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Chapter 1

Introduction

The Vector Boolean Function Library (VBF) is a collection of C++ classes designed

for analyzing Vector Boolean Functions (functions that map a Boolean vector to an-

other Boolean vector) from a cryptographic perspective. This implementation uses

the NTL library from Victor Shoup, modifying some of the general purpose modules

of this library (to make it better suited to cryptography), and adding new modules

that complement the existing ones. The class representing a Vector Boolean Function

can be initialized by several data structures such as Truth Table, Trace representa-

tion, Algebraic Normal Form (ANF) among others. The most relevant cryptographic

criteria for both block and stream ciphers can be evaluated with VBF. It allows to

obtain some interesting cryptologic characterizing features such as linear structures,

frequency distribution of the absolute values of the Walsh Spectrum or Autocorre-

lation Spectrum, among others. In addition, operations such as equality checking,

composition, inversion, sum, direct sum, concatenation, bricklayering (parallel ap-

plication of Vector Boolean Functions as employed in Rijndael cipher), and adding

coordinate functions of two Vector Boolean Functions can be executed.

1.1 Functions available in VBF

The library covers a wide range of topics for analyzing cryptographic properties of

Vector Boolean Functions. Methods are available for the following areas:

• Vector Boolean Function representations and characterizations

• Cryptographic criteria calculation

• Constructions and operations over Vector Boolean functions

The use of these methods is described in this manual. Each chapter provides

detailed definitions of the methods, followed by example programs.

1



2 CHAPTER 1. INTRODUCTION

1.2 Conventions used in this manual

This manual contains many examples which can be typed at the keyboard. A com-

mand entered at the terminal is shown like this,

$ command

The first character on the line is the terminal prompt, and should not be typed.

The dollar sign $ is used as the standard prompt in this manual, although some

systems may use a different character. The examples assume the use of the GNU

operating system. There may be minor differences in the output on other systems.

The commands for setting environment variables use the Bourne shell syntax of the

standard GNU shell (bash).

1.3 Software implementation

The package included consists of:

1. Derived classes inherited from NTL base classes which add new functions on

top of them:

pol.h, vbf GF2EX.h, vbf GF2X.h, vbf ZZ.h, vbf mat GF2.h,

vbf mat RR.h, vbf mat ZZ.h, vbf tools.h, vbf vec GF2.h,

vbf vec GF2E.h, vbf vec RR.h, vbf vec ZZ.h, vec pol.h

(1.1)

2. Main class (VBF.h) with the functions,

3. A makefile to ease the compilation of example (Makefile),

4. A set of files associated with the decimal representation of KASUMI [1] S-boxes

(S7.dec and S9.dec).

The Output files can be found within ”KASUMI Analysis” in the ”Examples”

menu at the Web site http://vbflibrary.tk.

1.4 System requirements

The VBF library can be easily installed in a matter of minutes on just about any

platform, including virtually any 32- or 64-bit machine running any flavor of Unix,

as well as PCs running Windows, and Macintoshes. VBF achieves this portability by

avoiding esoteric C++ features, and by avoiding assembly code; it should therefore

remain usable for years to come with little or no maintenance, even as processors and

operating systems continue to change and evolve.

http://vbflibrary.tk
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1.5 Installation

We are going to illustrate the installation of the package in an Unix or Unix-like

platforms (including Linux distributions).

1. Download the last version of the library from https://github.com/jacubero/

VBF/tree/master/src and place it in the working directory. You should see

the example program, input files and the *.h files.

2. Obtain NTL library source code . To obtain the source code and docu-

mentation for NTL, download ntl-xxx.tar.gz from http://www.shoup.net/

ntl/download.html, placing it in a different directory.

3. Run the configuration script . Working in the directory where you placed

the NTL library, do the following (here, ”xxx” denotes the desired version

number of NTL; any version of NTL can be employed):

$ cd ntl-xxx/src

$ ./configure

The execution of configure generates the file ”makefile” and the file ”../in-

clude/NTL/config.h”, based upon the values assigned to the variables on the

command line. In the example above no arguments were employed. The most

important variables are: ”CC” for choosing the C compiler, ”CXX” for choos-

ing the C++ compiler, ”PREFIX” for choosing the directory in which to install

NTL library components.

4. Build NTL :

$ make

$ make check

$ make install

The make execution in the directory src compiles all the source files and creates

a library ”ntl.a” in the same directory. Some testing programs are run by

means of the command make check . Lastly, make install performs among

other actions the copy of the library file ”ntl.a” into ”/usr/local/lib/libntl.a”

by default. It is not necessary to execute ”make check” in each NTL building as

it takes a long time. In order to execute ”make install”, it is necessary to have

privileged user permissions as some directories creation, file deletion, changes

of file attributes, and copies of files are done.

Do not forget to use an account with appropriate permissions: ”root” for instance.

https://github.com/jacubero/VBF/tree/master/src
https://github.com/jacubero/VBF/tree/master/src
http://www.shoup.net/ntl/download.html
http://www.shoup.net/ntl/download.html


4 CHAPTER 1. INTRODUCTION

1.6 Preliminaries

The mathematical theory of Vector Boolean Functions starts with the formal def-

inition of vector spaces whose elements (vectors) have binary elements. