3.2.2 MESSAGE DATA

The send buffer specified by the MPILSEND operation consists of count succes-
sive eniries of the vpe indicated by datatype, starting with the entry at address
buf. Mote that we specify the message length in terms of number of slements,
ot number of s The former i3 machine independent and closer o the
application level.

The data part of the message consisis of 2 sequence of countvaluwes, cach of
the type indicated by datatype. count may be zero, in which case the data part of
the message is empry. The basic datarvpes that can be specificd for message data
values correspond o the basic datatypes of the host language, Possible values of
thiz argument for Fortran and the corresponding Foriran types are lisced below.

| MFI datatype Fortran datatype
MPILINTEGER INTEGER
MPI_REAL HEAL
MPI_LDOUBLE_PRECISION | DOUBLE PRECISION
P COMPLEX | COMPLEX
MPIL_LOGICAL | LOGICAL
MPILCHARACTER CHARACTER{1)
MPI_BYTE
MPI_PACKED

Faossible values for this argument for Cand the corresponding C ovpes are listed

bl
MELchatatypieey jgglaanpe
MPI_LCHAR signed char
MPI SHORT signed short int
PPLINT sigoned int
ME LOMG sigoed long dnt

| MPILUNSIGMED _CHAR unsigoed char
P UNSIGMED SHORT unsigned short int |

MPILLNSIGMED unsigped iat
MBI UNSIGMED LOMG unsigned long int
MPI_FLOWAT float

| MPI_DOUBLE daouble
MP_LONG_DOUEBLE lopg deuble
MPILLBYTE

;_[qul_PAEKED

The datatypes MPILEYTE and MPI_LPACKED do not correspond to a Fortran
or C datatype. A value of vpe MPLBYTE conzists of a byte (8 hinary digits), A
byte 15 uninterpreted and is different from a character. Different machines may
have different representations for characters, or may use more than one byte 1o

represent characters. On the other hand, a byte has the same binary value on
all machines, The wse of the ype MPLPACKED is explained in Section 315,

MPI requires support of the datatypes listed above, which match the basic
datatypes of Foruan 77 and ANSI C, Additional MPI datatypes should be provided
it the host language has additonal data types: MPILLONG_LONG_INT, for {64
bit) Cintegers declared 1o be of type longlong int; MPILLDOUBLE COMPLEX for
double precision complex in Fortran declared wo be of wpe DOUBLE COMPLEX;
MPI_REALZ, MPIREALD and MPI_REALE for Forran reals, declared o be of
tvpe REAL*Z, REAL*4, and REAL*E, respectively; MPILINTEGERT MPILINTEGER2
and MPIINTEGER4 for Fortran integers, declared o be of type INTEGER*1,
INTEGER®2, and INTEGER®4, respecively; eLe.

Rationale. One poal of the design is to allow for MPI e be implemented
as a library, with no need for additonal preprocessing or compilation.
Thus, one canneot assiume that a communicaton call bas information oo
the datatype of varables in the communication buffer; this inlormation
musl be supplied by an explicit argument. The need for such datatype
information will become clear in Section 3.5.2, (8nd of rafienaele)

3.2.3 MESSAGE ENVELOFE

[n addition 1o the data part. messages carry information that can be used (o
distinguish messages and selectively receive them. This information consists of
a fixed numhber of ficlds, which we collectively call the message envelope, These
fields are

SOLLINTC
destinalion
IZELH'

COTTHTI T C

The message source is implicitly determined by the identity of the message
sender. The other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-alued message tag is specified by the tag argument. This integer
can be used by the program o disinguizsh different wpes of messages, The
range of valid Ly villues 15 0,. .. UB, where the value of UE is implementation
dependent. It can he found by querving the value of the atribute MPLTAG_UE,
as described in Chapter 7. MPI requires that UB be no less than 32767,

The comm argument specifies the communicator thal 35 used for the send
operation. Communicators are explained in Chaprer 5; below is a bricf summary
of their usage.

A communicator specifies the communication context for a communication
operation, Each communication context provides a separate “communicalion
universe:” messages are always received within the context they were sent, and
messages sent in different contexis do not interfere.

The communicator also specifies the set of processes that share this commu-

nicaticn contexl, This process group is ordered and processes ave identilied by

thel
whi
i

rrankwithin this group. Thus, the range of valid values for desti=0, ..., n=1,
re nois the number of processes in the group, (Il the communicator is an
roommunicator, then destinations arc identified by their rank in the remote

group. See Chapler 5.)

A predefined communicator MPLCOMMWORLD is provided by MPL Tt allows

communication with all processes that are accessible alter MPLinitialization and
processes are identified by their rank in the group of MPLCOMM WORLD.

Adwice to wiers. Users thal are comfortable with the notion of a flat name
space for processes, and asingle communication context, as offered by most
exisling communication libraries, need only use the predefined variable
MPICOMM WORLD as the comm argument. This will allow communication
withi all the processes aailable at imtalizanan Bme,

Users may define new communicators, as cxplained in Chapter 5. Com-
municators provide an important encapsulation mechanism for libraries
and modules. They allow maodules to have their own disjoint communica-
tion universe and their own process numbering scheme, (Eed af aduice o
AUFEFE.)

Adwice fo fmplereenitors. The message envelope would normally be en-
coded by a Axed-length message header, However, the actual encoding
is implementation dependent. Some of the informadon (eg., source or
destination) may be implicit, and need not be explicitly carried by mes-
sages. Also, processes may be identified by relative ranks, or absolute ids,
ele, [Fnd of aawiee fo imflementors,)

3.2.4 BLOCKING RECEIVE

The

synlax of the blocking receive operation is given below,

MPI_RECY [buf, count, datatype, source, tag, comm, status)

ouT b initial addres of reccive buffer (choice]

[count numher of elemaenis in receive bufier (ionteger)
[datatype dacarnype of cach receive buffer element (handle)
[sourca rank nf source (inbeger)

[tag ICsEAEE Lag finleger)

[Comm coanmnenicitbor | fandbe)

auT status status abject [Srans)

int MPIT RHecwiwvoid* bof, int count, MPI Datatype datatypm, int source,

int tag, HPI Comm comm, HPL Status *3taATus)

HPI_RECY{(EUF, COUKT, DATATYFE, S0URCE, TAG, COMM, STATUS, IERRQR)

ctyper GUF{«)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS.SIZE),
1ERROR

The Bocking sermantics of this call are described in Section 5.4

The receive buffer consists of the storage containing count consecutive ele-
ments of the yype specified by datatype, starting ataddress buf. The length of the
received message must be less than or equal o the length of the receive bufler,
An overflow error occurs if all incoming data does not fie, without truncation,
into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those
locations corresponding to the (shorter) message are modified.

