A Data Affinity & Reuse Model for High
Performance on NUMA Multicores
Or
Can we Afford Weak Scaling at a Multicore
Node?

Padma Raghavan
Vanderbilt University

Workshop on Clusters, Clouds & Data
for Scientific Computing, Oct 3-6 2016 VANDERBILT
Chateteauform, Le Maison des Contes UNIVERSITY

Presenting joint work with:

Guillaume Aupy (Vanderbilt)
Joshua Booth (Sandia)
Anne Benoit (ENS-Lyon)
Humayun Kabir (Penn State)
Yves Robert (ENS-Lyon)

Most of the results are from SC15 Paper:
STS-k: A Multilevel Sparse Triangular Solution Scheme
for NUMA Multicores

Research Supported by NSF & Vanderbilt University

A Very Simple Example
Triangular Solution

Lx = b; solve for x
L is a lower triangular matrix
L is sparse

Sparse- TS: Level Sets or Coloring for
Parallel Computing

« Sparsity pattern permits parallel calculation of unknowns

« Example: 2 —color, each color is independent; level sets
are the same for this example (not true in general)

X X X
X X |_ X

X X X X B X
X X X X
X X X X

L X b

1. Irregular to Regular: CSR to CSR-k:
Rows to Super-Rows

Iy I3 lyg .‘/::\'\(—)
22 | g g/f ™y A X5 4
| | | X | - - \&7 __@'
31 EE) 35 '\% 5 J "‘\II / .
o2 lag s |z i (Kq % i 13
s | |l |l "* - x; (s5)
lgs | lsa les | Iz CKE . - ¢)
e s | bs |1 |1 6 F—) -
os lgr | lgg | lsg N N G,
loy | sz lsg | lsg EII=EI{J':"L}
A=L+Ll

Figure 1: A = L+ LT (left) and its graph G; (middle) transformed into G
(right) with super-rows through coarsening. A vertex of G5 is formed by col-
lapsing two connected vertices of G.

» Spatial locality in cache/memory
» Uniform length tasks at desired granularity

2. Parallelism: Level Sets or Coloring of
Coarse Graph

» 2-coloring of CSR-2 representation
> Level sets can also be determined on CSR-2

From Spatial to Temporal Locality:
Reuse of X

e Temporal locality:

/N

tz <-x t3 <'X

e Pack: A set of tasks that can be solved in
parallel

e Goal: Increase temporal locality between
tasks in a pack

Temporal Locality: DAR graph of a Pack

»DAR (Data Affinity and Reuse) graph of a pack
»Vertices are tasks
»Edges are connection between tasks

Pack 1 Pack 2

DAR of Pack 2

Tasks are connected
if they share inputs

In-pack assignment problem for
temporal locality

» In-Pack Assignment Problem (for reuse in x):
» Input: a DAR graph of a pack
» Output: Assignment of tasks to cores
» Constraints:
»Load is balanced across cores
»Minimize data access cost

» NP-complete on a UMA (Uniform Memory Architecture)
architecture (reduction from 3 Partition problem)

Insight into Solving In-Pack
Assignment Problem

> If the DAR graph is a line, then an optimal schedule exists:
» assign consecutive tasks of equal block size to cores

> if there is q cores and n tasks: assign n/q consecutive
tasks to a core

» Transform DAR graph in a near line form by doing a band-
width reducing ordering

STS-K & Tests

»Convert & store input matrix in CSR-k Spatial locality

_ _ Extract parallelism: Use
»Find Packs in Graph of CSR-K Level Sets or Coloring
»Make DAR graph of each Pack
»Reorder DAR graph using band-width Temporal locality for
reducing ordering (near line form) reuse of x
Architecture | L1 L2 L3 #Cores Intel Xeon-8837 &

AMD-'"Magny-Cours’

