefly discuss these two approaches here.

Normally the NetSolve server executes the actual service request itself, but in some
cases it can act as a proxy to specialty mechanisms such as Condor, MPI, and
ScaLAPACK. The primary benefit is that the client-to-server communication pro-
tocol is identical so the client does not need to be aware of every possible back-end
service. A server proxy also allows aggregation and scheduling of resources, such
as the machines in a cluster, on one NetSolve server.

The GridRPC API represents ongoing work to standardize and implement a portable
and simple remote procedure call (RPC) mechanism for grid computing. This stan-
dardization effort is being pursued through the Global Grid Forum Research Group
on Programming Models [2]. The initial work on GridRPC reported in [1] shows
that client access to existing grid computing systems such as NetSolve and Ninf [3]
can be unified via a common API, a task that has proved to be problematic in the
past. In its current form, the C API provided by GridRPC allows the source code of
client programs to be compatible with different Grid services, provided that service
implements a GridRPC API. We describe the capabilities of the GridRPC API in
Section 3.

The combination of these technologies will allow NetSolve to provide seamless
client access to a diverse set of Grid services.

3

2.2 Strengths of NetSolve

2.2.1 Ease of Use

The primary design goal of NetSolve is to make it easy to access grid resources,
even for users who do not have much expertise in programming. We have accom-
plished this by providing interfaces to interactive scientific computing environ-
ments (Matlab, Octave, and Mathematica) which themselves are easy to use and
place a low burden on the casual user. This design philosophy extends to the in-
terfaces for traditional programming languages, which match the original function
calls as closely as possible, thus reducing the amount of effort required to convert
software to use NetSolve. For example, a direct call from Fortran77 to the LAPACK
routine DGESV looks like:

CALL DGESV(N, 1, A, LDA, IPIV, B, LDB, INFO)

The equivalent call using NetSolve is:

CALL FNETSL(’DGESV()’, STATUS,
N, 1, A, LDA, IPIV, B, LDB, INFO)

In addition, because NetSolve dynamically determines the calling sequence, no stub
code needs to be linked with the client. In typical RPC systems, there is a formal
description of the calling sequence of the procedure which is used to generate stub
code. On the client side, the user calls the stub instead of the actual procedure. The
client stub handles marshalling the arguments to and from the remote server. Since
the client stub must be compiled and linked with the user’s code before it can be
called, calling dynamically installed procedures from interactive environments is
difficult. In contrast, the NetSolve client library determines the calling sequence at
run-time by downloading a specification from the server. This specification is used
to determine how to marshall the arguments to and from the server. Therefore, the
user never needs to link stub code with their application, making it straightforward
to use NetSolve from within interactive environments.

An example of the ease of using NetSolve from Matlab is shown in Figure 2. In
this case, we generate two matrices using the Matlab random number generator
and pass them to NetSolve to be multiplied using the dmatmul service. The result
is assigned back to a Matlab variable and can be used in subsequent operations as
usual.

2.2.2 Pre-configured Numerical Routines

In order to make the system immediately useful, NetSolve comes with pre-configured
interfaces to a variety of numerical routines including dense linear algebra (from

4

Fig. 2. Example of Using NetSolve from Matlab

BLAS and LAPACK), sparse linear algebra, parallel solvers, and other miscella-
neous examples. These problems can be selectively enabled by the server adminis-
trator depending on which libraries are available on the machine. In an attempt to
provide a useful service to users who cannot start their own servers, the publicly
available NetSolve grid running at the Univeristy of Tennessee has all the problems
enabled. These pre-configured interfaces also serve as examples of how to integrate
external software into NetSolve.

2.2.3 Agent as Resource Broker

One of the difficulties inherent in Grid computing is locating the best resources
available to execute the requested service. In agent based scheduling, the NetSolve
agent uses knowledge of the requested service, information about the parameters
of the service request from the client, and the current state of the resources to score
the possible servers and return the servers in sorted order.

When a service is started, the server informs the agent about services that it pro-
vides and the computational complexity of those services. This complexity is ex-
pressed using two integer constants a and b and is evaluated as aNb, where N is the

5

size of the problem. At startup, the server notifies the agent about its computational
speed (approximate MFlops from a simple benchmark) and it continually updates
the agent with information about its workload. The bandwidth and latency of com-
munication between the server and the agent are also monitored, and are used as
an estimate of the communication capacity between the client and server. When
an agent receives a request for a service with a particular problem size, it uses the
problem complexity and the server status information to estimate the time to com-
pletion on each server providing that service. It orders the servers in terms of fastest
time to completion, and then returns the list of servers to the client. This scheduling
heuristic is known as Minimum Completion Time and it works well in many practi-
cal cases. Each service request would be assigned to the server that would complete
the service in the minimum time, assuming that the currently known loads on the
servers will remain constant during the execution.

2.2.4 Resource Aggregation

Another of NetSolve’s goals is to provide a middleware infrastructure that can be
used to simplify access to complicated software, such as parallel or distributed pro-
grams. As we introduced in Section 2.1, in this approach NetSolve creates server-
proxies to delegate the client requests to external scheduling and execution services
such as batch systems, Condor, ScaLAPACK, or LFC (LAPACK for Clusters). The
other NetSolve components see the server-proxy as a single entity, even though it
can represent a large number of actual resources.

