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Abstract. As computer systems grow in size and complexity, tool sup-
port is needed to facilitate the efficient mapping of large-scale applica-
tions onto these systems. To help achieve this mapping, performance
analysis tools must provide robust performance observation capabilities
at all levels of the system, as well as map low-level behavior to high-level
program constructs. This paper describes instrumentation and measure-
ment strategies, together with a performance analysis infrastructure that
has implemented a subset of these strategies.

1 Introduction

Performance observation requirements for terascale systems are determined by
the performance problem being addressed and the performance evaluation method-
ology being applied. Instrumentation of an application is necessary to capture
performance data. Instrumentation may be inserted at various stages, from
source code modifications to compile-time to link-time to modification of ex-
ecutable code either statically or dynamically during program execution. These
instrumentation points have different mechanisms which vary in their ease of
use, flexibility, level of detail, user control of what data can be collected, and
intrusiveness.

Performance data of various types can provide valuable insights into program
behavior on large-scale systems and point the way toward program transforma-
tions that will improve performance. Profiling data show the distribution of a
metric across source-level constructs, such as routines, loops, and basic blocks.
In addition to timing facilities such as cycle counters, most modern micropro-
cessors provide a rich set of hardware counters that capture functional unit,
memory, and operating system events. Profiling can be based one either time or
various hardware-based metrics, such as cache misses, for example. Correlations
between profiles based on different events, as well as event-based ratios, provide
derived information that can help to quickly identify and diagnose performance
problems. In addition to profiling data, capturing event traces of program events,



such as message communication events, helps portray the temporal dynamics of
application performance.

For terascale systems, a wide range of performance problems, performance
evaluation methods, and programming environments need to be supported. A
suite of tools, based on a flexible and extensible performance observation frame-
work, can best provide the necessary flexibility in experiment design. Research
problems that need to be addressed by the framework include the following: the
appropriate level and location in the framework for implementing different in-
strumentation and measurement strategies, how to make the framework modular
and extensible, and the appropriate compromise between the level of detail and
accuracy of the performance data collected and the instrumentation cost.

The remainder of the paper is organized as follows. Section 2 describes the in-
strumentation mechanisms it is desirable to support. Section 3 describes various
types of measurements. Section 4 explains how the instrumentation and mea-
surement strategies are supported in the PAPI cross-platform hardware counter
interface and the TAU performance observation framework. Section 5 contains
conclusions.

2 Instrumentation

To observe application performance, additional instructions or probes are typi-
cally inserted into a program. This process is called instrumentation. Instrumen-
tation can be inserted at various stages, as described below.

2.1 Source Code Instrumentation

Instrumentation at the source code level allows the programmer to communicate
higher-level domain-specific abstractions to the performance tool. A program-
mer can communicate such events by annotating the source code at appropriate
locations with instrumentation calls. Once the program undergoes a series of
transformations to generate the executable code, specifying arbitrary points in
the code for instrumentation and understanding program semantics at those
points may not be possible. Another advantage of source code instrumenta-
tion is that once an instrumentation library targets one language, it can provide
portability across multiple compilers for that language, as well as across multiple
platforms. Drawbacks of source code instrumentation include possible changes
in instruction and data cache behavior, interactions with optimizing compilers,
and runtime overhead of instrumentation library calls.

Source code annotations can be inserted manually or automatically. Adding
instrumentation calls in the source code manually can be a tedious task that
introduces the possibility of instrumentation errors that can produce erroneous
performance data. Some of these difficulties with manual source code instrumen-
tation can be overcome by using a preprocessor. A preprocessor is implemented
as a source-to-source translation that typically expands header files and performs
macro substitutions during compilation. Such source-to-source transformation



can be used to build an instrumentor that automatically introduces instrumen-
tation, alleviating the burden on the programmer. Tools such as PDT [9] for
C++, C and Fortran 90, Sage++ [2] for Fortran and C++, and SUIF [16] for C
and Fortran parse the application source code and provide object-oriented class
libraries to access the data structures that represent the parsed intermediate
form.

