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1. SCOPE OF THE ALGORITHM

In [7] we have defined the specification of a set of Basie Linear Subprograms for
selected matriz-vector operations usually referred to as “Lewvel 2 BLAS" or
“Extended BLAS." Thay provide a standard framework to develop modular,
portable, and efficient FORTEAN 77 code for many computational problems in
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Algganithi 656 An Extended Set of Basic Linear Algebra Subprograms = 19

linear algebra. Our hope is that specialized implementations of Level 2 BLAS
will be developed for many machines, especially for vector processors and other
high-performance computers, Thus, programs that call Level 2 BLAS can be
efficient across a wide range of machines,

Tao support and encourage the usa of Level 2 BLAS, this algorithm contains
two components of software;

(1} A model implementation of the subprograms in FORTBEAN 77, This
enables Level 2 BLAS to be used on any machine, regardless of whether o
specialized implementation existe. It is described in Section 2.

{2) Test programs, designed fo ensure that implementations conform to the
specification and have been correctly installed. The programa are deseribed
i Section 4.

Section 3 contains some advice on developing specialized implementations of
the suhprogrames. Installation notes for the software are given in the Appendix.

2. THE MODEL IMPLEMENTATION

2.1 Programming Consideralions

There are many mathematically equivalent ways to implement Lavel 2 BLAS,
even in standard FORTRAN 77, sz diseussed in Section 3. The choice of methaod
for the model implementation has been guided by the following constderations:

(1} The clements of the array A are accessed sequentially, column by column.
On vector-processing machines, this allows the columne of the array to be
recognized as contiguous vectors (by the FORTRAN compiler). On virtual-
memory machines, ik keeps page swaps to & minimuam.

{2) Special code is included for the commonly cecurring cases when the increment
parameters (FNVCX or INCY or both), which are uzed in the inner loops, are
equal to 1. This code can use a simpler, and hence more efficient, FORTRAN
indexing scheme and also allows contiguous vectors to he recognized hy the
FORTREAN compiler; for example,

D a0, =1,
Y (I} = ¥{I} + TEMFP*A{l, J}
0 CONTINUE

instead of the following code:

I¥=KY
DO 50, T =1, M
YIIV) = YiIY) + TEMP*A(L.J)
Y =1Y+ INCY
a0 CONTINUE

(4} Provision is made to skip the innermost loop if relevant elements of the
vectors X or ¥ are zero. This can vield a considerable gain in effciency il
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the vectors are sparse:

IF {X{/A ) NEZERD) THEN
TEMP = ALPHA*X(JX)
DOy G0, =1, 0
Yill = Y{I} + TEMP*A(L, J)
A0 COMNTINULE
END IF

2.2 Efficiency

The model implementation is likely to achieve considerable efficiency on scalar-
processing machines with a good optimizing compiler, and even moderate eff-
ciency on vector-processing machines with a good vectorizing compiler.

For illustration, Table I gives speeds obtained for some representative opera-
tiens on & CHAY-15, using automatic vectorization (no compiler directives to
ignore data dependencies were needed). The speeds are given in megaflops and
were meazured with m = n = 256, INCX = INCY = 1, UPLO = *L7°, DIAG =
N, and no zero elements in the data, Speeds with 7PLED = *L° were approxi-
mately the same a3 those with U'PLO = *L7, speeds of the 8V routines were
approximately the same as those of the corresponding MV routines, and speeds
of the routines using packed storage were approximately the same as those of the
corresponding routines using two-dimensional array storage. Without automatic
vectorization (e, running in scalar mode), the speeds were between 5 and
T Mflops for REAL data, and between 10 and 14 Mflops for COMPLEY data.

Tahle I does not include measurements on the routines for banded matrices.
In the model implementation of these routines, the vector lengths are at most
equal to the bandwidih, and hence, for narrow bandwidths the routines run at
roughly scalar speeds. However, see Section 3.3 concerning an aliernative imple-
mentation of some of these routines.

