MPI ENVIROMMENTAL MAMAGEMENT

This chaprer discusses routines for getting and, where appropriate, selliing var-
ious parameters that relate to the MPLimplementation and the execution en-
vironment (such as error handling), The procedures Tor entering and leaving
the MPI execution environment are also described here.

7.1 Implementation information
7.1.1 EMVIRONMENTAL INQUIRIES

Aset of attributes that describe the execution environment are attached o the
compmunicalar MPLCOMM WORLD when MPL = minalized, The value of thess
attributes can be inquired by using the function MPILATTR_.GET described in
Chapier 3, Iis erronecus 1o delete these anunbutes ar free their kevs,

The list of predefined attribute keys include:

MPLTAG.UE Upper bound For g value.

MPI_HOST [Host process rank, if such exists, MPILPROC_NULL, otherwise.

MPLID rank of 3 node that has regular TAO Gacilites (possibly myrank). Nodes
in the same communicator may return different values for this parameter.

Vendors may add implementaton-specilic parameters (such as node nume-
ber, real memory size, Artual memory size, etc.).
The required parameter valies are discussed in more detail belos,

Tag values

lag values range from 0 to the value retorned for MPLTAG US inclusive. These
values are puarantesd w be unchanging dumng the execoton of an MPl pro-
gram. In addidon, the tag upper bound valie must be at feast 32767, An MPI
implementation iz free o make the value of MPLTAG UE larger than this; for
example, the value 2 < 115 also a legal value for MPLTAG_UB.

Hest rank

The value returned for MPLHOST gets the rank of the HIST process in the group as-
sociated with communicator MPLCOMMMWORLD, if thers 15 such, MPLPROC MULL
is reterned if there is no host. MPI does not specify what it means for a process
tor be a HOST, nor does it require that a HOST cxisls.

10 rank

Thevalue returned for MPLID is the rank of & processor that can provide language-
stancdard LA facilities. For Fortran, this means that all of the Fortran 170 oper-
ations are supported (e, OPEN, REWIND, WRITE). For C, this means that all of the
AMSLC /O operations are supported (¢, fopan, fprintf, laaak).

If every process can provide language-standard 1/0, then the value MPLANY
SOUACE must he returmed. If no process can provide language-standard [0,
then the value MPI_PROC_MULL st be returned. [fseveral processes can provide
[/0), then any of them may be returned. The same value (rank) need not be
returned by all processes,

MPIGET PROCESSOR MAMEL name, resultlen)

T narme A umigue specifier For the actual {as opposed
virtial) mode,
T resultlen Lengeh (in printable chaseters) of the result re-

w160 name

int MPIGet_processer_bame{char snama, int *resultlea)

HPI_GET.PROCE330R_WAMEC KAME, RESULTLEN, TERROR)
CHARACTER= (=) HAME
INTEGER RESULTLEN, IERROR

This routine returns the name of the processor on which it was called ar the
moment af the call. The name is a character string For maximum fexibility.
From this value it must be possible 1o identifv a specific plece of hardware; possi-
ble values include “processor 9 in rack 4 of mpp.cs.org” and “251" (where 231 is
the actual processor number in the running homogeneous system). The argu-
meni Nama must represent storage thal is at least MPLMAKX_PROCESS0R NAME
characters long, MPLGET PROCESSOR_MAME may write up 1o this many char-
ACLETs N NAmE.

The number of characters acmally written s returned in the ouput argu-
ment, resultlen.

fationale. Thiz function allows MP1 implementations that do process mi-
gratian 1o retarn the current processon,. Nate that nothing in MP reqaires or
defines process |r|i_|:=|'|';|,|:'iu|'|,;_ this definition of MPILGET_PROCESSOR NAME
simply allows such an implementation. (End of refionale)

Advice fvusers. The user must provide at least MPLMAXK _PROCESSOR_MAME
space Lo write the processor name-—processor names can be this long.
The user should examine the ouput argument, resultlen, to detenmine the
actual length of the name, {End of advice fo wiers.)

7.2 Error Handling

An MPI implementation cannot or may choose not to handle some errars that
oceur during MPI calls, These can include errors that generate exceptions or
traps, such as floating point errors or access violations, The set of errors that
are handled by MPLis implemeniation-dependent. Each such error generales
an MPI exception.