The key to this approach lies in the way services are defined. Each NetSolve service
is defined by a formal description of the calling sequence, including the arguments,
data types, and dimensions. This is generally referred to as an Interface Definition
Language. Based on this description, both the client and server know how to mar-
shall and unmarshall the input and output data. The actual implementation of the
service is contained in an external library and is linked in with the service at com-
pilation time. Therefore, any library with the same calling sequence can be linked
using the same IDL, leaving the communication protocol unchanged. This allows
having multiple NetSolve servers that implement the same service in vastly differ-
ent ways. For example, a matrix multiplication service could be implemented on
one machine using a vendor-tuned linear algebra library and on another machine
using the reference BLAS [4]. Because the NetSolve communication protocol is
the same for both, the client does not need to be concerned with which server is
selected for the request.

This server-proxy approach has been used to provide simple access to parallel MPI
jobs, as well as aggregate resources managed by LSF [5], Condor-G [6], and LFC
[7]. In this way, we can bring the power of these aggregate resources to the user’s
familiar Matlab or Mathematica environment while leaving the server administrator
free to optimize or modify the implementation without concern for the client.

6

2.2.5 Transparent Fault Tolerance

There are a variety of reasons a server may be unable to satisfy a client’s request.
In some cases, it is caused by policy decisions rather than technical problems. For
instance, the server may have already accepted the maximum number of jobs the
administrator configured it to handle or the server may be configured to require au-
thentication and the client does not have the proper credentials. In those cases, the
server is operating normally, but policy requires rejecting those requests. In other
cases, however, the problem may be caused by genuine technical problems, such
as the machine going down, the NetSolve server being stopped, network connec-
tivity problems, or a poorly implemented service that crashes before the solution is
computed.

The NetSolve approach to handling these problems is to automatically resubmit the
job to another server. When the client initially submits a request to the agent, rather
than returning a single server, it returns a list of servers. The client starts with
the first server on the list and if a failure is encountered, it resubmits to the next
server on the list. This continues until there are no servers remaining. The process
is completely transparent to the user, so they only see a call fail if all servers that
implement that service have failed.

2.2.6 Request Sequencing

As the size of data sets increases, the ability to specify the flow of data becomes
more important. It would be inefficient to force intermediate results to be transmit-
ted back and forth between the client and servers when those results will not be
used again on the client and are needed at the server during the future steps of the
computation. Our aim in request sequencing is to decrease network traffic between
client and server components in order to decrease overall request response time.
Our design ensures that (i) no unnecessary data is transmitted and (ii) all neces-
sary data is transferred. This is accomplished by performing a data flow analysis
of the input and output parameters of every request in the sequence to produce a
directed acyclic graph (DAG) that represents the tasks and their execution depen-
dences. This DAG is then sent to a server in the system where it is scheduled for
execution.

In the current version of request sequencing, the NetSolve agent assigns the entire
sequence to a single server. The server is selected based on the sum of the predicted
run times of all the tasks. We execute a node if all its inputs are available and there
are no conflicts with its output parameters. Because the only mode of execution
we currently support is using a single NetSolve server, NetSolve is prevented from
exploiting any parallelism inherent in the task graph. However, distributing inde-
pendent tasks to different machines makes the scheduling and data management
more important (and complicated) than in the single server scenario. This limita-

7

tion would also be a problem when no single server has all the software required
to execute the entire sequence. Therefore, we will need to extend the NetSolve
scheduling and execution infrastructure to make more efficient use of the available
resources when executing a sequenced request.

As a simple demonstration to show the effectiveness of request sequencing, we
submit a sequence of three NetSolve requests, each dependent on the results of the
previous request: DGEMM� DLACPY� DGEMM. DGEMM is a matrix multiply routine
and DLACPY copies a matrix. Because of the sequential nature of this task graph,
even when multiple servers are available, the tasks cannot execute in parallel. Sub-
mitting this sequence to a dual processor 933MHz Pentium 3 machine as three indi-
vidual requests took 4.43 seconds on average, while submitting it as one sequence
only took 3.07 seconds because some data movement was avoided. Of course, if
the task graph contained some inherent parallelism, using a non-sequenced series
of requests would allow us to execute on multiple machines, possibly closing the
performance gap. However, the difference in performance depends on the amount
of parallelism that we could exploit and the communication overhead that we would
avoid by using request sequencing.

2.2.7 Task Farming in NetSolve

Task Farming represents an important class of distributed computing applications,
where multiple independent tasks are executed to solve a particular problem. Many
algorithms fit into this framework, for example, parameter-space searches, Monte-
Carlo simulations and genome sequence matching. This class of applications is
highly suited to Grid computing, however, scheduling task farming applications
efficiently can be difficult since the resources in a Grid may be highly variable and
the tasks may take different amounts of time.