2.3 Language Standards

The model implementation of Level 2 BLAS is written entirely in portable
standard FORTRAN 77 with two exceptions:

(1} For the routines that require a DOUBLE-PRECISION COMPLEX data
type (names beginning with Z), we have used the following extensions to
standard FORETRAN:

—LCOMPLEX*16 type specification statements:
—DCONIG and DEMPLX intringie functions whose argument and result
are both of type COMPLEX*16:

-a DBLE intrinsic function with a COMPLEX*16 argument and DOUBLE
PRECISION result, delivering the real part of the argument; and
COMPLEX*16 constants formed from a pair of double-precision constants
in parentheses,

(2} For the srguments of type CHARACTER that specify options, we wish to
allow either upper- or lowercase characters to be supplicd. Lowercase char-
aclers are not part of the standard FORTRAN character set, but their use is
g0 widespread that it would be unfriendly not to allow them. This can he an
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Tahle 1. Speed of Level 2 BLAS on CRAY-15 in Milops

Fial Camplex
Routine TRANS Speed Fouting TRANS Spesd
SGEMY o E] CEMY L G
o i1 ™ 11
ZEYMY &1 CHEMVY 13
STRMY il i3 CTRMY T 5
i) =0 2TE 11
SGER 2 CGERL B3
S55YR A CHER o
16

HEYED 47 CHER2

abstacle to portability on some systems (as discussed in Section 7 of [7]),
but we have avoided most of the prohlems by use of the auxiliary LOGICAL
function LSAME described below.

2.4 Auxiliary Subprograms

Two auxiliary subprograms are called by Lavel 2 BLAS: an error-handling routine
XERBLA, called by all routines, and the character-companson routinge LSAMIE,
called by all except the _GEE_ routines. Both these subprogramsz mav he
gelectively modifed by installers of the package as described in the Appendix.
Mo changes need be made to the rest of the model code.

3. MOTES ON IMPLEMENTATICN

Here we offer some advice to anvone planning to develop a specialized, maching-
specific implementation of Level 2 BLAS, The following broad possibilities should
he conzidered:

(1} rewriting the algorithms in FORTREAN =0 that the structure of the inner
lonps iz better adapted to the architecture of the machine:

(2} vsing machine-specific extensions lo FORTRAN, such as arcay svntax,
compiler directives, or calls to library routines; and

(3} coding the routines in aszembly language.

Approaches (2} and (3} should be considered as extensions of (1), not as alter-
natives. Implementors should not consider translating the madel implementation
into extended FORTRAN or azsembly language withoul first considering whether
the structure of the model implementation is well adapted to their machine.
Each matriz-vector operation performed by Lewvel 2 BLAS invalves doubly
nested loops. By interchanging the inner and outer loop indexes, we ohiain twa
variant wayvs of organizing the computation; [n one variant the matrix is accessed
by columns; in the ether by rows, For the MV and SV routines, the inner loop iz
equivalent, in one variant, to an inner-product vector aperation: and in the olher
variant, to a vector operation of the lorm ¥ «— ax + ¥, which we shall refer to as
an AXPY. {(For the rank-1 and rank-2 update routines, the inner loop is alwavs
equivalent to an AXPY operation.) The choice of method will be governed
principally by the relative efficiency of performing inner products or AXPY
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operalions, and by the cost of accessing a two-dimensional array by rows instead
of by columns. We discuss the options in more detail for individual routines
below. To be specific, we discuss the REAL SINGLE-PRECISION routines,

3.1 Routings Using Full Matrix Storage

We first consider those roulines that require the matrix to be stored convention-
ally in & two-dimensional array: Columns of the matrix are stored in columns of
the array and conatitute contiguous veetors: and rows of the matrix are stored in
rows of the array and constitute vectors with conatant stride whose elements are
not contiguous. Accessing veclors with noncontigucus elements may require
expinsive gather or scatter operations {e.g., as on the CDC Cyber 205), or may
cost no more than scesssing contiguous vectors except when memory-bank
conflicts oceur (a8 on the CRAY-19).