A user can associate an error handler with a communicator. The specified
error handling routine will be used for any MP| exception that occurs during a
call 1o MPI for & communication with this communicator. MP| calls that are not
related wo any communicater are considered 1o be auached o the commumnica-
tor MPLCOMM WORLD. The attachment of error handlers to communicatons is
purely local: different processes may attach different ervor handlers to the same
COMTMNICALOT.

A newly created communicalor inherits the error handler thar is associated
with the “parent” communicaton In panticulan, the wser can specify a “global”
error bandler for all communicaters by azzaciating this handler with the com-
mniiicator MPLCOMM WORLD immediately after initializoon,

Several predefined error handlers are available in MPI:

MPILEARDARS ARE FATAL The handler, when called, causes the program to abort
on all executing processes. This has the same effect as if MPLABORT was
called by the process that invoeked the handler.

MPILERROAS RETURM The handler has no effect.

Implementations may provide additional predefined ervor handlers and pro-
grammers can code their own error handlers.

The error handler MPLERRORS ARE_FATAL is azsaciated by defaulo with MPL
COMM WORLD after initizlization. Thus, if the user chooses not w control error
handling, every ervor that MPLhandles is reated as fatal, Since {almost) all MPI
calls renurn an error code, a nser may choose to handle errors inits main code, by
testing the return cade of MPI calls and executing a suitable recovery code when
the call was not successful. In this case, the error handler MPILERRORS RETURN
will be vsed. Usually it is more convenient and more efficient not o west for
errors after each MPI call, and have such error handled by a nontrivial MP1 error
handler,

After an error is detected, the state of MPI s undefined. That is, using a
wser<lefined ervor handler, or MFLERRDRES RETURM, does ww necessarily allow
the user to continue wo use MP| after an error is detected, The purpose of these
ervoc handlers is wo allow a user 1w izsue user-delined error messages and 1o take
actions unrelated o MPI (such as flushing I/0 buffers) before a program exins,

An MPLimplementation is lree 1o allow MP| to contmwe after an ervar bl iz ool
reguired o do so.

Advice to implementors, A good-quality implementation will, 1o the great-
est possible extent, circumscribe the impact of an error, so that normal
pracesaing can continue after an error handler was invoked. The imple-
mentation documentation will provide information on the possible effect
of each class of errors. (fad of advice to imflamenions, |

An MPI error handler is an opague object, which is accessed by a handle.
PPl callz are provided to create new erreo handlers, 1o associate error handlers
with communicators, and 1o test which crror handler 15 assaciated with a com-
T A L0

MPI_ERRHANDLER_CREATE(function, errhandler

[function nser-delimed error handling |'|'.'nr-:'rl':|.|'ve'
OuT errhandler MEP crror lumeller {handle)

int MFI_Errhandler create{MPI Handler functicen =function,
MPI_Errhandler =errhandler)

MPT_ERRHANDLER CREATECFURZTION, HAKDLER, TERROR)
EXTERMAL FURCTION
INTEGER ERRHANDLER, IERROR

Register the user routine function for use as an MPI exception hanedler,
Rewrns in errhandler a handle o the registered exception handler.

Advice to smplemendors, The handle returned may contan the address of
the error handling routine, This call is superfuous in C, which has a refer-
encing operatarn, but is necessary in Fortran, (Eed of adwce (o smfdosienions. |

The user routine should be a C [unction of tvpe MPI_Handler_function, which
15 defined as:

typedel void (MPI_Handler function) (MPI_Comm #, int #, ...},

The first argument is the communicator in wse, The second is the error code
te be returned by the MPI routine. The remaining arguments are “stdargs”
arguments whose number and meaning is implementation-dependent. An im-
plementation should clearly document these arguments. Addresses are used so
that the handler may he written in Fortran,

Rationale. The variable argument list is provided because it provides
an AMSlsiandard hook for providing additional infermanion o the error
handler; without this hook, AMS[-C prohibits additional arguments, (Fod
of repfinnle.)

MPl ERBHANDLES _SETE comm, errhandler)

[~ COmiIm commumicator o sel Uie corer handler For
i handle)

I~ errhandler new MPLervor handler for commumnicator
{handle]

int MPI_Errhandler set(MPI Comm comm, MFI_Errhandler arrhandler)

¥FI_EARHANDLER SET{COMH, ERREANDLER, IERROR}
INTEGER COMM, ERRHAKDLER, IERROR

Associates the new error handler errorhandler with communicator comm
at the calling process. Note that an errer handler is always associated with the
COMTLLNICALOT.