2.2 Library Level Instrumentation

Wrapper interposition libraries provide a convenient mechanism for adding in-
strumentation calls to libraries. The MPI Profiling Interface [1] allows a tool
developer to interface with MPI calls in a portable manner without modifying
the application source code or having access to the proprietary source code of
the library implementation.

The POMP interface for OpenMP provides a performance API instrumenting
OpenMP codes that is portable across compilers and platforms [11]. Defined as
a library API, the interface exposes OpenMP execution events of interest (e.g.,
sequential, parallel, and synchronization events) for performance observation,
and passes OpenMP context descriptors to inform the performance interface
library of region-specific information.

2.3 Binary Instrumentation

Executable images can be instrumented using binary code-rewriting techniques,
often referred to as binary editing tools or executable editing tools. Systems such
as Pixie, ATOM [6], EEL [8], and PAT [7] include an object code instrumentor
that parses an executable and rewrites it with added instrumentation code. The
advantage of binary instrumentation is that there is no need to re-compile an
application program and rewriting a binary file is mostly independent of the
programming language. Also, it is possible to spawn the instrumented parallel
program the same way as the original program, without any special modifica-
tion as are required for runtime instrumentation [13]. Furthermore, since an
executable program is instrumented, compiler optimizations do not change or
invalidate the performance optimization.

2.4 Dynamic Instrumentation

Dynamic instrumentation is a mechanism for runtime code patching that mod-
ifies a program during execution. DyninstAPI [4] provides an efficient, low-
overhead interface that is suitable for performance instrumentation. A tool that
uses this API is called a mutator and can insert code snippets into a running
program, which is called the mutatee, without re-compiling, re-linking, or event
re-starting the program. The mutator can either spawn an executable and in-
strument it prior to its execution, or attach to a running program. Dynamic
instrumentation overcomes some limitations of binary instrumentation by al-
lowing instrumentation code to be added and removed at runtime. Also, the



instrumentation can be done on a running program instead of requiring the user
to re-execute the application. The disadvantage of dynamic instrumentation is
that the interface needs to be aware of multiple object file formats, binary in-
terfaces (32/64 bit), operating system idiosyncrasies, as well as compiler specific
information (e.g., to support template name de-mangling in C++ from multiple
C++ compilers). To maintain cross language, cross platform, cross file format,
cross binary interface portability is a challenging task and requires a continu-
ous porting effort as new computing platforms and multi-threaded programming
environments evolve.

3 Types of Measurements

Post-mortem performance evaluation tools typically fall into two categories: pro-
filing and tracing, although some provide both capabilities. More recently, some
tools provide real-time, rather than post-mortem, performance monitoring.

3.1 Profiling

Profiling characterizes the behavior of an application in terms of aggregate per-
formance metrics. Profiles are typically represented as a list of various metrics
(such as inclusive/exclusive wall-clock time) that are associated with program-
level semantics entities (such as routines, basic blocks, or statements in the
program). Time is a common metric, but any monotonically increasing resource
function can be used, such as counts from hardware performance counters. Pro-
filing can be implemented by sampling or instrumentation based approaches.
Sampling-based profiling periodically records the program state, and based on
measurements made on those states, estimates the overall performance. Although
sampling-based schemes suffer from incomplete coverage of the application and
their accuracy depends on the sampling interval, they have the advantage of
fixed, low instrumentation overhead and consequently reduced measurement per-
turbation in the program. In instrumentation-based profiling, measurements are
triggered by the execution of instructions added to the code to track significant
events in the program (such as the entry or exit of a routine, the execution
of a basic block or statement, the send or receipt of a message communication
operation).

3.2 Tracing

While profiling is used to get aggregate summaries of metrics in a compact form,
it cannot highlight the time varying aspects of the execution. To study the post-
mortem spatial and temporal aspects of performance data, event tracing, that
is, the activity of capturing events or actions that take program during pro-
gram execution, is more appropriate. Event tracing usually results in a log of
the events that characterize the execution. Each event in the log is an ordered



tuple typically containing a time stamp, a location (e.g., node, thread) an iden-
tifier that specifies the type of event (e.g., routine transition, user-defined event,
message communication, etc.) and event-specific information. In a parallel ex-
ecution, trace information generated on different processors must be merged.
This is usually based on the timestamp which can reflect logical time or physical
time.