Without using a special task farming API, a naı̈ve algorithm could be implemented
by using the standard NetSolve interface and letting the NetSolve agent handle the
scheduling. A user would make a series of non-blocking requests, probe to see if
the requests have completed, and then wait to retrieve the results from completed
requests. However this leads to problems with regard to scheduling, especially if the
number of tasks is much larger than the number of servers. Alternatively, the user
could try to handle the details of scheduling, but this solution requires a knowledge
of the system that is not easily available to the user, and it ignores the NetSolve
goal of ease-of-use.

In order to provide an efficient and easy to use interface to task farming, NetSolve
implements a special API. In the farming interface, the user converts the parameters
for requests into an arrays of parameters, indexed by an iterator string. Figure 3
shows an example of the task farming interface. The task farming API only adds 4
calls to NetSolve, namely 3 calls for constructing arrays of different data types, and

8

Using standard non-blocking NetSolve API
requests1 = netslnb(’iqsort()’,size1, ptr1,sort1);
requests2 = netslnb(’iqsort()’,size2, ptr2,sort2);
...
requests200 = netslnb(’iqsort()’,size200, ptr200,sorted200);
for each request probe for completion with netslpr()
for each request wait for results using netslwt()

Using task farming API
int sizearray[200];
void *ptrarray[200];
void *sortedarray[200];
sizearray[0] = size1;
ptrarray[0] = ptr1;
sortedarray[0] = sorted1;
...
statusarray = netsl farm("i=0,199","iqsort()",
ns int array(sizearray,"$i"), ns ptr array(ptrarray,"$i"),
ns ptr array(sortedarray,"$i"));

Fig. 3. Task Farming Example: A integer quicksort routine is implemented using standard
non-blocking calls (top) and then converted to using the task farming interface (bottom).

1 call for the actual farming. More details about the API can be found in the Users
Guide to NetSolve [8].

One problem with the current task farming API is that it only returns when the all
the tasks have been completed. That is, it does not allow the user to get results when
a subset of the tasks have been completed, so the user cannot visualize, guide or
cancel during the execution. These are things that we are working to address in the
current development version of NetSolve (known as GridSolve).

2.2.8 Distributed Storage Infrastructure

As the size of the data sets used in scientific computing continues to increase, stor-
age management becomes more important for grid applications. In the normal Net-
Solve RPC model, the client has all the input data resident in memory or in a local
file. The client sends the data directly to the server and retrieves the results directly
from the same server. Of course, the main limitation of this model is that the data
set cannot exceed the storage capacity of the client, which could be a very severe
restriction. In these cases, some form of remote storage management will be essen-
tial.

The Distributed Storage Infrastructure (DSI) is an attempt towards achieving coschedul-
ing of the computation and data movement over the NetSolve Grid. The DSI API

9

helps the user in controlling the placement of data that will be accessed by a Net-
Solve service. This is useful in situations where a given service accesses a single
block of data a number of times. Instead of multiple transmissions of the same
data from the client to the server, the DSI feature helps to transfer the data from the
client to a storage server just once, and relatively cheap multiple transmissions from
the storage server to the computational server. Thus the present DSI feature helps
NetSolve to operate in a cache-like manner. Presently, only the Internet Backplane
Protocol (IBP) [9] is used for providing the storage service. IBP provides mid-
dleware for managing and using remote storage, but we hide the specifics of the
IBP interface behind the DSI layer. This will allow us to integrate other commonly
available storage service systems in the future without requiring changes to client
code already written using DSI.

3 GridRPC API

GridRPC is a standardized, portable, and simple programming interface for remote
procedure call (RPC) over the Grid. NetSolve provides a GridRPC layer on top of
the normal API, but in the future, GridRPC will be the primary end-user API. In this
section, we informally describe the GridRPC model and the functions that comprise
the API. The current Global Grid Forum Recommendation Draft for GridRPC [10]
contains a detailed listing of the function prototypes, however the version currently
implemented by NetSolve is described in detail in [1].

3.1 Function Handles and Session IDs

Two fundamental objects in the GridRPC model are function handles and session
IDs. The function handle represents a mapping from a function name to an in-
stance of that function on a particular server. The GridRPC API does not dictate
the mechanics of resource discovery since different underlying GridRPC imple-
mentations may use vastly different protocols. Once a particular function-to-server
mapping has been established by initializing a function handle, all RPC calls us-
ing that function handle will be executed on the server specified in that binding.
A session ID is an identifier representing a particular non-blocking RPC call. The
session ID is used throughout the API to allow users to obtain the status of a pre-
viously submitted non-blocking call, to wait for a call to complete, to cancel a call,
or to check the error code of a call.

10

3.2 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the MPI initialize and finalize
calls. Client GridRPC calls before initialization or after finalization will fail.

� grpc initialize reads the configuration file and initializes the required mod-
ules.

� grpc finalize releases any resources being used by GridRPC.

3.3 Remote Function Handle Management Functions

The function handle management group of functions allows creating and destroying
function handles.

� grpc function handle default creates a new function handle using a default
server. This could be a pre-determined server name or it could be a server that
is dynamically chosen by the resource discovery mechanisms of the underlying
GridRPC implementation, such as the NetSolve agent.

� grpc function handle init creates a new function handle with a server ex-
plicitly specified by the user.

� grpc function handle destruct releases the memory associated with the spec-
ified function handle.