Aduvice fo asers, The MPI_LPROBE function described in Section 3.8 can be
wsedl 1o receive messages of unknown length, (nd of advice bo eses.)

Advice to fmplementors. Even though no specific behavior is mandated
Ly MPI for erraneous programs, the recommended handling of over low
situations is wo return in $tatus information about the source and ag of
the incoming message, The receive operation will return an error oode.
A quality implementation will also ensure that no memory that is outside
the receive buller will ever be overwritten.

In the case of a message shorter than the receive buffer, MP is gquite
sirictin thatitallows no madification ol the other locations, A more lenient
statement would allow for some optimizations but this is not allowed. The
implementation must be ready @ end a copy inta the receiver memary
exactly at the end of the receive buffer, even if it is an odd address. (End of
aeloriee i mfilsmenions,)

The selection of a message by a recelve operaton is governed by the value
of the mesage envelope, A message can be received by a receive operation
if its envelope matches the souree, tag and comm values specified by the re-
ceive operation. The receiver may specify a wildcard MPLANY_SOURCE value for
source, and /or a wildeard MPLANY_TAG valuc for tag, indicating that any source
and o g are acceplable, It cannot specify a waldeard value far comm, Thus,
a message can be received by a receive operation only if it is addressed o the
receiving process, bas a malching communicatoer, has malching source unless
source= MPILANY_SOURCE in the pattern, and has a matching tag unless mg=
MPLANY. TAG in the pattern,

The message tag is specified by the tag argument of the receive operation.
The argument source, il dilferent lrom MPLARY SQURCE, iz specilied az a rank
within the process group associated with that same communicator {remote pro-
cess graup, [or intercommunicators), Thus, the range of valid values lor the
source argument is {0. ..., n = 1} {MPLLANY_SOURCE}, where nis the number
of processes in this growp,

Mote the asymmetry between send and receive operations: A receive opera-
lion may accepl messages [rom an arbitrary sender, an the other haned, & send

operation must specify a unigue receiver. This matches a “push” communication
mechanism, where data transfer is effected by the sender (rather than a “pull”
mechanism, where data transfer is effected by the receiver).

Source = destination is allowed, that is, a process can send a message to itself,
{However, it is unsafe to do so with the blocking send and receive operations
described above, since this may lead to deadlock, See Section 5.5.)

Adviee o tmplementors. Message context and other communicator infor-
maton can be implemented as an additional g feld. It differs from
the regular message ag in that wildeard matching is not allowed on this
field, and that value seting for this ficld is conwolled by communicatar
manipulation funcions. {FKed of advice fo implemeniors.)

3.2.5 RAETURN STATUS

The source or tag of a received message may not be known if wildeard values
were used in the receive operation. The information is returned by the status
argument of MPLRECY, The type of status is MPldefined. Status variables need
1o be explicitly allocated by the user, that is, they are not system objects,

In C, status is a structure that contains wo fields named MPILSOURCE and
MPLTAG, and the structure may contain additonal felds, Thus, status MPL
SOURCE and status.MPLTAG contin the source and tag, respectively, of the
received message.

In Foriran, status 15 an array of INTEGER: of size MPILSTATUS SIZE. The twao
constants MPILSCURCE and MPLTAG are the indices of the entries that store the
source and tag lields, Thus status(MPILSOURCE) and status{MPI_TAG) contain,
respectively, the source and the tag of the received message.

The status argument also returns information on the length of the message
received. However, thisinformation is not directly available s a field of the status
variable and a call 1o MPLGET_COUNT is required 1o *decode” this informartion,

MPILGET COUNTIstatus, datatvne, count)

I slalus Felurn st of receve opention (Sas)
I datatype dlatatype of each receive buffer element (handle)
ouT caount number of received elements (integer)

int MPIGet_count(HPI.Status *status, MPI Datatype datatype, int ®count)

MPIGET_COVNT{3TATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS{MPI_STATUS_ZIZE), DATATYPE, COUNT, IERROE

Returns the number of clements received, (Again, we count slements, not
fytesi) The datatype argument should match the argument provided by the
receive call thal set the status variable. (We shall later sec, in Section 5,125, that
MPILGET_COUNT may return, in certain situations, the value MPIUNDEFINED.)}

|qm .__ﬂ -_

|.\.

'?’Fo"%--. I

et :.Ef:fm .-.-E‘IE!’".-..i Lizwd!

181

Rofionals, Some message-passing libraries use INOUT count, tag and
Source arguments, thus using them hoth te specify the selection eritena for
incoming messages and return the acoal envelope values of the received
message. The use of a separate stanis arpument prevents ervors thal are
olten attached with INOUT argument {e.g.. using the MPLANY_TAG constant
as the tag in a send). Some libraries use calls than refer implicitly wo the
"lazt mesaage received.” This b= not thread safe.

The datatype argument is passed 1o MPLGET COUNT 20 a8 to improve
performance, A message might be received without counting the numhber
of elements i contains, and the count value is oflen nol needed, Also,
this allows the same function to be used after a call o MPI_LPROBE. {fnd of
rerifaneie, |

All send and receive operations nse the buf, count, datatype, source, dest,
tay, comm, and SEus arguments in the sune way as the blocking MPILSEND
and MPI_LRECY operations described in this section.

3.2 Data Type Matching and Data Conversion
2.3.1 TYPE MATCHING RULES

One can think of message transfer as consisting of the following three phases.

L. Data is pulled out of the send buffer and a message is assembled.

2. A messape is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the re-
ceive buffer

Type matching has 1o be observed at each of these three phases: The ope
of each variable in the sender buffer has o match the wpe specified for that
entry by the send operation; the wype specified by the send operation has o
match the ppe specified by the receive operation; and the wpe of each variable
in the receive bufler has o match the type specified for that entry by the receive
operation. A program that fails to observe these three rules is erraneaus,

To define vpe matching move precisely, we necd 1o deal with owo issues:
matching of types of the host language with types specified in communication
operations; and matching of types al sender and receiver

The ypes of a send and receive match (phase mwo) if both operations
use identical names. That is, MPLINTEGER matches MPILINTEGER, MPI_REAL
matches MPILREAL, and o0 on. There is one exception to this rule, discossed in
Section 313, the type MPLPACKED can match any other type.