3.3 Real-time Performance Monitoring

Post-mortem analysis of profiling data or trace files has the disadvantage that
analysis cannot begin until after program execution has finished. Real-time per-
formance monitoring allows users to evaluate program performance during exe-
cution. Examples of tools that support real-time performance monitoring include
Paradyn [10] and Autopilot [15]. Real-time performance monitoring is sometimes
coupled with application performance steering, as in Autopilot.

4 PAPI and TAU Instrumentation and Measurement
Strategies

Most modern microprocessors provide hardware support for collecting hardware
performance counter data [3]. Performance monitoring hardware usually con-
sists of a set of registers that record data about the processor’s function. These
registers range from simple event counters to more sophisticated hardware for
recording data such as data and instruction addresses for an event, and pipeline
or memory latencies for an instruction. Monitoring hardware events facilitates
correlation between the structure of an application’s source/object code and the
efficiency of the mapping of that code to the underlying architecture.

Because of the wide range of performance monitoring hardware available on
different processors and the different platform-dependent interfaces for accessing
this hardware, the PAPI project was started with the goal of providing a standard
cross-platform interface for accessing hardware performance counters [3]. PAPI
proposes a standard set of library routines for accessing the counters as well
as a standard set of events to be measured. The library interface consists of a
high-level and a low-level interface. The high-level interface provides a simple
set of routines for starting, reading, and stopping the counters for a specified
list of events. The fully programmable low-level interface provides additional
features and options and is intended for tool or application developers with
more sophisticated needs.

Reference implementations of PAPI are available for a number of platforms
(e.g., Cray T3E, SGI IRIX, IBM AIX Power, Sun Ultrasparc Solaris, Linux/x86,
Linux/IA-64, HP/Compaq Alpha Tru64 Unix). The implementation for a given
platform attempts to map as many of the standard PAPI events as possible to
the available platform-specific events. The implementation also attempts to use
available hardware and operating system support – e.g., for counter multiplexing,
interrupt on counter overflow, and statistical profiling.



Fig. 1. Layered architecture of the PAPI implementation

The architecture of PAPI is shown in Figure 1. The goal of the PAPI project is
to provide a firm foundation that supports the instrumentation and measurement
strategies described in the preceding sections and that supports development
of end-user performance analysis tools for the full range of high-performance
architectures and parallel programming models. For manual and preprocessor
source code instrumentation, PAPI provides the high-level and low-level routines
described above. The PAPI flops call is an easy-to-use routine that provides
timing data and the floating point operation count for the bracketed code. The
low-level routines target the more detailed information and full range of options
needed by tool developers. For example the PAPI profil call implements SVR4-
compatible code profiling based on any hardware counter metric. Again, the code
to be profiled need only be bracketed by calls to the PAPI profil routine. This
routine can be used by end-user tools such as VProf 1 to collect profiling data
which can then be correlated with application source code.

Using PAPI on large-scale application codes, such as the EVH1 hydrodynam-
ics code, has raised issues of scalability of the instrumentation. PAPI initially
focused on obtaining aggregate counts of hardware events. However, the over-
head of library calls to read the hardware counters can be excessive if the routines
are called frequently – for example, on entry and exit of a small subroutine or
basic block within a tight loop. Unacceptable overhead has caused some tool de-
velopers to reduce the number of calls through statistical sampling techniques.
On most platforms, the current PAPI code implements statistical profiling over
aggregate counting by generating an interrupt on counter overflow of a thresh-
old and sampling the program counter. On out-of-order processors the program
counter may yield an address that is several instructions or even basic blocks
removed from the true address of the instruction that caused the overflow event.
The PAPI project is investigating hardware support for sampling, so that tool
developers can be relieved of this burden and maximum accuracy can be achieved
with minimal overhead. With hardware sampling, an in-flight instruction is se-
lected at random and information about its state is recorded – for example, the
1 http:/aros.ca.sandia.gov/~cljanss/perf/vprof/