P ERBHANDLES GETI camm, errhandler)

I GOImIm communicaior 1o gel the ervor handler from
{handle)
OUT errhandler SIP error luudler corrently sassociared with com-

muricator Chandle)

int MPI_Errhandler get(MFI Cozm comn, MPI Errhandler sarrhandler)

MPI_EARHANDLER GET{COMH, ERRHANDLER, IERROR)
INTEGER COMM, EEEHAKDLER, IERRUR

Returns in errhandler (a handle 1) the error handler that is currently asso-
ciated with communicalor comm.

Example: A library function may register atits entry point the current ereor
handler for a communicator, set its own private error handler for this commu-
nicator, and restore before exiting the previous error handler,

MPIERRHANDLER FREE| arrhandler |

[y grrhandler %P1 crror handler dhandle)

int MFI_Errhandler frec(dPI Erchandler sarrhandlar)

MPI_FREHAKDLER FHEE(ERRHEANDLEER, IERROR)
IKTEGERE ERRHANDLERK, IERROR

Slarks the error handler azaciated sath errhandlar for deallocation and sets
errhandler ra BF_ERRHANDLER MULL. The ervor handler will be deallocated alter
all communicators associated with it have been deallocaied,

MPI_ERROR STRIMG| arrorcade, string, resultlen |

1™ arrorcade Trror code retuwmed by an MP routine
QUT string Texn that corvesponds to the arrarcods

QLT resultlen Length (in prinable characiers) of the result re-
turnecl in Sring

int HPI Errer_stringlini srrorcods, char #string, int *rasultlan}

uP1_ERROR STRING (ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERMORCODE, RESULTLEK, IERRDA
CHARACTER=(*) STRIKG

Feturns the errar string associated with an ercor code. The argument string
must represent storage that is at least MPILMAX_ERROR_STRING characters long.

The number of characters actually written is remurned in the aulpul argi-
ment, resultien,

Rotionale, The form of this funcion was chosen o make the Fortran
and L bindings similar. A version that reiums a pointer to a siring has two
difficulties, First, the retuen sieing must be statically allocated and different
for each error message (allowing the pointers returned by successive calls
L MPILERRCR STRING o point 1o the correct message). Second, in Foriman,
a function declared as returning CHARACTER®(*] cannot be referenced in,
for example, a FRINT statement. (Sad of rafianas)

7.3 Error Codes and Classes

The error codles returned by MPlare left entirely to the implementation (with the
exception of MPILSUCCESS). This is done to allow an implementation w provide
as miwch information as possible in the crror code (for use with MELERROR.
STRING),

To make it possible for an application winterpret an creor code, the rontine
MPI_ERROR_CLASS converts an error code into one of a small set of specified
values, called error clesses. Valid crror classes include

MPI_SUCCESS Mo error
MPI_ERR_BUFFER [nvalid buffer pointer
MFLERR_COLMNT [nvalid count argument
MPI_ERR_TYPE [nvalid datatype argument
MFILERR_TaG [nwvalid rag argument
MPI_ERR_COMM [nvalid communicator
MFILERR RAMK [nvalid rank
MPILERRREQUEST Imvalid request (handle)
MFLERR ROOT [nvalid root
MPI_ERR_GROUP Invalid group

MFILERR. QP [nvalid operation

MPILERR.TOPOLOGY Inwvalid topology
KMFILERR DIMS [nvalid dimension argument

PAPILERR ARG Inalid argument of some other kingd
MPILERR_UMENOWN Unknown error

PMPLERR.TRUNCATE Message rruncated an receive
MPI_ERR_COTHER Known error not in thas list
MPI_ERA_INTERM Internal MPI error
MPI_ERR_LASTCODE Last standard error code

An implementation is free o deline moce ercor clazzes; however, the slan-
dard error classes must be vsed where appropriate. The error classes satisfy,

= MPILSUCCESS < MPLERR.. .. = MPLERR.LASTCODE,

Halioiale, The dilference henveen BMPLERR UNEMOWHN and MPI_ERR OTHER
15 that MPI_LERROR_STRING can retumn useful information about MPILERR.
(OTHER,