The yype of a vanable in a host program matches the type specified in the
communication operation il the datatype name used by that operation corre-
sponds o the basic type of the host program variable. For example, an entry
with type name MPLINTEGER matches a Fortuan variable of type INTEGER. A
table giving this correspondence for Fortran and © appears in Section 5.2,2,

There are twe exceptions to this last rule: an entry with type name MPLBYTE or
MPI_PACKED can be used o match any byte of storage {on a byte-addressable
machine), irrespective of the datatype of the variable that contains this byte. The
type MPILPACKED is used 1o send data that has been explicitly packed, or receive
data that will e explicitly unpacked, see Section 3,13, The type MPILBYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall inte the three categories below,

o Communication of typed values {e.g., with daavpe different from MPLL
BYTE), where the datatypes of the corresponding entries in the sender
program, in the send call, in the receive call, and in the receiver program
must all match.

« Communication of untyped values {e.g., of dataype MPIBYTE), where
both sender and receiver e the datatype MPILBYTE. In this case, there
are no requirements on the types of the corresponding entries in the sender
and the receiver programs, nor is it required that they be the same.

o Communication involving packed data, where MPIPACKED is used.

The following examples illustrate the first two cases,
Example 3.1 Sender and receiver specify matching types.

CALL MPI_COHM_RANE({comm, rank, iferr}
IF (rank.E.0) THEN
CHLL HPI_SEMDMal(1), 10, MPI_REAL, 1, wag, comm, ierr)
ELEE
CALL HWPI_RECVW(b(1i}, 15, HPI_REAL, 0, tag, ccom, status, iarr)
EKD IF

This code is correct it both a and b are real arvays of size = 10, [(In Fortean,
it might be correct 1o use this code even if a or b have size < 10 e.g., when al1)
can be equivalenced wo an array with ten reals.)

Example 3.2 Sender and receiver do not specily matching types.

GALL MPI_COMH_RAKE{comn, rank, igrr}
IF(rank . E.0) THEY
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELEE
CALL MPI_RECV(b(1i}, 40, HPI_BYTE, 0, tag, comm, Statue, ierr)
EKD IF

This code is erroneous, since sender and receiver do not provide maiching
datatype arguments,

Example 3.3 Sender and receiver specify communication of untyped values,

CALL MPT_COMM_RANK (comme, rank, derrcd
IF(ranx.EQ. 0} THEH
CALL WPI_SEND(a(1}, 40, MFI_BY¥TE, 1, tag, ¢omm, lerr)
ELSE
CALL WPI_RECW(B{1}, &0, MPI_BYTE, 0O, tag, ¢omm, scatus, ierr)
EKD IF

This code is correct. irmespective of the type and size of 8 and b (unless this
resulis in an out of bound memory access),

Aduvice o wsers, If a buffer of type MPILBYTE is passed as an argument
to MPISEND, then MPI will send the data stored a contiguous lecations,
starting from the address indicated by the buf argument. This may have
unexpected resulis when the data layout is not as 2 casual user wonld expect
itte be, For example, some Fortran compilers implement variables of tvpe
CHARACTER as a structure that containg the character length and a pointer
o the actual string. In such an environment, sending and receiving a
Fortran CHARACTER wvariable using the MPLEYTE tvpe will not have the
anticipated result of ransferring the character string. For this reason, the
user s advised o use typed communications whenever possible, (End of
aduice o wiers.)

Type MPILCHARACTER

The wpe MPILCHARACTER matches one character of a Fortran variable of type
CHARACTER, rather then the entire characier string stored in the variable. Fortran
varialles of type CHARACTER or substrings arc transferred as if they were arrays
of characters, This is illustrated in the example below,

Example 3.4 Transfer of Fortran CHARACTERS,

CHARACTER*10 a
CHARACTER® 1O &

CALL HPI_COMM_RAKK{comm, renk, iere)
IF{rack.EQ.0) THEK
CALL MPI_SERD(a, &5, MPI_CHARACTER, 1, tag, comn, ierr)
ELSE
CALL MPI_RECW{p(5:10), 5, HPI_CHARACTER, 0, tag, coon, status, ierc)
END IF

The last five characters of string b at process 1 are replaced by the frst five
characters of string a at process (.

Ralionale, The allernative choice would be for MPILCHARACTER to march
a character of arbitrary length. This runs into problems,

A Fortran character variable is a constant length string, with no special
termination symbol, There is no fived convention on how 1o represent
characters, and how to store their length, Some compilers pass a character
argument (o a routine as a pair of arguments, one holding the address of
the string and the other holding the length of siring. Consider the case
ol an MPI communication call that is passed a communication buffer with
type defined by a derived datatype (Section 3.12). If this communicator
buffer contains variables of type CHARACTER then the informarion an their
length will not be passed to the MPL rourine.

This problem forces us to provide explicit information on character
lemgth with the MPI call. One could add a length parameter 1o the ope
MPI_CHARACTER, but thiz does not add much convenience and the same
functonality can be achieved by defining a suitable derived datatype. (End
of Feptinsle,)

Advice to ivfilementovs, Some compilers pass Fortran CHARACTER arguments
as a structure with a length and a pointer 1o the actual string, In such an
environment, the MPI call needs w dereference the pointer in order 1o
reach the string, (End of advice fo implementors,)

3.2.2 DATA COMVERSIOMN

One of the goals of MPLis to suppont parallel computations across heterogenseous
environments. Communication in a heterogenesus environment may require
data conversions, We use the following terminalogy.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an
INTEGER,

representation conversion changes the binary representation of a value, e,
rom Hex floating point to IEEE floating point.

The type matching rules imply that MPl communication never entails type
conversion, On the other hand, MPI requires that a representation conversion
be performed when a typed value is ransferred across environments that nse
different representations for the datatype of this value. MPI does not specify
rules for representation conversion, Such conversion is expected to preserve
integer, logical, or character values, and to convert a floating point value 1o the
nearest value that can be represented on the Largel system,

Owverfllow and underflow exceptions may occur during floating point con-
versions, Conversion of integers or characters may also lead o exceptions when
avalue that can be represented in one system cannot be represented in the other
system. An exception ocourring during representation conversion results in a
failure of the communication. An error occurs either in the send operation, or
the reccive operation, or both,

If a value sent in a message is unoyped (ic., of type MPLBYTE), then the
binary representation of the byte stored at the receiver is identical to the binary
representation of the byte loaded at the sender. This holds troe, whether sender

and receiver mn in the same or in distinct environments. No representation
comversion iz required. (Note thatl represeniation cenversion may cocur when
values of type MPILCHARACTER or MPI_CHAR are transferred. for example, from
an ERCDIC encoding to an ASCI encoding.)

Mo conversion need occur when an MPI program execuates ina homogeneous
svstemn, where all processes run in the same environment.