type of instruction, its address, whether it has incurred a cache or TLB miss,
various pipeline and/or memory latencies incurred. The sampling results pro-
vide a histogram of the profiling data which correlates event frequencies with
program locations. In addition, aggregate event counts can be estimated from
sampling data with lower overhead than direct counting. For example, the PAPI
substrate for the HP/Compaq Alpha Tru64 UNIX platform is built on top of a
programming interface to DCPI called DADD (Dynamic Access to DCPI Data).
DCPI identifies the exact address of an instruction, thus resulting in accurate
text addresses for profiling data [5]. Test runs of the PAPI calibrate utility
on the substrate have shown that event counts converge to the expected value,
given a long enough run time to obtain sufficient samples, while incurring only
one to two percent overhead, as compared to up to 30 percent on other sub-
strates that use direct counting. A similar capability exists on the Itanium and
Itanium 2 platforms, where Event Address Registers (EARs) accurately identify
the instruction and data addresses for some events. Future versions of PAPI
will make use of such hardware assisted profiling and will provide an option for
estimating aggregate counts from sampling data.

The dynaprof tool developed as part of the PAPI project uses dynamic
instrumentation to allow the user to either load an executable or attach to a
running executable and then dynamically insert instrumentation probes [12].
Dynaprof uses Dyninst API [4] on Linux/IA-32, SGI IRIX, and Sun Solaris
platforms, and DPCL 2 on IBM AIX. The user can list the internal structure
of the application in order to select instrumentation points. Dynaprof inserts
instrumentation in the form of probes. Dynaprof provides a PAPI probe for
collecting hardware counter data and a wallclock probe for measuring elapsed
time, both on a per-thread basis. Users may optionally write their own probes.
A probe may use whatever output format is appropriate, for example a real-time
data feed to a visualization tool or a static data file dumped to disk at the end
of the run. Future plans are to develop additional probes, for example for VProf
and TAU, and to improve support for instrumentation and control of parallel
message-passing programs.

PAPI been incorporated into a number of profiling tools, including SvPablo
3, TAU 4, and VProf. In support of tracing, PAPI is also being incorporated into
version 3 of the Vampir MPI analysis tool 5. Collecting PAPI data for various
events over intervals of time and displaying this data alongside the Vampir time-
line view enables correlation of event frequencies with message passing behavior.

Real-time performance monitoring is supported by the perfometer tool that
is distributed with PAPI. By connecting the graphical display to the backend
process (or processes) running an application code that has been linked with
the perfometer and PAPI libraries, the tool provides a runtime trace of a user-
selected PAPI metric, as shown in Figure 2 for floating point operations per

2 http://oss.software.ibm.com/developerworks/opensource/dpcl/
3 http://www-pablo.cs.uiuc.edu/Project/SVPablo/SvPabloOverview.htm
4 http://www.cs.uoregon.edu/research/paracomp/tau/
5 http://www.pallas.com/e/products/vampir/index.htm



second (FLOPS). The user may change the performance event being measured
by clicking on the Select Metric button. The intent of perfometer is to provide
a fast coarse-grained easy way for a developer to find out where a bottleneck
exists in a program. In addition to real-time analysis, the perfometer library
can save a trace file for later off-line analysis. The dynaprof tool described above
includes a perfometer probe that can automatically insert calls to the perfometer
setup and color selection routines so that a running application can be attached
to and monitored in real-time without requiring any source code changes or
recompilation or even restarting the application.

Fig. 2. Real-time performance analysis using Perfometer

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit
for parallel threaded and or message-passing programs written in Fortran, C,
C++, or Java, or a combination of Fortran and C. TAU has three distinct
phases for instrumentation, measurement, and analysis, as shown in Figure 3.
The program can undergo a series of transformations that insert instrumentation
before it executes. Instrumentation can be added a various stages, from compile-
time to link-time to run-time, with each stage imposing different constraints and
opportunities for extracting program information. Moving from source code to
binary instrumentation techniques shifts the focus from a language specific to a
more platform specific approach. TAU can be configured to do either profiling
or tracing or to do both simultaneously.