Mote that MPILSUCCESS = (s necessary to be consistent with C practice:
the separation of error classes and error codes allows us o deline the error
classes this wav, Having a known LASTCODE is often a nice sanity check as
well, (Fnd of vatinaie)

MPILERROR_CLASS arrarcode, errcrolass)

[erroreode Error code returned by an MPI routine
U errarclass Error class assncinted with arrancode

int MFI_Erpsr_clasa(int errorceds, int *errorclassl

MPI_ERROR CLASS(ERRORCODE, ERRORCLASS, IEARORD
INTEGER ERRORCODE, EREDRCLASS, IERRIR

7.4 Timers

MPldelines a timer. A dmer iz specilied even though it is nol “message-passing,”
because iming paralle]l programs is important in “performance debugging” and
because existing timers (both in POSES TO03.1-1928 and 100341 14,1 and in
Fortran 90} are either inconvenient or do not provide adequate access wo high-
resolution fimers,

FARIWTIMEDD

double MPI Mtizme{vaid)
DOURLE PRECISION MPI_WTIME()

MPICWTIME returns a floating point number of scconds, representing
elapsed wall-clock tme since some time in the past,

The "time in the past” is guarantecd not to change durng the life of the
process, The user is responsible for converting large numbers of seconds 1o
other units if they are preferred.

Thiz Minction iz portable (it returns seconds, nol "icks™), 0 allows high-

K

resolution, and carries no unnecessary baggage, One would use it like this:

{

deubrle starttine, andtineg;
grarttine = double MPI_Weimaell:
stuff to be tinad
eidtines = double MPI_Weimai):
printf ("That took ¥%f seconds'n®,endtine-starttimel;

et

The times retwrned are local o the node that called them. There s no
requirement that dilferent nodes return “the same me,”

FAPIWTICKS)

doubla HPI Mtick{waidl
DOUBLE PRECISION MPI_WTICEL)

FMPICATICK returns the resolution of MPIDATIME in seconds. Thar is, i
returns, as & doulle precision salue, the number of seconds betwesn successive
clockiticks. Forexample, ifthe clock isimplemented by the hardware asa coumer

that is incremented every millisecond, the value returned by MPUWTICK should
be 1077,

7.5 Startup

Chne proal of MP1 s o achieve source code fortability. By this we mean that a
program written using MP| and complying with the relevant language standards
i5 portable as woatten, and must not regquire any source code chianges when moved
from one system to another. This explicidy does o say anything about how an
PP program is started or launched from the command line, nor what the user
must do to set up the environment in which an MFP| program will mn. However,
an implementation may require same setup e be performed Before ather MP
routines may be called. To provide for this, MPlincludes an initalization routine
MAPLIMIT,

RARLIMIT

int HPI_Init(int =argc, char *++argv)
MPI_INIT{IERROR)
INTEGER IERROR

This routine muost be called before any other MPI routine, Tomoost be called
at mast once; subsequent calls are erroneons (see MPLINITIALIZED).
All MPI programs must contan a call w MPLinIG gz routne muost be called

before any other MPI routine (apart from ¥PI_IKITIALIZED) is called. The version
for AMSI-C accepts the arge and argy that are provided by the arguments tooain:

HPI_imic{ arge, argv);

The Forrran version takes only IERROAR.
MPI_FINALIZE()

int HPI Fipaliza{void)

MFI_FINALIZE(IERROR)
INTEGER IERROR

This routine cleans up all MP1 stares. Once this routine is called, no MPI ron-
tine {(even MPLINIT) may be called. The user must ensure that all pending com-
munications involving a process camplete before the process calls MPILFINALIZE.

FAFLINITIALIZED flag |

OUT flag Flag iz troe il MPLIMIT has Been called and
false otherwise.

int HPI_Initialized(int cf'.a.l:_l;}

MEI_IHITIALIZED{FLAG, IERROR}
LDGICAL FLAG
INTEGER IERRDR

This rowtine may be wsed o deermine whether MPLINIT bas been called.
It is the ondy routine that may be called before MPULIMIT is called.