Consider the three examples, 5.1-3.5. The first program is correct, assuming
that a and b are REAL arcavs of size = 1L I the sender and receiver execute
different environments, then the ten real values that are fewched from the send
bufter will be converted 1o the representation for reals on the receiver site belore
they are stoced in the receive buffer. While the number of real elements fetched
from the send bufTer equal the number of real elements stored in the receive
buffer, the number of bytes stored necd not egqual the number of bvtes loaded.
For example, the sender may use a lowr byre representation and the receiver an
eight bvte representation for reals.

The second program is erroneous, and itz behavior is undelned,

The third program is correct. The exact same sequence of forty bytes that
were loaded from the send bufler will he siored in the receive bualler, even if
sender and receiver run in a different environment. The message sent has
exactly the same length (in byies) and the same binary representation as the
messape received. 1P and b are of different tpes, orif they are of the same ovpe
e elifferent dara representations are wsed, then the bits staved in the receive
buffer may encode values that are different from the values they encoded in the
sened bulfer

Data representation conversion also applies o the envelope of a message:
source, destination, and @ag are all integers that may need 1o be converted,

Addwice o fmplemerdors, The curvent definition does not require messages
o carry data type informaton. Both sender and receiver provide complete
data iype information. In a beterogeneous environment, cie can either
use a machine independent encoding such as XDE. or have the receiver
convert from the sender representation (@i own, or even have the sender
o the conversion,

Additional tvpe information might be added o messages in order 1o
allow the system o detect mismatches between datatype at sender and
receiver. This might be particilarly vseful in a slower but safer debug
mode, (FEnd of advice fo implementors,)

MPI dowes not require support for interlanguage communicaton. The be-
havior of a program is undelined il messages are sent by a C process and received
by a Fortran process. or vice versa.

ftationate. MPl does not handle inter-language communication because
there are no agreed standacds For the corvespondence between O Lypes
and Fortran types. Therefore, MPI programs that mix languages would
ol port. (FEned of velivaale)

Adwice o implewentsrs. MPI implementors may want o support inter
language communication by allowing Fortran programs 1o use " MPI
tvpes,” such as MPLINT, MPLLCHAR, etc.. and allowing © programs o use
Fortran wypes. (End of aduice to fmfdementorn.)

3.4 Communication Modes

The send call described in Seciion 3.2.1 is blocking: it does not return untl the
messaze data and envelope have been safelv stored away so that the sender is frec
to access and overwrite the send buffer. The message might be copied directly
o the matching receive buller, or it might be copled into a temporary system
buffer.

Message bullering decouples the send and receive operations. A blocking
send can complete as soon as the message was buffered, even if no mawching
receive has been executed by the receiver. On the other hand, message buffer-
ing can be expensive, as it entails additional memoryto-memory copying, and it
requires the allocation of memory for buffering. MP| offers the choice of several
communication modes that allow one 1w contral the choice of the communica-
Licn protacal,

The send call described in Section 3.2.1 used the standard communication
modle. In this made, it is up o MPI o decide whether ontgoing messages will
be buffered. MPI may buffer outgoing messages, In such a case, the send call
may complete hefore a matching receive is invoked. On the other hand, buffer
space may be unavailable, or MPI may choose not o buffer oulpoing messages,
for performance reasons. In this case, the send call will not complete undl a
matching receive has been posted, and the data has been moved 1o the receiver.

Thus, asend in standard made can be started whether or not a matching re-
ceive has been posted. It may complete before a matching receive is posted. The
standard maode send is non-local: successful completion of the send operation
may depend on the ocourrence of a matching receive,

Ratwnale, The reluctance of MP1 e mandate whether standard sends
are: hulfering or not stems from the desire to achieve portable programs,
Simee any sytem will run oul of bufler resources as message sizes are in-
creased, and some implementations may want o provide lictde buffering,
PPl takes the posinan that correct (and therelore, portable) programs do
notrely on system buffering in standard mode, Buffering may improve the
performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes o guarantee a certain amount of buffering,
the userprovided buffer system of Section 5.6 should be used, along with
the huffered-mode send. (End of rationale.)

There are three additional communication modes.

A buffered mode send operation can be staried whether or not a matching
receive has been posted. [t may complete before a matching receive 15 posted,
Heowever, unlike the standard send, thiz cperation is local, and its completion

T

 Basic communicaion i 17
R S R S e

does not depend on the occurrence of a matching receive, Thus, if a send is
executed and no matching receive is posted, then MP1must buffer the ougoing
message, sa as W allow the send call w complete. An error will cecur if there is
insufficient buffer space. The amount of available buffer space is controlled by
the user—see Section 3.6. Buffer allocation by the user may be required for the
butfered maode 1o be effective.

A send that uses the synchronows mode can be started whether or not &
matching receive was posted. However, the send will complete successiully only
ifa matching receive is posted, and the receive operation has started 1o receive
the message sent by the synchronous send. Thus, the completion of a syn-
chronous send not only indicares that the send buffer can he rewsed, but also
indicates that the receiver has reached a certain point in its exccution, namely
that it has started excouting the matching receive. If both sends and receives
are blocking operations then the use of the synchronous mode provides syn-
chroneus communication semaniics: a communication does nol complete at
either end before both processes rendesvous at the communication. A send
cxeculed in this mode is non-local,

A send that uses the ready communication made may be sarted aily il the
matching receive is already posted, Otherwise, the operation is errenesus and its
cutcome 15 undefimed, On some systems, this allows the removal of a hand-shake
aperation thal is otherwise required and results in improved performance. The
completion of the send operation does not depend on the stats of a mateh-
ing receive, and merely indicates that the send buifer can be reused. A send
operation that uses the ready mode has the same semantics as a standard send
CREraLiom, or g E:r'ru_'h rondalls send t:-pt:mliuu; iLis merely that the sundcrpr{wjdc:g
additional informartion Lo the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready
sendd could be replaced by a standard send with no effect on the hehavior of the
program other than performance,

Three additional send functions are provided for the three additional com-
munication modes. The communication mode is indicared by a onelewer prefis:
B for buffered, S for synchronous, and B for ready,

MFI_BSEND (buf, count, datatype, dest, tag, comm)

I buf initial address of send buller (choice)

I count number of clements in send buffer (integer)
™ datatype datatype of ewch send buffer element (handle)
[dest rank of destination (integer)

I tag message lag (inbeger)

I QO communicator {handle)

int HPI Bzend(veid* buf, int count, MPI Tatatype datatype, int dest,
int tag, MPI_Comm comm}