3.1.1 SGEMV. The operations performed by this routine have been discussed
by Dongarra, Gustavson, and Karp [5], and Daly and Du Croz [2]. The operation
¥ +— adx + gy (TRANS = "N’} can he performed either by AXPY aperations
with vector length m, accessing A by columns, or by inner products with vector
length n, accessing A by rows. The operation ¥ — ad Tx + fv (TRANS = ‘1" ar
‘C') can be performed either by inner products with vector length m, accessing A
by celumns, or by AXPY eperations with vector length n, accesaing A by rows.
Here m and » are the numbers of rows and columns of A4, respectively.

In both cases the AXPY form has the properly theat a sequence of ANPY
operations are used to update a single left-hand-side vector. On a machine with
vector registers, this left-hand-side vector (or segments of it) should ideally be
held in a vector register throughout the iterations of the outer loop in order to
reduce the number of memory references (zee [5]). If the routines are being
implemented in FORTRAN and the compiler cannot recopnize and take advan-
tage of this property, then the technique to unrolling the cuter loops may be
applied [1, 3]

Note that the relative advantage of the AXPY or inner-product forms depends
on the values of m and n, and an optimal implementation may need to switch
between the two forms accordingly.

On parallel machines the cleanest way to achieve concurrency is to compte
segments of the result vector in separate processors; this is discussed further by
Dongarra and Sorensen [4).

3.1.2 S5YMV. As in SGEMV esch operation can be performed cither hy
AXPY operations or by inner products. However, in each cage the matrix must
be accessed partly by eolumms and partly by rows (because only half the matrix
is stored). The model implementation uses a mixed form in which each iteration
of the outer loop containe one AXPY operation and one inner-product eperation,
both involving the same column of the matriz. On many machines this mixed
form can halve the number of memory references to elements of A: however, if,
say, inner products are markedly slower than AXPY operations, then thew will
govern the speed of the mixed form, and a pure AXPFY form may be preferabie,
The remarks made ahout the AXPY forms of SGEMV on vector-register ma-
chines apply here alzo, although the details are more complicated hecause the
lengths of the left-hand-side vectors are not constant, but increase or deerease
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by 1 on each iteration of the outer loop. Unrolling the outer loops to a depth of
2 gan he handled neatly as deseribed by Dongarra, Kaufman, and Hammarling
[6]. In & pure AXPY form or pure inner-product form, it may be preferable to
make two separate passes through the outer loop, one in which the matrix ie
accessed by rows and one in which it 15 aceessed by columns,

3.1.3 STRMV agnd STREV, Again, az in SGEMY, esch operstion can be
performed either by AXPY operations or by inner productz, with the mateix
being accessed by rows or columns depending on the value of TRANS. Those
forma of the code that are not used in the mode] implementation can easily be
derived from those that are. For example, to derive an AXPY form of the code
for x «— L7x, simply take the code for x «— Ux, and replace A(f, J) by A, I).
The remarks in Section 3.1.1 about implementing the AXTY [orms on a machine
with vector registers apply here also, although as in S3YMVY the vector lengths
are not constant throughout the outer leop,

The iterations of the cuter loop must be performed in & particular order
forweard from 1 to n for the operations x < U, x — L'z, 2 — L7%x, and
xi— (U717 ; and backward from s to 1 for the others. In STEMV this censtraint
iz needed simply to allow the result vector to overwrite the input vector. In
STESY the recursive nature of the computation i= mere fundamental: Each
element of the result vector depends on previously computed elements.