Source code can be instrumented by manually inserting calls to the TAU in-
strumentation API, or by using the Program Database Toolkit (PDT) 6 and/or

6 http://www.cs.uoregon.edu/research/paracomp/pdtoolkit/



Fig. 3. TAU performance observation framework

the Opari OpenMP rewriting tool 7 to insert instrumentation automatically.
PDT is a code analysis framework for developing source-based tools. It includes
commercial grade front end parsers for Fortran 77/90, C, and C++, as well as
a portable intermediate language analyzer, database format, and access API.
The TAU project has used PDT to implement a source-to-source instrumen-
tor (tau instrumentor) that supports automatic instrumentation of C, C++,
and Fortran 77/90 programs. Examples are provided with the TAU distribution
that show how to use tau instrumentor with sequential, OpenMP, MPI, and
mixed OpenMP/MPI applications. The Opari tool rewrites OpenMP directives
in functionally equivalent, but source-instrumented forms, inserting POMP per-
formance calls where appropriate. TAU can use Opari for automatic instrumen-
tation of OpenMP constructs. Opari may be used in conjunction with PDT for
comprehensive automatic instrumentation of OpenMP and mixed mode parallel
programs.

TAU can use DyninstAPI [4] to construct calls to the TAU measurement
library and then insert these calls into the executable code. This is done by a
mutator program (tau run). The mutator loads the TAU dynamic shared object
(the TAU compiled measurement library) in the address space of the mutatee.
It parses the executable image for symbol table information and generates the
list of modules and routines within the modules that are appropriate for in-
strumentation. The user can optionally provide a selective instrumentation list
that specifies a list of routines to be included or excluded from instrumentation.
tau run can instrument sequential as well as parallel programs.

TAU can use PAPI to generate profiles based on hardware counter data. If
TAU is configured without the PAPI multiple counters option, then the user
selects the metric on which to base the profiling at runtime by setting an envi-

7 http://www.fz-juelich.de/zam/kojak/opari/



ronment variable. If TAU is configured with the multiple counters option, then
up to 25 metrics may be specified and a separate profile generated for each.
These profiles for the same run can then be compared to see important corre-
lations, such as for example the correlation of time with operation counts and
cache or TLB misses.

The TAU MPI wrapper library uses the MPI profiling interface to generate
profile and/or trace data for MPI operations. TAU MPI tracing produces indi-
vidual node-context-thread event traces that can be merged and converted to
ALOG, SDDF, Paraver, or Vampir trace formats. For threaded or mixed mode
programs, TAU tracing can produce trace files that can be displayed by Vampir
to show individual thread activity and interaction – for example, for OpenMP
threads – even though Vampir has no knowledge of threads.

TAU has filtering and feedback mechanisms for reducing instrumentation
overhead. The user can specify routines that should not be instrumented in a
selective instrumentation file. The tau reduce tool automates this specification
using feedback from previously generated profiling data by allowing the user to
apply a set of selection rules that are applied to the data.

5 Conclusions

Terascale systems require a performance observation framework that supports a
wide range of instrumentation and measurement strategies. The PAPI and TAU
projects are addressing important research problems related to construction of
such a framework.

The widespread adoption of PAPI by third-party tool developers demon-
strates the value of implementing low-level access to architecture-specific per-
formance monitoring hardware underneath a portable interface. Whereas tool
developers previously had to re-implement such access for each platform, they
can now program to a single interface, allowing them to focus their efforts on
high-level tool design.

The TAU framework provides mechanisms for inserting instrumentation for
both profiling and tracing at various stages of program transformation. Plans
are to use this framework to implement instrumentation needed by other tools,
such as the MetaSim memory trace tool [14].

Tradeoffs between accuracy and efficiency of performance monitoring has
been explored by both the PAPI and TAU projects. Statistical sampling meth-
ods, such as used in the current PAPI substrate for the Alpha Tru64 UNIX
platform, yield sufficiently accurate results for large enough sample sizes while
incurring very little overhead. Filtering and feedback schemes such as those use
by TAU lower overhead while focusing instrumentation where it is most needed.

Together, the PAPI and TAU projects have begun the construction of a
portable performance tool infrastructure for terascale systems that is designed
for interoperability, flexibility, and extensibility. More information about PAPI
is available at http://icl.cs.utk.edu/papi/. Further information about TAU is
available at http://www.cs.uoregon.edu/research/paracomp/tau/.
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