� grpc get handle returns the function handle corresponding to the given session
ID (that is, corresponding to that particular non-blocking request).

3.4 GridRPC Call Functions

The four GridRPC call functions may be categorized by a combination of two prop-
erties: blocking behavior and calling sequence. A call may be either blocking (syn-
chronous) or non-blocking (asynchronous) and it may use either a variable number
of arguments (like printf) or an argument stack calling sequence. The argument
stack calling sequence allows building the list of arguments to the function at run-
time through elementary stack operations, such as push and pop.

� grpc call makes a blocking remote procedure call with a variable number of
arguments.

� grpc call async makes a non-blocking remote procedure call with a variable
number of arguments.

� grpc call argstack makes a blocking call using the argument stack.
� grpc call argstack asyncmakes a non-blocking call using the argument stack.

11

3.5 Asynchronous GridRPC Control Functions

The following functions apply only to previously submitted non-blocking requests.

� grpc probe checks whether the asynchronous GridRPC call has completed.
� grpc cancel cancels the specified asynchronous GridRPC call.

3.6 Asynchronous GridRPC Wait Functions

The following five functions apply only to previously submitted non-blocking re-
quests. These calls allow an application to express desired non-deterministic com-
pletion semantics to the underlying system, rather than repeatedly polling on a set
of sessions IDs. (From an implementation standpoint, such information could be
conveyed to the OS scheduler to reduce cycles wasted on polling.)

� grpc wait blocks until the specified non-blocking requests to complete.
� grpc wait and blocks until all of the specified non-blocking requests in a given

set have completed.
� grpc wait or blocks until any of the specified non-blocking requests in a given

set has completed.
� grpc wait all blocks until all previously issued non-blocking requests have

completed.
� grpc wait any blocks until any previously issued non-blocking request has com-

pleted.

3.7 Error Reporting Functions

Of course it is possible that some GridRPC calls can fail, so we need to provide the
ability to check the error code of previously submitted requests. The following error
reporting functions provide error codes and human-readable error descriptions.

� grpc get last error returns the error code for the last invoked GridRPC call.
� grpc get error returns the error code associated with a given non-blocking

request.
� grpc perror prints the error string associated with the last GridRPC call.
� grpc error string returns the error description string, given a numeric error

code.

12

3.8 Argument Stack Functions

When describing the GridRPC call functions, we mentioned that there is an alter-
nate calling style that uses an argument stack. With the following functions it is
possible to construct the arguments to a function call at run-time. When interpreted
as a list of arguments, the stack is ordered from bottom up. That is, to emulate
a function call f(a,b,c), the user would push the arguments in the same order:
push(a); push(b); push(c);.

� grpc arg stack new creates a new argument stack.
� grpc arg stack push arg pushes the specified argument onto the stack.
� grpc arg stack pop arg removes the top element from the stack.
� grpc arg stack destruct frees the memory associated with the specified ar-

gument stack.

4 GridSolve: The Future of NetSolve

Over time, many enhancements have been made to NetSolve to extend its func-
tionality or to address various limitations. Task farming, request sequencing, and
security are examples of enhancements made after the original implementation of
NetSolve. However, some desirable enhancements cannot be easily implemented
within the current NetSolve framework. Thus, our ongoing work on NetSolve in-
volves redesigning the framework from the ground up to address some of these new
requirements.

Based on our experience developing NetSolve we have identified several require-
ments that are not adequately addressed in the current NetSolve system. These new
requirements - coupled with the requirements for the original NetSolve system -
will form the basis for our next generation middleware, known as GridSolve.

The overall goal is to address three general problems: server-side ease of use, in-
teroperability, and scalability. Improving server-side ease of use primarily refers to
improving the process of integrating external code and libraries into a GridSolve
server. Interoperability encompasses several facets, including better handling of
different network topologies (such as those including NATs), better support for
parallel libraries and parallel architectures, and better interaction with other Grid
computing systems such as Globus [11] and Ninf [3]. Scalability in the context
used here means that system performance does not degrade as a result of adding
components or increasing the number of requested services in the GridSolve sys-
tem.

This section describes some of the specific solutions to the general problems dis-

13

cussed above.

4.1 Network Address Translators

As the rapid growth of the Internet began depleting the supply of IP addresses, it
became evident that some immediate action would be required to avoid complete IP
address depletion. The IP Network Address Translator [12] is a short-term solution
to this problem. Network Address Translation presents the same external IP address
for all machines within a private subnet, allowing reuse of the same IP addresses
on different subnets, thus reducing the overall need for unique IP addresses.

As beneficial as NATs may be in alleviating the demand for IP addresses, they
pose many significant problems to developers of distributed applications such as
GridSolve [13]. Some of the problems as they pertain to GridSolve are: IP addresses
may not be unique, IP address-to-host bindings may not be stable, hosts behind
the NAT may not be contactable from outside, and NATs may increase network
failures.

