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arallel processing is the most promising approach design-
ing and building high-performance computers. Parallel
machines with hundreds of moderate-sized processors or
thousands of very simple processors are commercially avail
able and are being used to solve practical problems ar races
eomparable o the maost powerful conventional supercomputers,

For mare than 13 years, my colleagues and T have been developing lin-
ear algebra software tor high -performance compurers. We began the
Linpack project in the mid-1970s with the goal of producing a package
of mathematical software for selving systems of linear equations, We
touk a careful look at how you put together a package of mathematical
software and tried to desiim a package that would be effecove on state-
of-the-art computers at thar rime — the (scalar) COC 7600 and the TEM
syatem 370, Because vector miachines were just beginning to cmerge, we
alzor provided some vector routines,

Linpack incorporated other features as well. Rather than simply col-
lecting or translating existing algorithms, we reworked them. We also
used a column orientation that provided greater efficiency than the tra-
ditienal row arientation, and we published a users goide with directions
and examples for addressing different problems. The result was a care-
fully designed package of mathematical software, which we released o the
public in 1979,

1= A LN S0 T 53,00 150 JEEE 1F



Takle 1. Linpack Benchmark on high-performance

coamiputers,

IV AEHIKE Peak At BrETEM
Mrunps Mrigps  EFRCIEHGE

|EK BSAE000-550 2 26 3
Comeax G-3810 120 44 37
i1 procasson
Cray-1 160 27 ik
Coray A-MP 235 121 51
Cray Y-MPH 333 145 A4
{1 processar)
183 ESra000-5230 W 444 Gl 4
ETA-10G G4 93 14
(1 pracessor)
Cray X-MF/Y 941 178 19
(4 processoes)
Cray C-501 952 a7 A
(1 processor)
Comvex G-365] &0 B8 Jsa
18 procassors)
MEL 5¥-2 1,300 41 Hikk]
Cray-2 1,851 128 MRS
{4 processars]
Cray Y-MP/3 2 G6E4 275 mn
(8 processars)
Hitachi S-32VE0 3,000 107 114
NEC SX-314 5,500 a4 ik
(1 processor)
Fujitsu WP-Z600:10 5000 249 0483
(1 processor)
Cray C-9016 15238 47 iKY

116 processns)

The Linprack Benchmark
Perhaps the best-known part of thar package — indeed,
some people think it is Linpack — is the so-called Lin-
pack Benchmark that appeared in the appendix to the
users guide.'? Te was intended ro give users an idea of
how long it would ke to solve cermain problems, We
measured the dme required to solve a system of equa-
rons of order 100 {a problemn size we knew could be run
o all the machines of interest), and we lisied chose omes
and gave some guidelines for extrapolating execution
timnes for abour 20 machines,

We gathered the times from two Linpack routines:
ane 10 factor a marrix (SGEFA), the ather 1o solve a gys-
tem of equations (S(GESL). These routines, called the
Basic Linear Algebra Subprograms (BLAS), are where
mcet of the fleating-point computation takes place, The
routing that sits in the center of that compuotation s a
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Table 2. Mflops and memary bandwidth.

achiue Peax Peak Transien  Aamo
Mroces | Mweorosisec)
Alliart /80 138 22 0.1z
Conves C-210 an 25 i
Cray-1 160 0 0.5
Cray X-MFid &40 1,411 1.5
Cray ¥-MPg 2 557 4,000 15
Cray C-80-16 15,2348 22,857 1.5
Cray-25 1,981 arh 0.5
Cyber 205 a0 Gan 15
ETA-10G G 466 1.5
Fujitsu VP-400 1,066 166 1.0
Hitachi &30/ 3,000 2,000 0.&7
(B8 B0A0EDI-VF 798 400 0.3
NEC 5¥-2 1,300 2,000 1.5

Table 3. Memaory latency,

Mecnme LaTEHCY CriLes
Gray-1 15
Cray X-MP 14
Criay ¥ -MFP 17
Cray C-90 23
Cray-2 |
Cray-25 35
Cyber 205 &0
Fujitsu VP-400 3

SANEY, which takes a multiple of one vector and adids
it b annther vecror.