MPILABORT] comm, errorcode |

I Comim conmumrnicator of Gisks to ko
I erroreocls error cocle 13 retern 190 invoeking environment

int HPI_Abort{MPI_Comm comm, int srrarcods)

MPI_ABORT(COMY, ERRDRCOZE, IERROR)
INTEGER COMd, ERRORCODE, TERRDR

This rowtine makes & “best attempt” 1o abort all tasks in the group of comm.
This function does not require that the invoking environment ke any action
with the error code, However, 8 Unix or POSEE environment shoald handle
this as a return errorcede from the main program or an abert {errorcedal,

MPI implementations are required o define the behavior of MPLABORT ar
least for a conn of MPLLCOMM_WORLD. MPI implementations may ignore the comm
argument and act as if the conn was MPLLCOMM_WORLD.

CHAPTER &

PROFILING INTERFACE

8.1 Reguirements

To meet the MPI profiling interface, an implementation of the MP| functions
sl

I. provide a mechanism through which all of the MP| defined functions may
be accessed with a name shift. Thus all of the MPI funciions (which mors
mally start with the prefix “HPI") should also be accessible with the prefix
"PHPI_ .

2. ensure that those MPI functions which are not replaced may stll be linked
into an executable image withowt causing name clashes,

A document the implementation of different language bindings of the MPI
interface if they are lavered on top of each other, so that the profiler
developer knows whether she must implement the profile interface for
each binding, or can economize by implementing it only for the lowest
level rourines.

4. where the implementation of different language bindings is done
through a layered approach (e.g., the Fortran binding is a set of “wrapper”
functions which call the C implementation), ensure that these wrapper
funcrions are sepacable Tram the rest of the librar

This is necessary to allow a separate profiling library o he correctly
implemented, since (at least with Unix linker semantics) the profiling li-
brary must contain these wrapper functions if it is to perform as expected.
‘T'his requirement allows the person who builds the profiling library 1o ex-
tract these functions from the original MPI library and add them into the
profiling library withour bringing along any other unnecesary code,

b, provide a no-op routing MPI_LPCONTROL in the MPI library.

[

8.2 Discussion

The objective of the MPI profiling interface is to ensure that it 1s relatively easy
for authors of profiling (and other similar) wols o inerface their codes w MPI
implementations on different machines,

Since MPI is a machine-independent standard with many different imple-
mentations, it is unreasonable o expect thar the authors of profiling wols for
WP will have access 1o the source code which implements MPLon any particular
machine. It is therefore necessary 1o provide a mechanism by which the imple-
mentors of such wels can collect whatever performance information they wish
wiffonf access o the underlying implementation.

We believe that having such an interface 15 important if MPLis to be attractive
1o end users, since the availability of many different wools will be a significant
factor in atracting users 1o the MPI standard.

The profiling interface is just that, an interface. Itsays nothing about the way
in which it is used. There is therefore no atempt to lay down what informaton
is collected through the interface, or how the collected information is saved.
filvered, or displaved.

While the initial impets for the development of this interface arose trom
the desire 1o permit the implementation of profiling tools, it is clear that an
interface like that specified mav also prove useful for other purposes, such as
“internerworking” multiple MPl implementations. Since all that is defined is an
interface, there is no objection o its being used wherever it is usciul.

Az the issues being addressed here are intimatcely ded up with the way in
which executable images are built, which may differ greatly on different ma-
chines, the examples given below should be treated solely as one way ol imple-
menting the objective of the MPI profiling interface. The acmal requirements
made of an implementation are those detailed in the Requirements section
above; the whale of the rest of this chapter is only present as justification and
discussion of the logic for those requirements.

The examples below show one way in which an implementation could be
constritceed o meet the regquirements on a LUnix system (there are doubiless
others which would be equally valid}.

8.2 Logic of the Design

Provided that an MPl implemeniation meets the requirements above, it is possi-
Ble for the implementor of the profiling system to intercept all of the MPI calls
which are made by the user program. She can then collect whatever informa-
tion she requires before calling the wnderlying MPLimplementation (through
its name shifted entry points) o achieve the desired effects.

8.3.1 MISCELLANEOUS CONTROL OF PROFILING
There is a clear requirement for the user cade 1o be able 1o control the profiler
dynamically at run time. This is normally used for {at least) the purposes of
¢ Enabling and disabling profiling depending on the state of the caleulation.
s Flushing trace buffers at non-critical points in the calculation.
o Adding user evenis to a trace file.

These requirements are met by use of the MPILPCONTROL.

MPI_PCONTROL leval, ...)

[l lewvel Profiling level

int MPI Pcontrollconst imt leowael, ...)

MPI_PCONTROL lavel}
INTEGER LEVEL, ...