Intel Private | Private Shared 32

AMD Private | Private Shared 24

Parallel Speedup

Parallel Speedup (Intel) vs CSR-LS

Parallel Speedup 16 cores

9 — T (mat, CSR-LS, 1)
-CSQ LS

sl CSR-3-LS: CSR-3+LS+DAR B csras | T'(mat, method, q)
STS-3: CSR-3+Col+DAR I CSR-COL
7t Bl

» STS-3 achieves
6Xx speedup
compared to
CSR-LS

> We observed
similar results on
AMD

> LS suffers from
synchronization
overheads; many

D4 D5 D6 D7 D8 D9 DIO packs of smaller

Matrices size

Relative Speedup

Effect of Data Locality in Largest Pack

rJ
T

—_—
m
T

—a
I

o)
m
T

Relative Speedup per Unknown

[csRr-coL
[ke

STS-3= CSR-3+Col+DAR

Gt D1 31 D2 D3 D4 D5 Db D7 DB D9 D1O

Matrices

t(CSR-COL, q)

t(STS-3, q)

» g = 16 cores

» STS-3 achieves
1.75x speedup

compared to
CSR-COL

> Similar results
hold on AMD

Effect of Data Locality for test suite 1-32/24

cores
= e Relative Speedup - Color (Intel)
g :
o 1.5 _
w
2 1t I m _
o 05 -
i s
LH
1 2 4 B 16 24 32
Cores
. Relative Speedup - Color (AMD)
-E - —
a 15 _
w
z T -
% } m H |_l H |_l |
o
0

So what?

Dynamic task scheduling systems

at multicore node could be very
useful

Likely capture most of these types of
performance advantages for many irregular
applications

NUMA-Aware Temporal Reuse

»Pack n: Each task bi has been assigned to
core(bi)

»Pack n+1: With tasks in f1,f2,...,fn

»Let bi have data that can be reused by fi
»Probability of hit from reuse when fi is assigned

core(fi)
P(hits, fi | core(bi))
« distance (core(fi), core(bi))
»>If fi & fj have data af finity and reuse
on same core or close core

SC12 - Frasca, Madduri, Raghavan.. Network problems

I NUMA Distance Aware Dynamic Work Queues

L2 Cache L2 Cache

I CO: {Co,C1,C2,C3} I C2: {C2,C3,C0o,C1}
I Cl1: {C1,C0,C3,C2} I C3: {C3,C2,C1,C0}

» Each core/thread has its own work queue; when out of work it traverses
queues in order of NUMA-distance for work stealing

> It will likely provide most of the benefits when combined with useful
abstractions get, put, affinity ...

From Rusty Lusk’s
Talk

Interconnect

Reliability
and B
Resiliency J St ndards-based

s raiae

Programming
~ Models for Parallelism

(]

\ —
Processor ‘f
i
Performance |
J,

N

—

ADLB On One Slide

The Model: Shared An Implementation:
| anager |« " Work pool
I S QOOQ0
Worker | | Worker Worker | | Worker | | Worker O (L
O (D
@) @ 2
Worker | | Worker | | Worker || Worker || Worker C e T ®
.h' -9
o - Shared .‘...
Wark pool
5 357
The API: O

ADLB_Put(type, priority, len, buf, target_rank, answer_dest)

— ADLB Reserve(req types, handle, len, type, prio, ; ,
O Application Processes
answer dest)

O ADLB Servers
— ADLB Get Reserved(handle, buffer)
— and a few housekeeping calls...

ADLB abstracts the idea of creating/acquiring work using put/get of work
units into a work pool

Rusty Lusk: ADLP+ as DMEM for MPI, cross-node

Padma: Could be very useful for irregular computations
at multicore node

Exascale

» Then, now and beyond
»From fast, hot ...to parallel, cooler

»To billion-way parallel,
heterogeneous, unreliable

» The action is at a node
»Many cores, NUMA,NOCs, accelerators

» Can we afford weak scaling at a multicore
node?