Tahle 1 shows the Linpack Benchmark timings for
some high-performance computers, Compared with
their peak performance, the sctual performance of these
machines was quite disappointing, in spite of the fact
that we used a highly vectorized algarithm on machines
with vector architectures. Why were the results so bad?
The answer has to do with the rate st which the machine
can transter information woand from the memory
device. If we increase computational power without a
corresponding increase in Memory, memaory access can
canese serious hortlenecks,

Table 2 lists the peak megaflop rate for various
machines, ag well as the peak transfer rate from memory
to registers (in megawords per second). Since the
SANPY aperaton requires three references and pro-
duces two operations, we need a ratio of 342 to run ar
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aood rates. The Cray C-90 does not do badly in this
respect: Fach processor can transfer 1.43 gigawords (f4-
bit waords) per second, and the complete system, [rom
memaory into the regisiers, rons ar 228 gigawords per
second. But for many of these machines, there is an
imbalance. The Alliant FXAB0 was a parcicularly bad
case: I had a peak rave of 188 megatlops but could trans-
fer only 22 megawords [rom memory, making it very
hard vo ger peak performance (the company is no longer
in business), The battam line is: Megaflops are easy, bue
handwidrh — the rate acwhich dats 35 meved wowhere
the operations are performed — is difficulr.

The Cray-1's performance today for the Linpack
Benchmark is 27 megaflops, compared with 12 mega-
flops with the same Forman code in 1933, The improved
performance comes not rom the machine or the appli-
cations soltware, but from enormous improvenments in
rechniques for vectorizing programs over the pase 10
vears. In other words, the compiler can produce beter
optimiized code.

Memaory latency also affects performance: How many
cycles dives it take to transfer inlormation after we make
a request? Table 3 liss the memory latency tor seven
machines, with omes ranging from 14 o 50 Ef.'l:“h:s-.
Obwionsly, a memaory latency of 30 cycles will aftect the
algorithm's performance,

Standards development

Several years ago, the linear algehra communicy devel-
aped o de facto standard for identfying basic operations
in its algorithms and sofware, We hoped thar many
manubacturers would implement cthe standard on their
machines, so we could then draw on the power of this
peartable soltware ]i.hl".‘l.l’}-‘.

We hegan with the BLAS for vector-vector opera-
tions we now eall them the Level 1 BLAS. We later
defined & standard for some rather simple marriv-vecoor
caleulations: the Level 2 BLAS.? Sull lacer, the basic
matrix-matrix operations were identfied, and the Level
3 BLAS were defined.® (See Figure 1.) We developed
three standards to take advantage of the face that
machings have o memory hierarchy, and chac the faseer
memory is at the top (see Figure 2, To getas much nse
of or aceess to the data as possible, we would like to keep
it at the top. The higher-level BLAS let us dao just thar,
The Level 2 BLAS offer the potential for owo floatng-
point aperations for every reference; with the Level 3
BLAS we mer essentially # operations for every owo
acoesses, of the maximum possible (see Table 4.
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Figure 1. {a) The Laval-1 ELAS for vector-vector
operations [y «— ¥+ ox; also dot product, L (B the
Level-2 BLAS for matrix-vector operations [y« p+ A
alse triangular solve, rank-1 updata); {c) the Level-3
BLAS fior matrix-matrix operations (A « 4 « §C alsa
bleck triangular solve, rank-& update).
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Figure 2. Memaory hicrarchy,

Table 4, Capahilitias of higher-lewvel BLAS.

BLAS Ml e Fioes  FLoFa/memoRy
REFEFEHLES CFLACREE

Lol 1 En 0 23
Foi— ¥eox

Liwel 2 iF 2 2

Vo ¥ Ay

Level 3 arf 2 W2
A— A4+ 80

On some parallel machings, the higher-level BLAS
al=o pravide increased granulancoy, the possibilicy of par-
allel operations, and lower synchranization costs, OF
course, nathing comes free. We must rewrite our algo-
rithms o use the BLAS effectively. In particalar, we
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Table 5. Lapack timing results for a Cray ¥-MP

{in Mflops).

