function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)
% -- Iterative template routine --
% Details of this algorithm are described in "Templates for the
% Solution of Linear Systems: Building Blocks for Iterative
% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
%
% [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)
%
% cg.m solves the symmetric positive definite linear system Ax=b
% using the Conjugate Gradient method with preconditioning.
% input A REAL symmetric positive definite matrix
% x REAL initial guess vector
% b REAL right hand side vector
% M REAL preconditioner matrix
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed
% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it
flag = 0; iter = 0; % initialization
bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end
r = b - A*x;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end
for iter = 1:max_it % begin iteration
z = M \ r;
rho = (r'*z);
if ( iter > 1 ), % direction vector
beta = rho / rho_1;
p = z + beta*p;
else
p = z;
end
q = A*p;
alpha = rho / (p'*q );
x = x + alpha * p; % update approximation vector
r = r - alpha*q; % compute residual
error = norm( r ) / bnrm2; % check convergence
if ( error <= tol ), break, end
rho_1 = rho;
end
if ( error > tol ) flag = 1; end % no convergence
% END cg.m
[Previous Page]
[First Page]
[Next Page]