PMPT libraries themselves make no use of thiz routine, and simply return
immediately o the user code. However, the presence of calls o this rontine
allows a profiling package o be explicitly called Dy the user.,

Since MP1 has no control of the implementation of the profiling code, we
are unalde o specily precisely the semantics which will ke provided by calls wo
MPI_LFCONTROL. This vagueness extends to the number of arguments wo the
function, and their dataypes,

However, o provide some level of portability of user codes to different pro-
liling librarvies, we request the following meanings for certain values of level.

Lleval==0 Profiling is disaldled.

level==1 Profiling is enabled at a normal default level of detail.

Lleval==2 Profile buffers are Muzhed, (Thiz mav be 8 no-op in some pro-
filers).

o All ether values of Level have profile livary defined effects and additional
ATEUIMCILS.

Wi also request that the defaule state after MPLINIT has been called is for
profling w be enabled al the normal defaollevel (e, 2200 MPLPCOMNTROL hagl
just heen called with the argument 1). This allows users o link with a profiling
library and obian profile outpol without baving o medify their source code al
all.

The provision of MPILPCONTROL as a no-op in the standacd MP libracy
allows them to modity their source code to obtain more detailed profiling infor-
miation, bul sull be alle o link exactly the same code againz the standard MP
library.

B.4 Examples
4.1 FROFILER IMPLEMEMNTATION

Suppose that the profiler wishes to accumulate the total amount of data sent by
the MPLSEND function, along with the total elapsed time spent in the lunction.
Thizs could trivially be achieved thus:

static int totalbBytas;

gtatic deouble totalTipme:

int HPI_SEND(void + buffer, const int Sount, MPI_Datatype datatyps,

int dest, iot tag, MPI_comn coam}

1
doubla tatart = MPI_Wtinmel}; Sf# Page gn all the arpuments =/
int axtant;
int result = PMPI_Send(buffer,count ,datatype, dest, Lag, comn) ;
J* hecemulate byte count
totalflytes += counst + HPI_Type_simeldatatype, bextent];
S oand time =/
totalTime += MPI_Wrime{) - tatart;
raturn rasult;
H

8.4.2 MPI LIBRARY IMPLEMEMNTATION

Chya Undx systern, inwhich the MPHibracy iz implemented in O, there are VArTons
paossible options, of which two of the maost obvious are prezented here. Which
is better depends on whether the linker and compiler support weak symbuols,

Syatems with weak symbols

If the compiler and linker support weak external symbols (e.g., Solans 2.x, other
syitermn Vo machines), then only a single library is required through the use of
Apragos weak thus:

Mpragna veak MPI_Exanple = PMFI_Exaxple

ipt FMPI_ExamplelSs appropriata args +/)

f4 Uzeiul content /7

b

The effect of this spregea is o define the external svmbal HPI Exanple a5 a
weak definition, This means that the linker will not complain if there is another
definition of the symbol {for instance in the profiling library), however, if no
ather delinition exizs, then the linker will use the weak definiton,

Svstems withoul weak symbols

In the abzence of weak svmhbaols then one possible solution would be 1o use the
 macro pre-processor thus:

#ifdef FRAOFILELIE
ifdaf __ESTDS__
f defipe FUNCTIOK{name) PéEnana

alon

] define FURCTION (name) Pf=s/name
¥ andif

Wislas

¥ dafine FUNCTION{name) nama

Wendif

Each of the user visible functions in the library would then be declared thus:

int FUNCTION{MPI_Example] (/+ appropriate arge +/)

B
£l

f* Uzeful cootent 7

The same source file can then be compiled to produce both versions of the
library. depending on the state of the FROFILELIR macro symbol.

It is required cthat the standard MPI library be built in such a way that the
inclusion of MPI functicns can be achieved one at a time. This is a somewhat
unpleasant requirement, since it may mean that each external function has 1o
be compiled from a separate file, However, this is necessary so that the author
af the profiling library need only define those MPI functions which she wishes
to intercept, references w any others being fulfilled by the normal MPI library.
Therefore the link step can look something like this:

% ee ... =loypref -lpapl -lmpi

Here libeyprof.a contains the profiler functions which intercept some of
the MPI functons. litpepi.a contains the “name shifted” MP| functions, and
Libmpd .o containg the normal definitions of the MPI funcoons.