Hrme

2 B

SGETRF {LL) factarizatipn)
1processor 40 108
2 pracessors &2 41
4 pracessors 32 40
Bprocessors 32 90

SFOTRF [Chalesky factarizaticn)

1 processor 34 a5
2 pracessars 29 &
4 processars 29 i
8 processars 29 B4

SGEQRF [OR tactonzation)
1 processar 51 139
2 processors 500 134
4 procassors &0 136
dprocessors B0 133

Table 6. Lapack timing results for a Cray 90 with

MeTRix oRnER

126 256 4§12 1,024
1956 260 290 34
220 40 5I? BEB
260 558 914 1047
205 3rs 1,039 1474
188 266 M9 am
24 410 539 594
252 S08  4h? 1128
273 TFI9 1592 2115
225 &5 294  E
256 31 S0%  SRP
29 B2 891 1,080
J2B  BOF 1476 1,037

16 processars (in Gflops),

HamEe Matrix uRoER
00 500 1,000

SHEMY LG 36 11.2

{matrix-vecior

mulziphyd

SGEMM 0.r 1389 142

(msEtnx-vechor

riultiply)

SGETRF 0.4 4.1 T4

(LU faciorization)

SPOTRF 04 47 B4

(LLT factorization)

SGEORF na a3 76

(R factorization)

SGEEHRD 0. 4.7 8.9

{ratuct ta

Heszenberg)

SGERRD 0.3 ar 7.5

freduct 1o

bifiaganal form)

SEYTRD 0.3 % 6.5

(reduct 1o

tridezganal farmj

b

2,000

135

14.2

100

113

104

0.8

4.8

need o develop blocked-partitioned algorithms thar can
exploit the matrix-matrix operations."

The develapment of these “blocked" algorithms is
fasvinating example of history repeating itself, In the
I, machines with very small main memories vsed
tapes as primary storage. The programmer reeled in
information from the tapes, put it into memoery, and
tried to get as much aceess as possible betore sending it
out again, Today, we are reorganizing our algorithims
with that same idea, but instead of tpes and main mem-
ary, we are dealing with vector registers, caches, and 5o
forth,

Lapack

Lapack is a new linear algebra library that embodics
these ideas of locality of reference and dara rense. Built
on top of the Level 1, 2, and 3 BLAS, Lapack is based on
algerithims that minimize memory access while solving
systems of equations and gigenvalue problems efficiently
across a wide range of high-performance compurers,
The institutions invalved in the Lapack project include
the University of Tennessee, the University of Califor-
nia at Berkeley, Numerical Alzorithms Group, New
York University's Courant Instimre, Rice University,
Argonne MNational Laboratory, and Oak Ridge Nadonal
Labaratory, Our work in algorichm design has been sup-
ported by wal development projects throughour the
country, especially at Rice University and the Univer-
sity of lllingis, Other projects have helped with what we
might call logic or performance debugging trying to
understand what an algorithm is doing when it runs on
a parallel machine o give the implementor a better feel-
ing for where to focus ateention,”

Wi recently completed the package, and we are
beginning o see some impressive resulis. Table 3 shows
some dming resules for some Lapack routines written
in Forrran and provided by Cray. On one processor of
a Cray Y-MP, the LU facrorization routine runs at <H)
megaflops for a matrix of erder 32, and ac 300 megaflops
for a matrix of order 1,000. On eight processors, this
same routing actually slows down to only 32 megaflops
{obviously, we should not wse eight processors to solve
this matrix problem). But when we go w large-order
matrices, the exeention rate is nearly ? gigaflops — and
on a very portable piece of sofoware. We ger the same
effect for LLT and O factorization, (MNote that we are
doing the same number of operations as with the
unblocked algorichms; we are not cheating in terms of
the megatlop rate here.) Table 6 shows seme timing
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resulss for the Level-3 BLAS routines {provided by Cray
and written in Cray assembly language) and tor some
Lapack routines; the performance 35 impressive