HPI_BSEND(BUF, COUKT, DATATYFE, DEST, TAG, COMM, IERROR)
<typa> EUF{+)
INTEGER QOUMT, DATATYPE, DEST, TAG, COHH, IERROR

Send in bfTered maode,

MPILSSEND (buf, count, datatype, dest, tag, comm)

[I buf initial address of send budfer (choice)

I count number of elements in send buffer {intejer)
I datatype datarype of each send bulffer element {handle)
[dest rank of destination (inweger)

[tag MICEEAEEe Lag (nleger)

[SO coanmunicator {handle)

int MPI Ssend(veid+ buf, int count, MPIDatatype datatype, iot dast,
int tag, MPI_Coxm coom)

MFI_SSEND{BOF, COUNT, DATATYPE, DEST, TAG, COMM, IERROE)
“typex BUF(=)
INTEGER COUKT, DATATYFE, DEST, TAG, COMM, IERROR

sened in synchroncus mode,

MPILRSEMND (buf, count, datatype, dest, tag, comm]

I b il address of send boaffer {choice)

I count number of elemenis in send Bulfer (nteger)
I datatype datatype of cach send buffer element (handle)
IM dest rank of destination {integer)

I 1ag message g {integer)

1M COMn communicaner (handle)

int MPI_Reend{void+* buf, int count, MPI Datatype datatypa, int dast,
int Teg, HPI_Conmn comm)

HPI_RSEKD{BUF, COUNT, DATATYFE, DEST, TAG, COMM, IERROR)
Siyper GUF (=)
INTEGER COUNT, DATATYPE, DEST, TAG, COHM, IERROR

Send in ready mode.

There is only one receive operation, which can match any of the send modes.
The receive cperation described in the last section is blocking: it returns only
after the receive bulfer contains the newly received message, A receive can
complete before the matching send has completed (of course, it can complere
only after the matching send has started).

In a multi-threaded implementation of MPI, the system may de-schedule a
thread that is blocked on a send or receive cperation, and schedule another
thread for execution in the same address space. In such a case icis the user's
responsibility not to access or maodify a communication bufter until the commu-
nication completes, Otherwise, the outcome of the computation is undelined.

Hatisnale. We prohibit read accesses to a send buffer while it is being
used, even though the send operation s not supposed o alier the con-
tent of this buffer. This may seem more siringent than necessary, but the
adeditional restriction causes lictle loss of funcionality and allows better
performance on some systems—consider the case where data transfer is
done by a IMA engine that is not cache-coherent with the main processor.
i nd of radionale,)

Advice te fmplementors. Since a synehronous send cannot complete before
a matching receive is posted, one will not normally bulfer messages sent
b sich an operation.

It is recommended to choose buffering over Blocking the sender, when-
ever possible, for standard sends. The programmer can signal his or her
preference for blocking the sender until a matching receive ocours by using
the synchronous send mode.

A possible communication protocol for the various communication
modes is outlined below,

reacy send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message, The
receiver stores this request. When a matching receive is posted, the receiver
sendls back a permission-c-send message, and the sender now sends the
Mmessage,

standard send: First protecel mav he used for short messages, and
secand procoeal for long messages,

buffered send: The sender copies the message into a buffer and then
senids it with a nonblocking send (using the same protocol as for standard
seri).

Additional control messages might be needed Tor Mow contral and
error recovery, OF course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there
will be no performance advantage (or disadvantage) for the use of ready
gend,

A standard send can be implemented as a synchronows send. In such
a case, no data buffering is needed. However, many (most?) uscrs expect
some buffering.

In a muli-threaded environment, the execation of a blocking com-
munication should black only the execuing thread, allowing the thread
scheduler 1o deschedule this thread and schedule another thread for ex-
coution. (fad of advice to fmfdemeiog.)

2.5 Semantics of Paint-to-Point Communication

Avalid MPLimplementation guarantees certain general properties of point-to-
point communication, which are described in this section.

Order Messages are non-overtaking: 10a sender sends two messages in succession
o the same destination, and both match the same receive, then this operation
cannot receive the sccond message i the first one i stll pending, If a receiver
POt two receives in succession, and both match the same message, then the
second receive operation cannot he satisfied by this message, il the frst one
is siill pending. This requirement facilitates matching of sends to receives. It
guarantees that message-passing code is deterministic, il processes are single-
threaded and the wildeard MP_ANY SOURCE 5 not used in receives. (Some of
the calls described later, such as MPILCAMCEL or MPLWAITANY, are additional
sources of nondeterminsm,)

If & process has a single thread of execution, then any two communications
executed by this process are ordered, On the other hand, if the process is mulo-
threaded. then the semantics of thread exeontion may not define a relative order
between two send operations executed by two distinet threads. The operations
are logically concurrent. even if one physically precedes the other. In such a
case, the two messages sent can be received in any order. Similarly, if two receive
operations that are logically concurrent receive two successively sent messapes,
then the rwo messages can match the two recetves in either order.

Example 3.5 An example of non-overtaking messages.

CALL MPI_COWH_RANE{comn, rank, isrr]
IF (rank,E].0) THEN
CALL MPI_BSEMD{bufl, count, MPI_REAL, 1, fag, ¢omm, lerr)
CALL MPI_BSEND{puf2, count, MPI_REAL, 1, tag, comn, ierr)
ELSE ! rank . EQ.1
CALL MPI_RECW{bufi, count, MPI_REAL, O, HPI_ANY_TAG, camm, status, ierr)
CALL HPI_RECVibufZ, cowunt, MFI_REAL, O, tag, <omm, atatus, ierr)
END LF

The message sent by the fese send must e received by the first receive, and the
messaze senl by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initated on two
processes, then at least one of these two operations will complete, independently
of other actions in the svstem: the :end operation will complete, unless the
receive is satisfied by another message, and completes; the receive operation
will complete, unless the message sent is consumed by another matching receive
that was posted at the same destination process.

Example 3.6 An example of two, intertwined matching pairs.