To address these issues we have developed a new communications framework for
GridSolve. To avoid problems related to potential duplication of IP addresses, the
GridSolve components will be identified by a globally unique identifier specified by
the user or generated randomly. In a sense, the component identifier is a network
address that is layered on top of the real network address such that a component
identifier is sufficient to uniquely identify and locate any GridSolve component,
even if the real network addresses are not unique. This is somewhat similar to a
machine having an IP address layered on top of its MAC address in that the pro-
tocol to obtain the MAC address corresponding to a given IP address is abstracted
in a lower layer. Since NATs may introduce more frequent network failures, we
have implemented a mechanism that allows a client to submit a problem, break the
connection, and reconnect later at a more convenient time to retrieve the results.

An important aspect to making this new communications model work is the Grid-
Solve proxy, which is a component that allows servers to exist behind a NAT. Since
a server cannot easily accept unsolicited connections from outside the private net-
work, it must first register with a proxy. The proxy acts on behalf of the component
behind the NAT by establishing connections with other components or by accepting
incoming connections. The component behind the NAT keeps the connection with
the proxy open as long as possible since it can only be contacted by other com-
ponents while it has a control connection established with the proxy. To maintain
good performance, the proxy only examines the header of the connections that it
forwards and it uses a simple table-based lookup to determine where to forward
each connection. Furthermore, to prevent the proxy from being abused, authentica-
tion may be required.

14

4.2 Scheduling Enhancements

GridSolve will retain the familiar agent-based and server-based scheduling of re-
sources, but in many cases the client has the most accurate knowledge about how
to select the best resource. Therefore we are implementing an infrastructure that
allows filtering and scheduling to be optionally performed by the client.

In the current NetSolve system, the only filter that affects the selection of resources
is the problem name. Given the problem name, the NetSolve agent filters to select
the servers that can solve that problem, then chooses the “best” server. However, the
notion of which server is best is entirely determined by the agent. In GridSolve, we
are extending this behavior. We allow the user to provide constraints on the filtering
and selection process. These selection constraints imply that the user has some
knowledge of which characteristics will lead to a better solution to the problem
(most likely in terms of speed), for example, a minimum memory requirement.
Also we will allow the user to have access to the complete list of resources and
their characteristics so that the client can implement comprehensive scheduling
algorithms in addition to simple filtering.

To make this functionality useful, the GridSolve servers should provide as much
information as possible to the agent, in turn providing a flexible environment to the
client for its request. To make the best selection for the client, the agent uses this
information stored in the form of resource attributes and performs the filtering on
behalf of the client. Furthermore, we allow the service providers (that is, those or-
ganizations that provide GridSolve servers) to specify constraints on the clients that
can access that service. For example, an organization may want to restrict access to
a certain group of collaborators. This information is also specified in the resource
attributes of the service.

Since the GridSolve agent currently maintains information about all resources in
the entire system, it can be viewed as the main performance bottleneck as more
resources are added. The natural approach to this problem is to use multiple agents
such that the load on each agent is reduced. However, this distributed approach
leads to some interesting scheduling issues since each agent might only store infor-
mation about its local domain. While each agent may prefer to schedule jobs within
its domain, it may actually be more efficient to send the job to another agent if
the computational and network communication requirements warrant. Thus, some
agent-to-agent communication will certainly be required when using multiple agents.

4.3 IDL Improvements

One of the original design goals of NetSolve was to eliminate the need for client-
side stubs for each procedure in a remote procedure call (RPC) environment. How-

15

ever, this design decision tends to push the complexity to the servers. Integrating
new software into NetSolve required writing a complex server side interface defi-
nition (Problem Description File), which specifies the parameters, data types, and
calling sequence. Despite several attempts to create a user-friendly tool to generate
the Problem Description Files, it can still be a difficult and error-prone process.

Therefore, we have implemented a simple technique for adding additional services
to a running server. The interface definition format itself has been greatly simpli-
fied and the services are compiled as external executables with interfaces to the
server described in a standard format. The server re-examines its own configura-
tion and installed services periodically or when it receives the appropriate signal.
In this way it becomes aware of any additional services that are installed without
re-compilation or restarting.

Integrating parallel software has been difficult in some cases because the Problem
Description File format does not support it in a general way. Additionally, some
parallel software has required using a customized server. Making parallel software
easier to integrate into GridSolve hinges on two issues: the server should support it
in a general way and the interface definition language should be extended to allow
specifying additional parameters, such as the number of processors to be used. We
are continuing to work on these issues.

5 Applications using NetSolve

The desire to make software available through a computational grid may be moti-
vated by several factors. In some cases, the goal is to parallelize the computation to
reduce the total time to solution. Grid middleware can also help increase overall re-
source utilization by balancing the load among the available servers. In other cases
the goal is simply to provide remote access to software that is not feasible to run
on the user’s machine, perhaps because of high resource requirements, dependence
on specialized libraries, or source code portability. In this section, we describe a
diverse set of applications that have been grid-enabled using NetSolve.

5.1 Environmental Modeling

A tremendous amount of planning goes into an undertaking as large as restoring the
Everglades. Studies must first be done to determine what areas need to be restored
and how best to do so without further damaging an already delicate ecosystem. To
aid in this planning, a group at the University of Tennessee led by Dr. Lou Gross has
collaborated on the development of a suite of environmental models called ATLSS
(Across Tropic Level System Simulation) [14]. These models provide comparisons

16

of the effects of alternative future hydrologic plans on various components of the
biota.