For comparison, Figure 3 plots the speed of LU
|‘||:-;_|::||1'|F:H:|:1|_I:1r'||| |_1‘:||'|g a Fortran :r|||:|'||._.||'|-e.|'|-..'|TI-::l!E of the
Level-3 BLAS on the IRM RISC machine R5/G000-
5300, This one-processer workstation runs at around 50
megaflops on larger-order marrices. Clearly the BLAS
help not only on the high-performance machines, but
also on RISC machines for exactly the same reason: Lara
is being used or rensed in s cache,

Algorithm design

When we restructure an algorithm, the basic algorichm
remaing the same. When we changed the Linpack algo-
rithms to block form, for example, we alfected only the
locality of how we reference data and the independence
of the operations we are focusing on (the IATTI-IATrs
operaticns). When we design an algorithm, on the ather
hand, the basic algorithm changes. Let's consider a
divide-and-conquer technigue for finding the cigenval -
ues and eigenvectors of 2 symmetric eridiagonal macrix”
In other fields, this rechnigue is somedmes called
domain decomposition. [¢invalves tearing or partition-
ing the problem inco small, independent pieces, finding
the ecigenvalue of each piece, combining the cigeny: al-
nes of pairs of picces in parallel, and then paining suc-
cessive pairs until the complere set is determined. We

redesigned this .a]qnnthm tor run in paralle] very effi-
ciently; on a Cray-2, we are gertng a [etor-of-4
speedup, and sometimes hutu,r (sec Table 7). What's
more, the algorithm is more efficient than even the
“haest” sequential algorithm on s sequental architecture,

TiE FuruRe OF Lapack
We have already started looking at “cosmetic changes™
for Lapack, :'|-:f|-'|.|'|T|.1'|_l=' K i.-:_1111._|.|_|||:-|'|'|.al.'l-;.“'|.|.'.' for distrib-
sted-memory, highly parallel architectures. e work
an hlocked aperatons will be appropriace, becausse they
minimize communication and provide s good surface-
to-volume ratio. We also expect to need ver another set
af routines, this one based on a ser of message-passing
standards for linear algebra, called the Basic Linear
Algebra Communication Subprograms, (BLACS)
Onee again, these operations will deaw on what has been
done in the community,

The main advantages of a message-passing standard
are portability and esse of use. The benefits of stan-
dardization are particularly apparent in a distributed-

Fabruary 1993

&0 Level 3 BLAS |
401 .
Livel 2 BLAS
= | T e I.E'I-'EI 1 ElL,ﬁb
Al e L
| Sy
10; |

0 100 200 300 490 300 GO0 700 E':]III.EIIIIZI 100
Warder

Figura 3. Variants of LU factorization on the RISC

System B000-550.

memory communigation environment where higher
level routines or abstractons are buile on lower level
message-passing routines. Furthermore, a message-
passing standard wonld give vendors a clearly defined
base set of routines that they ean implement ethcienidy,
or in some cases provide hardware support for, thereby
enhancing sealabalioy,

Figure 4 shows some preliminary data: an imple-
mentation of LU decomposition from Lapack, run on
the Intel iPSC Gamma and Delts multicompurers,'
Clearly we are not yet achieving oprimum performance,
but the situation is improving daily.

Soimg interest has been expressed in Cand Cas imple-
mentatons of the Lapack library, and we continue to
track Forrean 90 and High-Performance Fortran; we
have a pilot project w develop a core set of routines for
each of these languages.

Table 7. Ratio of execution time for Eispack TOLZ
algarithm aver divide-and-conguer algorithm.

M. oF iom 100 200 200 00 300
poczssons  ENF] (10TR) Elel (10AR) ETRp 11)AR)

i P T e e L e T

° 2B 1EE 268 184 281 1.34
3 330 251 371 255 479 245
4 492 312 460 317 503 324

£ =Cispmipk TOLZ
(1) = paralial oivii-and-eanqear SO OF GO [VOCRsseT
(el = pavalel dinde-anctcangoer Mailiug oF 7 processars
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