CALL MPI_COHMH_RANWE(coEm, rank, ierrc)
IF {rank.Fd.0) THEN
CALL MFI_BSEKD{pufl, coont, MPI_REAL, 1, tagl, <omm, iacr)
CALL MPI_SSEKD{buf2, count, MPI_REAL, 1, tag2, comn, ierr)
ELZE I rankx.EU. 1
CALL MPI_RECY(bufl, count, MPI_REAL, 0, tag?, coam, status, ierr)
CALL MPI_RECN(bufZ, count, MPI_REAL, 0, tagl, comm, status, derr)
EHD IF

Both processes invoke their fisst communication call. Since the first zencd of
process zero uses the buffered mode, it must complete, irrespective of the state
of process one. Since no marching receive is posted, the message will be copied
into bufter space. (If insufficient builer space is available, then the program will
fail.) The second send is then invoked. AL that point, a matching pair of send
and receive operations is enabled, and both operations must complete, Process
pne next invokes i second receive call, which will be satdsfied by the buffered
message. Mote thiat rocess ane received the messires in the reverse order they
WETE SETL

Fairness MPI makes no guarantee of fareess in the bandling of communica-
tion. Suppose that a send is posted, Then it is possible that the destination
process repeatedly posts a receive that matches this send, yet the message 15
never received, because it is each tme overtaken by another messyze, sent from
anather source. Similarly, suppose that a receive was posted by a multi-threaded
process. Then it is possible that messages that match this receive are repeatedly
received, vel the receive is never satisfied, because it is overtaken by other re-
ceives posted at this node (by other executing threads). [tis the programmer’s
responsibility 1w prevent starvation in such situations.

Resource limitations Any pending communication operaticn Consimes sysiem
respurces that are limited. Errors may occur when lack of resources prevent the
cxecution of an MPI call. A quality implementation will use a (small) fived
amount of resources for cach pending send in the ready or synchronows mocde
and for each pending receive. However, buffer space may be consumed to store
messages aent in siandard mode, and must be consumed 1o store mMessages sent
in buffered made, when no matching receive is available, The amount of space
available for buffering will be much smaller than program data memory on
many systems, Then, it will be easy to write programs thal overrun available
Bulfer space.

MPl allows the uzer o provide buffer memory for messages sent in the
Luffered made. Furthermore, MPI specifies a detailed operatonal model for
the use of this buffer. An MPl implementation is required 1o do no worse than

imnplied by this model. This allows users to avoid buffer overflows when they use
buffered sends. Bulfer allocation and use is deseribed in Section 5.6,

A buffered send operation that cannot complete becanse of a lack of buffer
space 15 erroneous,. When such a situation is detected, an error is signalled
that may cause the program o terminate abnormally,. On the other hand, a
standard send operation thal cannot complete because of lack of huffer space
will merely block, waiting for bufter space 10 become available or for a matching
receive o be posted. This behavior is preferable in many situations. Consider
a situation where a producer repeatedly produces new values and sends them
to a consumer. Assume that the producer produces new values faster than the
consumer can consume them. [fbuffered sends are used, then a bofer overflow
will result. Additional spnchronization has o be added to the program so as 1o
prevent this from occurring. IF standard sends are used, then the producer will
be automatically throtted, as its send operations will block when buffer space is
ungvailable,

In some sitnaions, a lack of buffer space leads w deadlock. This is ilhisirared
by the examples below,

Example 8.7 An exchange of messages,

CALL HPI_COMM_EANK{comm, rank, ierc)
IF {rank.E].0) THEN
CALL MPI_SEND{ssndbul, count, ¥PI_REAL, 1, tag, comn, ierr)
CALL MPI_RECV{recwvbuf, count, MFI_REAL, 1, tag, comn, status, ierr)
ELSE | rank.BEQ.1
CALL HWPI_RECV(recwbuf, count, MFI_REAL, O, tag, coom, status, ierr)
CALL HPI_SEND{sendbuf, count, NPI_REAL, 0, tag, comm, iarr)
EHND IF

This program will succeed even if no buffer space for dara is available, The
standard send operation can be replaced, in this example, with a synchronous
send.

Example 3.8 An attempt to exchange messages.

CALL WPI_COMM_REANK(comm, rank, ierr)

IF {ramk.EQ.3) THEK
CALL MPI_RECV(recvbuf, ceunt, WPI_REAL, 1, tag, comm, status, isrc)
CALL MFI_SEND(aendbuf, count, MPI_REAL, 1, tag, comm, ierr)

EL3E | rank Ef.1
CALL MFI_EECY{recvbul, count, MPI_REAL, ¢, tag, comm, status, lerr)
CALL MPI_SEKD{sendbuf, count, MFI_REAL, O, tag, comn, ierr)

END IF

The receive operation of the first process must complete before its send, and
can complete only if the matching send of the second processor is executed.
The receive operation of the second process must complete before its send and

! T ,.1'"'.}1:5511’?4*1““?:%1%1]

=--"'-"‘:-". Ts. b -'.;:r "'.l\.-.l_.-.-'l

1 "?\1 2
ARHLANTLNS oy <

208

CELry

complete only if the matching send of the first process is executed, This

program will always deadlock, The same holds for any other send maode.

Example 3.9 An exchange that relies on buftering.

GALL
IF [

ELSE

END

The
relu

HPI_COHH_RANE (comm, rank, ierr)

rank .EQ.0) THEN

CALL MFI_SEKD{sendbuf, count, MPI_REAL, 1, tag, <omm, iarr)

CALL WPI_RECV{recwbuef, count, MFI_REAL, 1, tag, comm, status, iaerr)
| rank.ED.1

CALL MPI_SEKD{sendbui, ¢ount, MFI_REAL, O, tag, coom, ierc)

GALL MPI_RECV{racvbuf, coumt, MPI_EEAL, O, tag, <omm, atatus, ierr]

IF

message sent by each process has o be copied out belore the send operation
s and the receive operation starts. For the program o 4:ump]::l::. i is

necessary that at least one of the two messages sent be buffercd. Thus, this
program can succeed only if the communication system can buffer at least count
words of daa.

Advice to weers, When standared send operations are used. then a deadlock
sitpation may oeccur where both processes are blocked because bulfer space
is ot available. The same will certainly happen. if the synchronows mode
is wseel. IF the buffered mode = used, and not encugh boffer space is
available, then the program will not complete either. However, rather
than a deadlock sitnation, we will have a buffer overflow error

A program is "safe” ilno message buffering is required for the program
to complere. One can replace all sends insuch program with synchronous
sends, and the program will siill run correctly. This conservative program-
ming stvle provides the best portability, since progem completion does not
depend on the amount of buffer space available or in the communication
protocol used.