This package has proven itself quite useful in the planning efforts, however it re-
quires extensive computational facilities that are typically not available to the many
stakeholders (including several federal and state agencies) involved in the evalua-
tion of plans for restoration that are estimated to cost $8 billion. To allow greater
access and use of computational models in the South Florida stakeholder com-
munity, a grid-enabled interface to the ATLSS models has been developed and is
currently being used on SInRG resources. This interface provides for the distribu-
tion of model runs to heterogeneous grid nodes. The interface utilizes NetSolve
for model run management and the LoRs (Logistical Runtime System) [15] toolkit
and library for data and file movement. Integration of the grid interface with a web
based launcher and database provides a single interface for accessing, running, and
retrieving data from the variety of different models that make up ATLSS, as well as
from a variety of different planning scenarios.

ATLSS, in conjunction with NetSolve and LoRS, is the first package we are aware
of that provides transparent access for natural resource managers through a com-
putational grid to state-of-the-art models. The interface allows users to choose par-
ticular models and parameterize them as the stakeholder deems appropriate, thus
allowing them the flexibility to focus the models on particular species, conditions
or spatial domains they wish to emphasize. The results can then be viewed within
a separate GIS tool developed for this purpose.

5.2 Statistical Parametric Mapping

Statistical Parametric Mapping (SPM) is a widely used medical imaging software
package. The SPM web site [16] describes the technique as follows.

Statistical Parametric Mapping refers to the construction and assessment of spa-
tially extended statistical process used to test hypotheses about [neuro]imaging
data from SPECT/PET & fMRI. These ideas have been instantiated in software
that is called SPM.

Although SPM has achieved widespread usage, little work has been done to opti-
mize the package for better performance. In particular, little effort has gone into
taking advantage of the largely parallel nature of many parts of the SPM package.

Through continuing research by Dr. Jens Gregor and Dr. Michael Thomason at
the University of Tennessee, preliminary work has been done to enhance the SPM
package to utilize grid resources available through NetSolve and IBP by way of
the NetSolve-to-IBP library. NetSolve-to-IBP is a library built on top of LoRS and
ROLFS (Read-Only Logistical File System) that allows the sharing of files between

17

the NetSolve client and server processes, using IBP repositories as intermediate
storage. This allows programs that need access to a common set of files (e.g. SPM)
to export some of their functionality to a NetSolve server without having to use a
shared filesystem, such as NFS.

The grid-enabled version of SPM is still under development, but executions of the
preliminary version have been timed to run in one half to one third the time of
unmodified code in some simulations. Once completed, the SPM software will be
distributed across the SInRG resources for use in medical research, providing doc-
tors and researchers a faster time to completion, something often critical in medical
imaging analysis.

5.3 Image Compression

An image compression application using singular value decomposition was built to
demonstrate how the C# interface can be used from within .NET. Singular Value
Decomposition (SVD) [17] is a useful mathematical tool for finding and removing
information stored in matrix form based on its significance to the rest of the data.
Image compression is one of many uses of SVD.

Images are represented as matrices with values in the elements to describe the in-
tensity of the color. Color images are actually a composite of matrices representing
different colors; generally red, green, and blue. When the image is decomposed into
the form UDVT by SVD, the singular values are representative of the clarity of the
image. When some of the values are discarded the image loses clarity, but this loss
in precision is made up for by the reduction in space needed to store the image.

Currently, the prototype NetSolve web service implements dgesvd (a singular value
decomposition routine from the LAPACK [18] mathematical library) in a non-
blocking fashion. Invoking the dgesvdweb method creates a new thread and imme-
diately returns. The dgesvd call ships the image as a .NET DIME [19] attachment
to the web service side. The web service then decomposes the image into three ma-
trices representing red, green, and blue. Each of the matrices is then submitted to
NetSolve using the dgesvd problem and solved. Image reconstruction is done as
soon as the client receives enough information from the web service to reconstruct
the requested image(s).

5.4 Vertex Cover and Clique Problems

A widely-known and studied problem in computer science and other disciplines is
the Vertex Cover problem, which asks the following question.

18

Given a graph G=(V,E) and an integer k, does G contain a set S with k or fewer
vertices that covers all of the edges in G, where an edge is said to be covered if
at least one of its endpoints are contained in S?

Vertex Cover is NP-complete in general, but solvable in polynomial time when k
is fixed. The applications for this problem are far-reaching, including applications
in bioinformatics, such as phylogeny, motif discovery, and DNA microarray analy-
sis. The problem, however, is inherently difficult and time-consuming to solve, so
efficient software packages for solving Vertex Cover are very desirable.

Research conducted by Dr. Michael Langston of the University of Tennessee aims
to create an efficient software package for solving Vertex Cover. Dr. Langston and
his student researchers are interested mainly in the duality between the Vertex
Cover problem and the Clique problem. The Clique problem asks the following
question.

Given a graph G=(V,E) and an integer k, does G contain a set S of k nodes such
that there is an edge between every two nodes in the clique?