B8.4.3 COMPLICATIONS
Multiple counting

Since parts of the MPI library may themselves be implemented using more ba-
gic MPI functions (e.g., a portable implementation of the collective operations
implemented using point-to-point communications), there is potential for pro-
filing functions 1o he called from within an MP| function which was called from
a profiling function. This could lead to “double counting™ of the time spent
in the inner routine. Since this effect could acmally be useful under some cir
cumstances (e.g., it might allow one w answer the question "How much time
iz spent in the point-ro-point routines when they're called from collective fune-
tions), we have decided not w enforce any restrictions on the author of the
MPI Tibrary which would overcome this. Therefore the author of the profiling
library should be aware of this problem, and guard against it herself. In a sin-
gle-threaded world this is easily achieved through use of a static variable in the
profiling code which remembers if vou are alveady inside a profiling routine, It
becames more camplex in @ multi-threaded environment {as does the meaning
of the times recorded!),

Linker addities

The Unix linker taditionally operates in one pass; the effect of this is thar

functions from libraries are only included in the image if they are needed at
the tme the library is scanned, When combined with weak symbols, or multiple
definitions of the same function, this can cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPLin which the Forrran bind-
ing 15 achieved by using wrapper functions on top of the C implementation. The
author of the profile library then assumes that it is reasonable only o provide
profile lunctions for the C binding, since Fortran will eventually call these, and
the cost of the wrappers is assumed o be small,. However, if the wrapper func-
tions are not in the profiling library, then none of the profiled entry points will be
undefined when the profiling library 15 called, Therelore, none of the profiling
code will be included in the image. When the standard MPI library is scanned,
the Fortran WP IS will be resalved, and will also pell in the base versions of
the MPI funciions. The overall effect is that the code wall hink suceessfully, bul
will not be profiled.

To overcome this we must ensure that the Fortran wrapper functions are
included i the profling version of the library, We ensure that this is possible
by requiring that these be separable from the rest of the base MPI library, This
allows them w be ared out of the base library and into the profling one.

8.5 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling func
tions, since it provides only a single alternative name for each MP1 function.
Consideration was given 1o an implementation which would allow multiple Teyv-
elz of call interceplion; howevern, we were unable (o construct an implementation
of this which did not have the following disadvantages:

assuming a parbcular implementation language,
» imposing a run time cost even when no profiling was taking place.

Since one of the objectves of MPI is to permit efficient, low latency implementa-
tonz, and it iz nol the business of a sandard (o reguire a particular implemen-
tation language, we decided to accept the scheme outlined above,

Mote, however, that ic is possible o wse the scheme above w implement a
multi-level svstem. since the function called by the user may call many different
prafiling Munctions before calling the underlying MPI funcaon.

Unfortunately such an implementation may require more cooperation be-
tween the different profiling libraries than is required for the single-level imple-
mentation detailed above,

EIBELIOGRAPHY

[1]

[#]

(9]

[10]

V. Bala and 5. Kipnis. Process groups: a mechanism for the coordination of
and communication amaeng processes in the Venus collectve commumca-
tion library. Technical report, IBM T. |. Watson Rescarch Center, Ocrober
[H92, Preprint.

V. Bala, 5. Kipnis, L. Rudolph, and Marc Snir. Designing efficient, scalable,
and portable collective communication libravies. Technical repor, TBM
T.]. Watson Research Center, October 1992, Preprint

Purashotham V. Bangalore, Mathan E. Dass, and Anthony Skjellum, MPT+:
Issues and Features. In CONSKY "M, in press, 1994,

A. Beguelin, [. Dongarra, A, Geist, B Manchek, and V. Sundervam. Visu-
alization and debugging in a heterogeneous environment. #5EE Confruler,
26} BN, June 1953,

Lue Bomans and Rolf Hempel. The Argonne /GMD macros in FORTRAN
for portable parallel programming and their implementaton an the Ingel
iPSC/2. Parallel Computing, 15:119-152, 1900,

E. Buder and E. Lusk. User’s guide o the p4 programming svstem. Tech:
nical Report TM-ANL-92/17, Argonne National Laboratory, 1992,

Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: the pd
parallel programming system. fowrnal of Parallel Computing. 1994, to appear
{Alzo Argonne Mational Laboratory Mathematics and Compuler Science
Division preprint PSE2-0493)

Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior,
Portable programming with the parmacs message—passing library. Panafiel
Combuling, Npecial issue on mesiage—wassing indefaoes, 10 appear,