Many programmers prefer to have more leeway and be able to use the
“unsafe” programming stvle shown in example 3.9, In such cases, the usc
of standard sends is likely 1o provide the best compromise between pers
formance and robustness: quality implementations will provide sufficicnt
buffering 2o that “common practice” programs will not deadlock. The
buffered send mode can be used Tor progeams that require more budler-
ing, or in sitnations where the programmer wants more control. This made
might also be used for debugging purposes, as buffer overflow conditions
are eazier 1o diagnose than deadlock conditons,

Nonblocking message-passing operations, as described in Section 3.7,
can be used o avoid the necd for buffering outgoing messages. This
prevents deadlocks due w lack of buffer space, and improves performance,
by allowing overlap of computation and communication, and avoiding the

overheads of allocating buffers and copying messages into bullers, {(Fnd of
adice fo wsers)

3.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered
mode. Bulfering is done by the sender,

MPI_BUFFER_ATTACH(buffer, size)

I huffer iminal buffer addreas {choloe)
[size hidder size, in h:-'l:n:"! I:i1|.||'gve'|':|

int MPI Boffer_attach(woid= buffer, int size)

HPI BUFFER_ATTACHC BUFFER, SIZE, IERROR}
ctyper GUFFER(+)
INTEGER 5IZE, IERROR

FProvides o MPI a buffer in the user's memory to be used for buffering
outgoing messages. The bufler is used only by messages sent in buflered macde.
Chnly one Duffer can be aitached o a process ata dme,

MFILBUFFER.DETACH| buffer, size)

LT Lulfer aenitial baatter acldress (choice)
QLT size buffer size, in byes (ineger)

int WPI_Buffer_detach{ wvoid++ baffer,K int+* sizrc)

HPI_BUFFER DETACH(EUFFEE, BIZE, IERROR)
ftyper BUFFER{#)
INTEGER ZIZE, IERROR

Detach the buffer currenty associated with MPIL. This operation will block
until all messages currently in the buffer have Deen vansmined, Upon vetarm
of this function, the user may reuse or deallocate the space taken by the buffer

The statements made in this section describe the behaviar of MPI for buf-
fered-mode sends. When no buffer is currently associated, MP| behaves as if a
reromsized buiTer is associated with the process,

MP| must provide as much buffering for outgoing messages as i outgoing
message dara were bulTered by the sending process, in the specilied buller space,
using a circular, contiguous-space allocation policy. We outline below a model
implementation that defines this policy. MP@ may provide morve bolfering, and
may use a better buffer allocation algorithm than described below. On the other
hand, MPlmay signal an error whenever the 2imple bufering allocator desceriled
beelow would run out of space. In partcular, if no buffer is explicitly associated
with the process, then any bullTered send may cause an ervorn

MPI does not provide mechanisms for queryving or controlling buffering
done by standard mode sends. [t is expected that vendors will provide such
information for their implementations.

Rationale. There is a wide spectum of possible implementations of
buffered communication: buffering can be done at sender, at receiver,
or both; buffers can be dedicated o one sender-receiver pair, or be shared
by all communications; buffering can be done in real or in virtual mem-
ory; it can use dedicated memory, or memory shared by other processes;
buffer space may be allocated statically or be changed dynamically; etc. It
does nat seem feasible to provide a porable mechanism for querying or
controlling buffering that would be compatible with all these cholces, yet
provide meaningful information, {End of rationale.)

3.6.1 MODEL IMPLEMENTATION OF BUFFERED MODE

The madel implementation uses the packing and unpacking funcions described
in Section 5.15% and the nonblocking communication functions described in
Section 3.7,

We assume that a circular quene of pending message entries (PME) is main-
ined. Fach entry contains a communication request handle that identifies a
pending nonblocking send, a pointer to the next entry and the packed message
data, The entries are stored in successive locations in the buffer, Free space is
available between the quene tail and the queue head,

A buffered send call resulis in the execution of the following code,

« Traverse sequentially the PME queue from head wward the tail, deleting
all entries for communications that have completed, up o the first entry
with an uncompleted request; update quene head 1w point o that entry,

o Compute the number, n, of bytes needed 1o store entry for new message
ilength of packed message computed with MPLPACK SIZE plus space for
request handle and pointer).

e Find the next contiguous empty space of n bytes in baffer (space following
quene 1ail, or space at start of buffer il quene tail is oo close 0 end of
buffer). If space not found then raise bufter overflow error.

o Append to end of PME queue in contiguous space the new entry that
contains request handle, next pointer, and packed message data; MPLPACK
is used o pack data.

e Post nonblocking send (standard msle) for packed data.

« Rewern

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping COMIMUNICALIon
and computation. This is especially rue on sypstems where communication can
be executed antonomonsly by an intelligent communication controller, Light-

weight threads are one mechanism for achieving such overlap, An altemative
mechanizm that often leads o better performance is w use nonblocking com-
munication. A nenblocking send start call initiates the send operation, but does
not complete it, The send start call will returm before the message was copicd
out of the send buffer. A separate send complete call is needed o complete
the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer af data our of the sender memory
may proceed concurrently with computations done at the sender after the send
was indtiated and before it completed. Similarly, a nonblocking receive start call
iniates the receive operation, but does not complete it The call will return be-
fore a message is stored into the receive buffer, A separate receive complete call
is needed 1o complete the receive operation and verity that the data has been
received meo the receive buffer. With suitable hardware, the wansler of daa
into the receiver memory may proceed concurrently with computations done
after the receive was inidated and before it completed. The use of nonblocking
receives may alao avoid system buffering and memory-to-memory copying, as
information is provided carly on the location of the receive builer.

Monblacking send start calls can use the same four modes as blocking sends:
standard, buffered, synchronous and ready. These carry the same meaning,
Sends of all modes, ready excepiled, can be started whether a matching receive
has been posted or not; a nonblocking ready send can be started only if a match-
ing receive is posted, Inall cases, the send siare call iz local: it retarms immedi-
ately, irrespective of the status of other processes. [f the call canses some sysiem
resource o be exhausied, then it will fail and return an error code. Quality
implementations of MPI should ensure that this happens only in “pathological™
cases. That is, an MPlimplementation should be able 1o support a large number
of pending nonblocking operations.

The send-complete call returns when data bas been copied ot of the send
buffer. It may carry additdonal meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a
matching receive has started. Thae is, a receive has been posted, and has been
marched with the send, In this case, the send-complete call is non-local. Mote
that a synechronous, nonblocking send may complete, if matched by a nonhlack-
ing receive, before the receive complete call ocears, (It can complete as soon as
the sender “knows" the transfer will complete, but hefore the receiver “knows”
the transfer will complere,)

If the send mode 15 buffered then the message must he buffered if there is no
pending receive. In this case, the send-complete call is local, and must succeed
irrespective of the status of a matching receive.

It the send mode is standard then the send-complete call may return before
a matching receive occurred., if the message is buffered. On the other hand, the
send-complete may not complete until a matching receive occourred, and the
messaEe was copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and vice versa.