3.1.4 Rank-1 and Ronk-2 Undate Rowtines, Each column of the matnx can be
updated by an AXPY operation or in the case of the R2 routines by a double
AXPY operation. Moreover, on a parallel machine each column of the matrix
can be updated concurrently. Interchanging the loop indexes merely results in
AXNPY operationz on rows of the malrix,

3.2 Boutines Ueing Packed Storage

With the zpecified storage scheme for packed malrices, celumns of the matrix
are stored as contiguous vectors within the packed array. Rows of the matrix do
not constitute vectors with constant stride, Hence, those forms in which the
matrix 15 acceszed by columns are likely to be the only forms worth considering,

3.3 Routines for Banded Matrices

The same choice between inoer-product and AXPY forms is svailable as for
eperations on full matrices. With the specified storage scheme for banded
matrices, columns of a mateix are stored in columns of the arcay and copstitule
contignous veetors; and rows of the matrix are stored in reverse disgonals of the
array and constitute vectors with constant stride, Whether the matrix is acceszed
by rows or by eolumns, the vector length is at moat & + ke + 1 for SGBMV, and
at most & + 1 for the other banded routines; hence, with typical bandwidths,
speeds on vector processors may be slow.

For SGBEMY and SSBEMY, however, a third alternative can be used in which
the matriz is accessed by disgonals, and henee, the array 12 aceessed by rows. For
SGBMV the essential features of the code (when INCX = INCY = 1) are shown
in Figure 1. In this form the inner loop is equivalent to & vector operation of the
form Vo= V 4+ o*V*V (¥ a vector, « a scalar). The vector lengths are close Lo w,
and for large n good speeds can be obtained that are more or less independent of
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[F[ LEAME(] TRANS, 'N' ¥ ITHEM

c Fasm y = alpha®A*z + .
C
Dooal, B = 1, EL+ EU+ 1
L=KU+ 1 -1
DO oS0, 1= MAXE I, 1+ L), MINC M, M+ L )
Y ¥ - L y= W 3 - L3+ ALFHA*X{ J }%a( I, T }
50 CONTINUE
fld] CONT [NUE
ELSE
C
188 Form y = alpha®A *z + y.
C
Do 100, 1= 1, KL+ EU+ 1
Le KU+ 1 -1I
DO G0, T = MAX{ 1, 1+ L}, MIN{ N, M= L )
W 1 )= Y( T ) ow ALPHAK( T - L J*A( I, § 3
an CONT INUL
100 CONT INUE
ENIY [F

Fig. 1, Easentiol features of the code (FNCX = (INCY = 1] for SGRMY,

the bandwidth, for example, 30 Mflops for REAL data and 40 Mflops for
COMPLEX data on a CRAY-15. The same organization can be used for STEMY
provided that a temporary work vector can be created to hold the result, but
cannot be used for STBSV because of the recursive nature of the computations.

3.4 Other Bemarks

The model implementation includes separate segments of code for cazes when
INCX andfor INCY = 1: On many machines this is unnecessary.

Specialized implementations should, where possible, uze straightforward com-
parisen of characters, rather than the routine LSAME uscd by the model
implementation.

4, THE TEST PROGRAMS

A separate tesl program exists for each of the four data types (REAL, COMPLEX,
DOUBLE PRECISION, and COMPLEX*16). All test. programa conform to the
same pattern with only the minimum necessary changes, so we shall talk
generically about “the test program” in the singular.
ACM Tranenctione on Mazhematicnl Sodtwere, Val. 14, Mo 1, March 1964,
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The program has been designed not merely to check whether the model
implementation has been correctly inatalled, but also to serve as a validation
tool, and even ae o modest debugging aid, for any specialized implementation.

The program has the following features:

—The parameters of the test problems and the names of the subprogram to be
tested are specified by means of a data fle, which can easily be modified for
debugzing.

—The data for the test problem are gencrated internally, and the results are
checked internally,

—The program checks that no arguments are changed hy the routines except the
designated output veetor or matrix,

—All error exits (caused by illegal parameter values) are teated.

—The program generates a conclse summary repert on the tests and optionally
can generate a “history”™ or “snapzhot” file a3 an additional debugging aid.