By exploiting the duality between these two problems, they have been able to solve
extremely large instances of Clique (graphs containing greater than 104 vertices).
To achieve reasonable times to solution, Dr. Langston’s team has developed a par-
allel version of their software, which is being actively run on SInRG (Scalable In-
tracampus Research Grid) [20] resources. The team has taken several approaches to
making their application grid-aware, ranging from developing a custom scheduler
and starting jobs via Secure Shell (SSH) to using popular grid middleware, such as
Condor. The team has implemented a prototype version of their software that uses
NetSolve to efficiently access a large number of computational resources.

5.5 Genetic Algorithms

Because of their durability and fuel efficiency, diesel engines are installed in many
kinds of vehicles ranging from compact cars to large trucks. With increasing envi-
ronmental concerns and legislated emission standards, current research is focused
on reduction of soot and NOx simultaneously while maintaining reasonable fuel
economy. In this research, the optimization system designs a diesel engine with
small amounts of Soot and NOx along with high fuel efficiency [21]. There are
three components: the phenomenological diesel engine model, the Genetic Algo-
rithm, and NetSolve.

HIDECS (Hiroyasu Diesel Engine Combustion Simulation) [22] is the most sophis-
ticated phenomenological spray-combustion model currently available, originally
developed at the University of Hiroshima. It has already demonstrated potential as
a predictive tool for both performance and emissions in several types of direct in-

19

jection diesel engines. Genetic Algorithm (GA) is an optimization algorithm that
imitates the evolution of living creatures. In nature, creatures inadaptable to an en-
vironment meet extinction, and only adapted creatures can survive and reproduce.
A repetition of this natural selection spreads the superior genes to conspecifics and
then the species prospers. GA models this process of nature on computers.

GA can be applied to several types of optimization problems by encoding design
variables of individuals. Searching for the solution proceeds by performing three
genetic operations on the individuals: selection, crossover, and mutation, which
play an important role in GA. Selection is an operation that imitates the survival of
the fittest in nature. The individuals are selected for the next generation according
to their fitness. Crossover is an operation that imitates the reproduction of living
creatures. The crossover operation exchanges the information of the chromosomes
among individuals. Mutation is an operation that imitates the failure that occurs
when copying the information of DNA. Mutating the individuals with a proper
probability maintains the diversity of the population.

Since it takes a lot of time to derive the optimum solution by GA, parallel process-
ing is preferred. Fortunately GA is a very suitable algorithm for performing parallel
processing and the farming function of NetSolve is very easy to apply to GA since
it provides an easy way to submit a large number of requests to be executed in
parallel. In this system, GA is performed on the client side. When the searching
points are evaluated, the data is sent to the server and calculated using the faming
function. A huge computational cost is required to derive these results. However,
NetSolve farming helps this system to reduce the total calculation time.

6 Related Work

Several Network Enabled Servers (NES) provide mechanisms for transparent ac-
cess to remote resources and software. Ninf-G [23] is a reference implementation of
the GridRPC API [1] built on top of the Globus Toolkit. Ninf-G provides an inter-
face definition language that allows services to be easily added, and client bindings
are available in C and Java. Security, scheduling and resource management are left
up to Globus.

The DIET (Distributed Interactive Engineering Toolbox) project [24] is a client-
agent-server RPC architecture which uses the GridRPC API as its primary inter-
face. A CORBA Naming Service handles the resource registration and lookup, and
a hierarchy of agents handles the scheduling of services on the resources. An API
is provided for generating service profiles and adding new services, and a C client
API exists.

NEOS [25] is a network-enabled problem-solving environment designed as a generic

20

application service provider (ASP). Any application that can be changed to read its
inputs from files, and write its output to a single file can be integrated into NEOS.
The NEOS Server acts as an intermediary for all communication. The client data
files go to the NEOS server, which sends the data to the solver resources, collects
the results and then returns the results to the client. Clients can use email, web,
sockets based tools and CORBA interfaces.

Other projects are related to various aspects of NetSolve. For example, task farming
style computation is provided by the Apples Parameter Sweep Template (APST)
project [26], the Condor Master Worker (MW) project [27], and the Nimrod-G
project [28]. Request sequencing is handled by projects like Condor DAGman [6].

However, NetSolve provides a complete solution for easy access to remote re-
sources and software. It differs from the other NES implementation by including a
tight, simple integration with a variety of client PSEs (Matlab, Mathematica, Oc-
tave). Interface descriptions for a variety of standard mathematical libraries is dis-
tributed with NetSolve, and it is easy for additional services to be added. The ability
to use server-proxies to leverage additional resource management and scheduling
environments also adds to NetSolve’s strengths.

7 Conclusion

Since the inception of the NetSolve project, the paramount design goal has been
ease of use. This has motivated us to develop interfaces to popular interactive sci-
entific computing environments such as Matlab, Mathematica, and Octave. The ex-
istence of these interfaces serves to reduce the barrier to entry for Grid computing
since users do not need significant programming expertise to use them. NetSolve’s
agent based scheduling eliminates the need for the user to know the location of
resources capable of servicing the request and the fault tolerance mechanism al-
lows selecting alternate resources without intervention from the user. The NetSolve
server also hides complexity from the user by making it easier to invoke parallel
programs or jobs on machines controlled by a batch queue.