5. Chinor and R, |, Enboedy, Performance evaluation of mesh—-connected
wornthole—routed nertworks for interprocessor communication in mali-
computers, In Proceedings of the 1990 Suferomputing Confevence, pages 647-
656, 1990,

5. Chitor and R |. Enbody. Predicting the effect of mapping on the
comnunication performance of large multicomputers, In Pacedings of

[11]

[12]

[13]

[14]
L13]

[16]

=

(18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

the 1991 faternational Conference om Parallel Processing, vol, {F (Softeeare), pages
-1 = I1-4, 1991,

] Dongarra, A Geist, B, Manchek, and V. Sunderam. Integrated PVM
framework supports heterogeneous network computing., Comfifers in
Physics, T(2):166-75, April 1993,

1] Dongarra, R Hempel, A [G Hey, and DLW, Walker, A proposal fora
user-level, message passing interface ina distributed memory environment.
Technical Report TM-12251, Oak Ridge National Laboratory, February
1994,

MNathan Dogs, William Gropp, Ewing Lusk, and Anthony Skjellum. A model
implementation of MPL Technical report, Argonne National Laboratory,
149493,

Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP
Canceis, June 15491,

Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP
Versiom 1.0 Trdevfece, May 1952,

0. Feitelson. Communicators: Object-based multiparty interactions for
parallel programming. Technical Report 81-12, Dept. Computer Science,
Tlee Hlebrew University of Jerusalem, Novemnber 1491

Huberius Franke, Peter Hochschild, Pratap Patnaik, and Marc Snir. An
efficient implementation of MPL In 1994 fniternational Conference on Paralle!
Provessing, 15994,

G AL Geist, M. T, Heath, B, W, Pevion, and . H. Worley. A user's guide Lo
FICL: & portable instmmented communication library. Technical Report
TA-11616, Cak Ridge National Laboratory, October 1890,

William D, Gropp and Barry Smith. Chameleon paralle]l programming
tools users manual. Technical Report ANLAS/25, Argonne National Lab-
oratory, March 15

0. Krimer and H., Miahlenbein. Mapping strategies in message=based
multiprocessor systems. Pavallel Compacting, $:215-225, 1989,

nCUBE Corporation, »CUBE 2 Pragramaers Guide, 2.0, December 1990,
Parasoft Corporation, Pasadena, CA. Express Users Guide, version 3.2.5
editon, 1992,

Paul Pierce. The NX/2 operating system. In Procesdings of the Thind Con-
Jerence on Hypercabe Concursent Comjruters and Applications, pages 384-30(.
ACM Press, 1985,

AL Skjellum and A, Leung. Zipeode: a portable multicomputer communi-
cation library atop the reactive kemel. In T, W, Walker and €. F. Stout,
editors, Proveedings of e Fifth Distribned Memory Concurrent Compating Cone-
Jerence, pages THT-776. IEEE Press, 1990,

A, Skjellum, 5. Smith, C. S6ll, A, Leung, and M. Morari. The Zipeode
message passing system. Technical report, Lawrence Livermaore National
Laboratory, September 1992,

[26]

[29]

Anthony Skjellum, Nathan E. Idoss, and Purushetham V. Bangalore. Wril-
ing Libraries in MPL In Anthony Skjellum and Donna 5. Reese, editors,
Proceedings of the Scalable Pevallel Lilvaries Confevence, pages 166-1735. [EEE
Computer Sociely Press, Octolwer 1993,

Anthooy skjellum, Steven O Smith, Nathan E. Dass, Alvin P. Leung, and
Manfred Morari, The Design and Evolution of Zipeode, Paraliel Comfuing,
14994, (Invited Paper, to appear in Special 1ssue on Message Passing).
Anthooy Skjellum, Steven G Smith, Nathan E. Doss, Charcles T Sall,
Alvin P Leung, and Manfred Morard. Yipoode: A Poriable Communi-
catien Layer for High Performance Mullicompuong, Technical Report
UCRL-C-106725 (revised 9,92, 12/93, 4/94), Lawrence Livermore Ma-
tional Laboratary, March 1991, To appear in Concurrency, Prociice & Exfe
e,

I}, Walker, Standards for message passing in o distributed memory envi-
ronment. lechnical Report TM-12147, Oak Kidge MNational Laboratory,
Avgust 1992,