4.1 Parametars of the Test Problems

Each test problem (e, each call of 2 subprogram to be tested) depends on n
choice of values for the following parameters (where relevant to the particular
aubprograms):

—the dimensions m and n;

—the bandwidth arguments &, ki, and ku;
—the options UPLO, TRANS, and DA,
—the increments INCX and INCY; and

—the sealars & and 2,

All relevant combinations of the options UUPLO, TRANS, and DTAG are Lested,
The values of the other arguments are defined by a data file. Specifically, the
program reads in a set 5, of values of n, a set 5 of values of &, a sel 5, of values
for INCX and INCY, a set 5, of values for «, and a set 5, of values for 2.

For subprograms that require a second dimension m, two values of m are
generaled for each value of n, namely, m = max(n — [n/2] — 1. 0) and m =
min{n + [n/2] + 1, M.}, where mg., s the maximum value permitted by
the array dimensions in the program. If two bandwidth arguments & and b
are required, they are generated from & by & = maxik = 1, 0) and ku and k.

The tezt problems are then generated in a nested [oop structure:

Torn = S,
for & E &,
for all relevant values of DPLOL TRANS, and DIAG
for INCX € 8.
for INCY € 8.

for o = 5,
for 8 E 5,

{0 course, arguments not relevant to the routine are omitted frem the loop
structure.) If m = 0 or n = 0 (& null problem), only one test with thess values of
st and 2 is generated.

ALK Transections on Mathemetics] Softwam, ¥al, 14, Mo 1, March 1985,
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Obwviously, the sets 5., 5., ete., should be as small as possible; olherwise, a
very large number of problems will be generated, and the test program will take
a forbiddingly long time to run. On the other hand, for 8 comprehensive test it
1% ezsential to exercize all segments of the code and all special or extreme cases
schasn=0n=LE=0bEk=n—-LINCX =1L INCY =1, a=0a=1,
g =10, and = 1. Note that we cannot be sure what cases will be regarded as
special or extreme in any specialized implementation.

A data file that specifies sets of parameters suitable for many machines s
supplied with the test program, but installers and implementors must be alert to
the pozssible need to extend or modify them {zee the Appendiz),

4.2 Data for the Test Problems

Data for the elements of the matrix A and the veetors x and v are generated
uzing a simple portable congruential number generator. Values for the elements
of A are uniformly distributed over (=05, 0L3), and for the elements of x and ¥
over (0, 1. Care is taken to ensure that the data have full working aceuracy.
Spme of the vectors have selected clements set to 0 so that spectal code for this
case (zee Section 2) can be tezted, When DFAG =", 1.0 is added to the disgonal
elements of triangular matrices Lo engure they are reasonably well conditioned.

[Mata for each test problem are first stored in a cenventional two-dimensional
array for the matriz A and in contiguous one-dimensional arrays for the vectors
x and y. The matrix iz stored as a full square er reclangular matrix, with all zero
elementz and unit diagonal elements stored explicitly. Thiz form is used o
compute the correct result, using the same simple code in each case.

The data are then copied into the arrayvs that will be paszed Lo the subprogram
being tested, taking into aceount the storage scheme required for the matrix, and
of the values of INCX and INCY. The argument LA 1z chosen 1o be 1 more
than its minimum permitted value; that is, LA = m -+ 1 for the GE routines;
n + 1 for the 3Y, HE, and TR routines; & + ku + 2 for the GBE routines; and
E+ 2 for the SB, HE, and TE routines. (If this value exceeds fpa., LOA is set
equal £0 noee.)

Elements in thess arrays that are not to be referenced by the subprogram (e.g,,
the subdiagonal elements of A when JPLO = [, or intervening elements of X
when INCX = 1) are set to a “rogue” value (—10"") to increasze the likelihood
that a reference to them will be detecied. If a fatal error iz reported and an
element of the computed result is of order 10", then the routine has almost
certainly referenced the wrong element of an array,

4.3 Checking the Results

After each call of a subprogram being tested, s eperation iz checked in twa
ways: Pirst, cach of itz arguments, including all elements of the array arpuments,
iz checked to see if 1t has been changed by the subprogram. [T any argumant,
other than the specified slements of the result vector or metnix, hes been changed,
a fatal error is reported. (This check includes the supposedly unreferenced
elements of the arrays, which were initislized with a rogue value.)

