
A Data Affinity & Reuse Model for High 
Performance on NUMA Multicores

Or
Can we Afford Weak Scaling at a Multicore 

Node?

Padma Raghavan
Vanderbilt University

Workshop on Clusters, Clouds & Data 
for Scientific Computing, Oct 3-6 2016 
Chateteauform, Le Maison des Contes



Presenting joint work with:

Guillaume Aupy (Vanderbilt)
Joshua Booth  (Sandia)

Anne Benoit (ENS-Lyon)
Humayun Kabir (Penn State) 

Yves Robert (ENS-Lyon)                

Most of the results are from SC15 Paper: 
STS-k: A Multilevel Sparse Triangular Solution Scheme
for NUMA Multicores

Research Supported by NSF & Vanderbilt University



A Very Simple Example

Triangular Solution

Lx = b; solve for x

L is a lower triangular matrix

L is sparse 



Sparse- TS: Level Sets or Coloring for 
Parallel Computing

• Sparsity pattern permits parallel calculation of unknowns

• Example: 2 –color, each color is independent; level sets 
are the same for this example (not true in general)

=

L x

x

x

x x x

x x

x x

x

x

x

x

x

x

x

x

x

x

b



1. Irregular to Regular: CSR  to CSR-k: 
Rows to Super-Rows

 Spatial locality in cache/memory
 Uniform length tasks at desired granularity



2. Parallelism: Level Sets or Coloring of 
Coarse Graph

 2-coloring of CSR-2 representation
 Level sets can also be determined on CSR-2



From Spatial to Temporal Locality: 
Reuse of x

• Temporal locality: 

• Pack: A set of tasks that can be solved in 
parallel

• Goal: Increase temporal locality between 
tasks in a pack

t1 -> x

t2 <- x t3 <- x



Temporal Locality: DAR graph of a Pack 

DAR (Data Affinity and Reuse) graph of a pack

Vertices are tasks 

Edges are connection between tasks 

G2 DAR of Pack 2

Tasks are connected

if they share inputs  



































xxxx

xx

xxxx

xx

xxx

xx

x

xx

x

t1

t2

t3

t4

t5

t3

t4 t5

Pack 1 Pack 2
t1

t2

t3

t4

t5



In-pack assignment problem for 
temporal locality

 In-Pack Assignment Problem (for reuse in x): 

 Input: a DAR graph of a pack

Output: Assignment of tasks to cores

Constraints:

Load is balanced across cores

Minimize data access cost

 NP-complete on a UMA (Uniform Memory Architecture) 
architecture (reduction from 3 Partition problem)



Insight into Solving In-Pack 
Assignment Problem

 If the DAR graph is a line, then an optimal schedule exists: 

assign consecutive tasks of equal block size to cores

 if there is q cores and n tasks: assign n/q consecutive 
tasks to a core

 Transform DAR graph in a near line form by doing a band-
width reducing ordering



STS-K & Tests

Convert & store input matrix in CSR-k

Find Packs in Graph of CSR-k

Make DAR graph of each Pack

Reorder DAR graph using band-width 

reducing ordering  (near line form)

Extract parallelism: Use 

Level Sets or Coloring

Temporal locality for 

reuse of x

Spatial locality

Architecture L1 L2 L3 #Cores

Intel Private Private Shared 32

AMD Private Private Shared 24

Intel Xeon-8837 &
AMD-’Magny-Cours’ 



Parallel Speedup (Intel) vs CSR-LS 

 STS-3 achieves 
6x speedup 
compared to 
CSR-LS

 We observed 
similar results on 
AMD

 LS suffers from 
synchronization 
overheads; many 
packs of smaller 
size

CSR-3-LS: CSR-3+LS+DAR
STS-3:     CSR-3+Col+DAR



Effect of Data Locality in Largest Pack

 q = 16 cores

 STS-3 achieves 
1.75x speedup 
compared to 
CSR-COL

 Similar results 
hold on AMD

STS-3=  CSR-3+Col+DAR



Effect of Data Locality for test suite 1-32/24 
cores



So what?

 Dynamic task scheduling systems

 at multicore node could be very 
useful

Likely capture most of these types of 
performance  advantages for many irregular 
applications



NUMA-Aware Temporal Reuse

Pack n: Each task 𝑏𝑖 has been assigned to 
𝑐𝑜𝑟𝑒(𝑏𝑖)

Pack n+1:  With tasks in  𝑓1, 𝑓2, … , 𝑓𝑛

Let 𝑏𝑖 have data that can be reused by 𝑓𝑖

Probability of hit from reuse when 𝑓𝑖 is assigned  
𝑐𝑜𝑟𝑒 𝑓𝑖

𝑃(ℎ𝑖𝑡𝑠, 𝑓𝑖 | 𝑐𝑜𝑟𝑒(𝑏𝑖))
∝ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑜𝑟𝑒 𝑓𝑖 , 𝑐𝑜𝑟𝑒 𝑏𝑖 )

If 𝑓𝑖 & 𝑓𝑗 ℎ𝑎𝑣𝑒 𝑑𝑎𝑡𝑎 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑎𝑛𝑑 𝑟𝑒𝑢𝑠𝑒
𝑜𝑛 𝑠𝑎𝑚𝑒 𝑐𝑜𝑟𝑒 𝑜𝑟 𝑐𝑙𝑜𝑠𝑒 𝑐𝑜𝑟𝑒

SC12 – Frasca, Madduri, Raghavan..  Network problems



NUMA Distance Aware Dynamic Work Queues

C0 C1 C2 C3

L2 Cache L2 Cache

L3 Cache

C0:  { C0, C1, C2, C3 }

C1:  { C1, C0, C3, C2 }

C2:  { C2, C3, C0, C1 }

C3:  { C3, C2, C1, C0 }

 Each core/thread has its own work queue; when out of work it traverses 
queues in order of NUMA-distance for work stealing

 It will likely provide most of the benefits when combined with useful 
abstractions  get, put, affinity …



From Rusty Lusk’s 
Talk 



Rusty Lusk: ADLP+ as DMEM for MPI, cross-node
Padma: Could be very useful for irregular computations 
at multicore node 



Exascale

Then, now and beyond

From fast, hot …to parallel, cooler

To billion-way parallel, 
heterogeneous, unreliable

The action is at a node

Many cores, NUMA,NOCs, accelerators

Can we afford weak scaling at a multicore 
node?