Adwice to users. The completion of a send operation may be delayed,
for standard mode, and must be delaved, for sinchronous mode, undl a
matching receive is posted. The use of nonblocking sends in these two cases
allows the sender to proceed ahead of the receiver, so that the computation
is more wolerant of fluctuations in the speeds of the wo processes.

Nonblocking sends in the buffered and ready modes have a more lim-
ited impact. A nonblocking send will return as soon as possible, whereas a
blocking send will retwrn after the data has been copied out of the sender
memory. The use of nonblocking sends is advantageous in these cases only
il data copying can be concurrent with computation,

The message-passing model implies that communicaion is initdated by
the sender. The communication will generally have lower overhead if a re-
ceive is already posted when the sender initiates the communication {data
can be moved directly to the receive buffer. and there is no need o gqueue
a pending send request). However, a receive operation can complete only
aflter the matching send has occurred. The use of nonblocking receives
allows one e achieve lower communication overheads withow blocking
the receiver while it waits for the send. {(fnd of advice to wses.)

2.7.1 COMMUMNICATION OBJECTS

Monblocking communicarions use opague reguest objects w identfy commu-
nication operations and match the operation that initates the communication
with the operation that terminates it. These are svstem objects that are accessed
via a handle. A request object identifies various properties of @ communication
operation, such as the send made, the communication buffer that is associated
with it, its context, the tag and destinaton arguments 1 be used for a send, or
the tag and source arguments 1o be used for a receive. In addidgon, this object
stores informaton about the staws of the pending communication operation.

3.7.2 COMMUMNICATION INITIATION

We use the same naming conventions as for blecking communication: a prefix
of B, 5, or B iz used for buffered, synchronouws or ready mode. In addition a
prefix of | (for immediate) indicates that the call is nonblocking,

MPLISENDIbuf, count, datatvpe, dest, tag, comm, reguest)

iy buf imitaal address of send buller (chaice)

™ count number of elemenits in send batler I:i!l.ll'i-:-:!l':l
1 datatype ditarype of sach send boller clement (handle]
1M dest rank of destination (integer)

1 tag messge g (lnlegerh

N GO communicater (handle)

LT raquast cormmunieation regquest {handle)

int MPI_Isepd(voids buf, iot count, MPI. Datatype datatype, int dest,

int tag, MFI_Comnm comm, MPI Reguest *reguest)

MPI_ISEKD{BUF, COUNT, DATATYPE, DEST, ThG, COM¥, REQUEST, IERAOR)
dtypex BUF (=)
INTEGER COUNT, DATATYFE, DEST, TAG, COMM. REQUEST, IERROR

Start @ standard mode, nonblocking send.

MFPILIBSEND(buf, count, datatype, dest, tag, comm, request)

[
I
[
[
I
I
10 |

busf
count
datatype
dest

tag
comim
request

initinl adddress af send budTer (choice]

number of clements in send buffer (integer)
catetvpe of each send buffer element (hamdle)
rank ol destination {integer)

MesENEE g -:i1'||:|_g¢;r']

communicatos e

COMIMIEication reuesl [hamdie)

int HFI.Ibeend{void+ buf, int count, MPI_Dacacype datatype, int dest,
int tag, HPIConnm comm, HMPI Reguest trnqr_est]

MPI_TBSEKD{BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
chypar BEUF{+)
INTEGER COUNT. DATATYPE. DEST, Tad, COMHM, REQUEST, IERROR

Start a buffered mode, nonblacking send.

PMPLISSEND{buf, count, datatype, dest, tag, comm, request)

I
™
[
™
[
I
ouT

buf
Cout
datatype
dest

tag
COTmim
request

ininial address of send bulles (choice)

nuanber of elemens in send huffer ﬁnu-g:_—r;n
dararvpe of cach send batber element (handle)
mank o destinacion -:inl::,gq-r]

PCESAEE g Cinleger

commmunicanr handle)

communication request [handle)

int MFI_Issand(voids buf, int count, ¥PI Datatype datatype, int dest,

int tag, HPI.Comm comm, HPI Regquest sreguest)

MPI_ISEENDBUF, COUMT, DATATYFE, DEST, TAG, COMM, REQUEST, IERRAE)
Ltypex BUF(=)
INTEGER COUNT, DATATYPE, DEST, TAG, COMH, REQUEST, IERROR

start a synchronous mode, nonblocking send.

MPLIRSEMDIbf, count, datatype, dest, tag, comim, reguest)

1 buf initial address of send boffer {choice)

™ count numbser of elements in send bulfer {integer)
1 datatype daranvpe of each send buffer element (handle}
™ dest rivnk of destination (mleger)

I tagg message g (integer)

I Comm commeunicator §lydle)

our requeast cormmumication request (handle)

int MPI Irsend(void+ bof, int count, HPI Datatyps datatype, 1nt dest,
int tag, WPl Coam comn, MPT Reqoost sraquest)

HPI_IRSEND{BUF, COUNT, DATATYPE, DEST, TAG, COHM, REQUEST, IERRDR}
<typar BUF{+)
INTEGER COUNT, DATATYPE, DEST, Tad, COMM, REQUEST, IEREDR

Start a ready mode nonblocking send.

MPIIRECY [buf, count, datatype, source, 18, Somm, regueast)

T buf initial address of receive buffer {chowe)

™ count mnber of elements in receive butfer {integer]
I da[at'r'pe |:|3.I,.|'|I::|"|'_I:,' af esich receive batfer element (handle)
™ ource rank of source (inLeger)

I lag rmcssAEe A (integer)

1™ Comm comnmuenicatar (handle)

OUT FEII]I_J&S[CERTTIENIC s Teuest Thanedle}

int HPI Irecv{vaid= buf, int count, WFI Dacatype datatype, int source,
int fag, MPI Conn comm, MPI_Reguest *:aquaal:]

WFI_IRECVIBUF, ¢OUNT, DATATYPE, S0URCE, TAG, COMM, REQUEST, IERAUR)
ctype> DUF(#)
INTEGER COURT, DATATYPE, SOURCE, TAG, OOMM, REQUEST, IERROR

Start a nonblocking receive.

Theese calls allocate a communicaton reguest abject and associate ivwith the
request handle (the argument request). The request can be used later 1o query
the stams of the communication o wait for s completion.

A nonblacking send call indicates that the svstem may start copying data out
of the send buffer. The sender should not access any part of the send buffer
after 3 nonblocking send operation is called, untl the send completes,

A nonblocking receive call indicates that the system may start writing data
into the receive buller. The recciver should not access any part of the receive
buffer after a nonblocking receive operation is called, untl the receive com-
pletes,