Second, the result vector or matrix computed by the subproscam is compared
with the result computed by simple FORTEAN code, We do not expect exact
agreement, because the two resuliz are not necessarily computed by Lthe same
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sequences of floating-point operations, We do, however, expect the differences to
be insignificant to working precision in the following precise sense: In the MV
routines, each element of the result vector is defined by an expression of the
[orm

¥i = a.x + £y,

where an denotes the ith row of A. (For the triangular matrix routines _TRMVY,
_TBMY, and _TPMV, we have « = 1 and & = 0.) This expression may be
regarded ae o simple inner product w — o’v by writing @b = (eal, W)
pT = {x7, [{). The absolute error in the computed inner product y; is bounded by

13 = x| = nelu]T|v],

where ¢ is the relative machine precigion, and Ju|" denotes the vector (|t |,
[, .oy |t )7 (see [B, p. 36]). In our tests we have also allowed for errors
introduced in the multiplication by «. On the other hand, the above bound s
usually a substantial overestimate. We use the following semiempirical approach:
For each element v of Lhe result, the program computes the Lest ratio

_|ﬁl_fl|
elul o]’

with u and ¢ defined as above. This is compared with a constant threshold value,
which ig defined in the data file. Test ratios greater than the threshold are flagged
as "suspect.” On the basis of experience, a threshold value of 16 is recommended
ithe largest valuee cheerved on a variety of machines has been 11.5). The pracise
value is not eritical, Errors in the routines are most likely to be crrors in array
indexing, which will almest certainly lead to a totally wrong result. A more subtle
potential error is the use of a single-precision variable in a double-precision
computation, This ia likely to lead to a lozs of half the machine precision. The
test program regards & test ratio greater than «' as a fatal error.

The B and B2 routines are checked in a gimilar way., Each element of the
result iz regarded as an inner product of length 2 or 3:

iy — (g, nx.}"-(;_)

ar

&

1
Ly +— [ﬂ'.‘,u Xy, "-""."‘IJ:I:I.(I}IJ) 1
i

&

The 2V routines are checked as follows: If v = T 'x iz the exact result and ¥ iz
the computed result, then the test program computes £ = 7% and compares it
wilth x, a8 above, Thus, the test ratio is

|Gtz
elte Tl

where £ denotes the ith row of T. Theoretically, the test ratio should involve the
condition number of T with respect to inversion, but the test program generates
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well-conditioned triangular matrices, and in practice the test ratios ehserved for
these routines are no larger than for the others.

APPEMNDEE: Installation Motes

A1, Installing the Model Implementation

The subprograms fall into four sets according o the data type of the matrices
and vectors; REAL, COMPLEX, DOUBLE PRECISION, and COMPLEX*15
(subprogram names beginning with 8, C, 1), and Z, respectively). Choose which
sel or sets are to be installed.

Examine the auxiliary subprograms XERBLA and LSAME {which are inde-
pendent of the dats type), and consider whether they need to he modified.

The subprogram XERBLA is called when one of the Level 2 BLAS detects an
illegal value of one of its arguments. The version supplied with the modsl
implementation writes a message to the standard output channel, for exarnple,

** On entry to STR3V parameter number & had an illegal value.

and then executes a STOP statement. Installers may wish to redirect the error
message to a dilferent cutput channel, or Lo replace the STOP statement by a
call to system-apecific exception-handling or trace-hack mechanizma.

The logical function LEAME is uzed to perform all character COMPArSons in
Level 2 BLAS in n case-insensitive manner, For example, the expression

LEAME{LIPLO, 'L
iz equivalent to
(UPLO EQ. LR (RO B, ).

The supplied version works corcectly on sll svstems that use the ASCI code
for internal representation of characters. For systems that use the ERODIC code,
one constant must be changed. For CDC systems with 6-12-bit representation,
alternative code ia provided in comments. Anv of the versions work correéctly on
all systems if only uppercase characters are passed as arguments,

Compile the chosen sets of subprograms, together with LSAME and X ERBLA,
and create an object library.