We have described how NetSolve is being used by several projects to solve prob-
lems ranging from medical imaging to optimizing the emissions from diesel en-
gines. As researchers continue to investigate feasible ways to harness computa-
tional resources, we hope the NetSolve system will continue to provide a useful
paradigm for Grid computing.

21

8 Acknowledgments

We would like to thank the following people for describing the status of their re-
search using NetSolve: Jens Gregor, Lou Gross, Tomo Hiroyasu, Michael Langston,
Zhiao Shi, and Michael Thomason.

References

[1] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In
M. Parashar, editor, GRID 2002, pages 274–278, 2002.

[2] Global Grid Forum Research Group on Programming Models. http://www.
gridforum.org/7_APM/APS.htm.

[3] Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. Design and
Implementations of Ninf: Towards a Global Computing Infrastructure. In Future
Generation Computing Systems, Metacomputing Issue, volume 15, pages 649–658,
1999.

[4] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms
for Fortran Usage. ACM Transactions on Mathematical Software, 5:308–325, 1979.

[5] Load Sharing Facility. http://www.platform.com/products/LSF/.

[6] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional Grids. Cluster Computing,
5:237–246, 2002.

[7] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche. Self Adapting Software for
Numerical Linear Algebra and LAPACK For Clusters. In Parallel Computing,
volume 29, pages 1723–1743, 2003.

[8] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing
Laboratory. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,
June 2002.

[9] A. Bassi, M. Beck, T. Moore, J. Plank, M. Swany, R. Wolski, and G. Fagg. The Internet
Backplane Protocol: A Study in Resource Sharing. In Future Generation Computing
Systems, volume 19, pages 551–561.

[10] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova. A
GridRPC Model and API for End-User Applications. http://forge.gridforum.
org/projects/gridrpc-wg/document/End-User_API_23%_Sept_04/en/1,
September 2004. Global Grid Forum Recommendation Draft.

22

[11] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 1997.

[12] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631,
May 1994.

[13] K. Moore. Recommendations for the Design and Implementation of NAT-Tolerant
Applications. Internet-draft, February 2002. Work in Progress.

[14] D. M. Fleming, D. L. DeAngelis, L. J. Gross, R. E. Ulanowicz, W. F. Wolff, W. F.
Loftus, and M. A. Huston. ATLSS: Across-Trophic-Level System Simulation for the
Freshwater Wetlands of the Everglades and Big Cypress Swamp. National Biological
Service Technical Report, 1994.

[15] M. Beck, Y. Ding, S. Atchley, and J. S. Plank. Algorithms for High Performance,
Wide-area Distributed File Downloads. Parallel Processing Letters, 13(2):207–224,
June 2003.

[16] Statistical Parametric Mapping. http://www.fil.ion.ucl.ac.uk/spm/.

[17] G. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,
1996.

[18] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide, Third Edition. SIAM, Philadelphia, PA, 1999.

[19] Direct Internet Message Encapsulation. http://www.gotdotnet.com/team/xml_
wsspecs/dime/dime.htm.

[20] Scalable Intracampus Research Grid. http://icl.cs.utk.edu/sinrg.

[21] H. Hiroyasu, T. Hiroyasu, M. Miki, J. Kamiura, and S. Watanabe. Multi-
Objective Optimization of Diesel Engine Emissions using Genetic Algorithms and
Phenomenological Model. JSAE (Society of Automotive Engineers of Japan) Paper
No. 20025489, November 2002.

[22] H. Hiroyasu and T. Kadota. Models for Combustion and Formation of Nitric Oxide
and Soot in Direct Injection Diesel Engines. SAE Paper 760129, 1976.

[23] Y. Tanaka, H. Nakada, S. Sekiguchi, Suzumura Suzumura, and S. Matsuoka. Ninf-
G: A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. Journal of Grid Computing, 1(1):41–51, 2003.

[24] E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philippe, M. Quinson, and F. Suter.
A Scalable Approach to Network Enabled Servers (Research Note). Lecture Notes in
Computer Science, 2400, 2002.

[25] E. Dolan, R. Fourer, J. J. Moré, and Munson Munson. The NEOS Server for
Optimization: Version 4 and Beyond. Technical Report ANL/MCS-P947-0202,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL, February 2002.

23

[26] Henri Casanova, Graziano Obertelli, Berman Berman, and Rich Wolski. The AppLeS
Parameter Sweep Template: User-Level Middleware for the Grid. In Proceedings of
Supercomputing’2000 (CD-ROM), Dallas, TX, Nov 2000. IEEE and ACM SIGARCH.

[27] Jeff Linderoth, Sanjeev Kulkarni, Jean-Pierre Goux, and Michael Yoder. An
Enabling Framework for Master-Worker Applications on the Computational Grid.
In Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing (HPDC9), pages 43–50, Pittsburgh, PA, August 2000.

[28] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A Computational Economy
for Grid Computing and its Implementation in the Nimrod-G Resource Broker. Future
Generation Computer Systems, 18(8):1061–1074, October 2002.

24