A2, Testing tha Model Implementation

Select the test program or programs corresponding to the data tvpes handled b
the subprograms that have been installed.

An annotated example of a data file for the program can be obtained by editing
the comments at the start of the main program. Thie defines the names and unit
numbers of the output files, various parameters of the tests, and the names of
those subprograms that are to he tested. The data file for the REAL routines is
lustrated in Figure 2. The first 18 records are read using list-directed input; the
last 16 are read using the format (A&, L2).

Change the first record of the data file, if necessary, to ensure that the file
name is legal on your svstem. Mo other chonges to the data fGle should he

ACM Traneactions on Muthematical Software, Vol. 14, Ma. 1, Merch 1053



Algarithm B56: An Extended Set of Basic Linear Algebra Subprogramds 2 s

Reeerd no. Beeasd eomienli

1 'SBLATZ ., S NAME OF SLRBARY OUTPUT FILE
2 & UNIT HNIMOLE OF SIMAARY FILE

El "SHLATI ENART MAME OF SNAPSHOT OUTPUT FILE
4 -1 INIT KIMBER OF SNAPSHOT FILE (RWOT USED IF .LT. O}
5 F LOGTCAL, T TO REWTHRD SMAPSHOT FILE AFTER EACH RECORD.
& B LOGICAL, T TO STOF ON FAILURES.

T T LOGTCAL, T TO TEET EREOR EXITS.

£ 6.0 THRESHOLD YALUE OF TEST RATIO

2 & MIMBER OF VALUES OF N

14 (T T T A VALUES OF N

11 q NIMIEE OF VALUES OF K

12 ooE2 o VALUES OF K

13 4 NIMIER OF VALUES OF INCH AND [HCY
14 Iz -1 -2 VALUES QF IMNCX AND INCY

15 3 NIMEEER OF WaALUES OF ALFHA
L& .0 1.8 0.7 VALUES OF ALFHA

L7 k1 WIMEER OF YALULS OF BETA

L& a.0 1.0 0.2 VALUES OF BETA

1% SOEMY T FUT F FOR MO THEST, 5AME ODLLAMNE

0 SOl T PUT T FOR NO TEST. SaME OOLIDNE .

21 ESVMY T PUT F FOR MO TEST, SAME COLIDENS.

12 SSRY T PUT T FOR MO TEST. SaAME COLIDMNE.

21 ESPY T PUT F FOR MO TEST. SAME COLUMNE.

24 STEMY T PUT I FOR MO TEST. SaMi COLIDNE .

25 ETEY T PUT F FOR MO TEST. SAME COLIMNE,

26 ST T PUT F FOR MO TEST. SaMiE COLIMNE .

a7 ETRSY T PUT F FOR MO TEST. SAME COLIMNE .

28 STRSY T PUT F FOR MO TEST. SAME COLIDNS.

1% ETPSY T PUT F FOR MO TEST. SaME COLIDNE.

in SCER T FUT F FOR MO TEST, 5AME QODLIDENS .

il ZEYR T MUT F FOR WO TEST. SaME OOLIMMNE .

iz SEPE T PUT P OPOR MO TEST. SAME COLIBMNE.

3a 2EYR2 PUT F FOR WO TEST. SAME QOLIMMNS

14 SSPR2 FUT T FOiR N0 TEST., SAME COLIMNS,

Fig. 2. Data file for REAL routings.
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Tuble [I.  Test Pragram Timing (in goinutea)

5 L= I Fe
CRAY-18 L2 2 (KR =
DEC VAX-11,/760 a0 i 40 &0
MWEC Aa0a2 poe a.0 100 17.40 0
Compag Deakpro 2850 2.0 4.0 24.0 S0

" S1-32 caprocesace 10 MHz Gresn Hills FORTHAN; comqpiler options {11 212 -
XTL; RaAM disk for 1700,
¥ Lobey FITLW.2.10; S0257, 6 MHz; S0E56, 8 MH:

neceszary before an initial run of the test program, but zome changes may be
needed Lo engure that the tests are sufficiently thoroush (see beloa).

The data file iz read from unit NIM, which iz zet 10 5 in a PARAMETER
statement in the main program: Change this if necessary.

Compile the test program, link in the required subprograms, and run the
PIOEFAm.

Mote that the test prosrams include an alternative wversion of the auxiliary
subprogram XERBLA that is needed to test the error exits from Level 2 BLAS.
On some systems spectal action must be taken fo enzure this version iz linked
into the test program. I the model implementation of XERBLA 15 used, the test
program will stop after writing an error meszage from XEEBLA,

Table IT gives the approximale times taken to run the test programs, using the
supplied data fle and the model implementation of the subprograms, on various
machinegs,

If the testz uaing the supplied data file are completed successfully, consider
whether the tesis have been sufficiently thorough. For example, on a machine
with vector registers, at least one value of & greater than the length of a vector
register should be vuzed; otherwise, important parts of the compiled code may not
be exercised by the tests,

The teata may fail, with either “suspect results™ or “fatal errors,” Suspect
resulis, with a test ratio slightly greater than the threshold, are probably cansed
by anomalies in floating-point arithmetic on the maching; if thiz explanation iz
considered to be sufficient, increase the valee of the threshold specified in the
data file. Fatal errors most probably indicate a compilation error or corruption
of the source text. An error detected by the svstem, for example, an arcay
subseriph oul of bounds or use of an unassigned variable, iz slmost certainly
due to the same causes. If the avstem does not provide adequate post-
morbem information about the error, the snapshot file can give a little halp
{zee Section AS).

A3, Testing a Specialized Implementation

Froceed initizlly as described in Section AZ. If the implementation dees nol use
an error-handling subprogram XERBLA, compatible with the mode] implemen-
tation, then the dats file must be modified to supprezss the festing of error exils,

Consider very carefully what changes need (o be made to the data file, to
ensure the implementation has been thoroughly tezted. For example, if the
technique of loop unrolling iz applied, make sure sufficient values of N are used
ACM Transactione on Meyibemotical Softwnre, Val. 14, Mo, 1, Masch 18353
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Table 11, Symbalis Constants in the Test Frogram

Mams Bleaning Value
MITIMAR Maximum oumber of values of N L]
NER- Maximum number of values of K T
MAX

MINKAX Maximum numbsr of vahies of INCX, INCY T
MALMAY  Maximum number of values ol ALFHA T
NBREMAX Mazienam namber of valees of HRETA T
MM AK Moximum value of A Gh
IMCRLAN Maximom volue of ABS(INCE ), ABS{INCT) Z

to test all the cleanup code; if ALPHA EQ. —1.0 is treated as a special case, add
—1.0 to the values of ALFPHA.

Ad. Changing the Parameters of the Tests

The values supplied in the data file must satisly certain restrictions, defined by
the symbolic constants in the test program shown in Table LI IT necessary,
modify the PARAMETER statements that define these symbolic constants,

AS. The History ar Snapshat File

The main output file from the test program contains a concise report on the
suegess or failure of the tests of each routine and the reazons for failure if it
occurs. Optionally, the program writes Lo & separate file a one-line record giving
details of the arguments in each call of a Level 2 BLAS subprogram; for example,

&5 STRSV'LR, 'T", °L7, 8, A, 4, &, =1}

{The number 25 indicates that this is the 25th call of STRSV.) The record is
written immediately before the routine is called.

As a cumulative “history” file, this enables the user to monitor which Lests are
passed successfuly before a failure occurs. Moreover, i an exception occurs in
the Level 2 BLAS routine (e.g., an array bound error or division by zero), the
last record written to the file should give details of the call that caused the
exception. On some systerns, however, the output buffers are not emplied when
a program is terminated abnormally. Therefore, the program has an opticn Lo
rewind the file after each record is written in order to force emptying of the
buffer: In this mode the file presents & one-line “snapshot” of the current or most
recent call to a Level 2 BLAS routine.
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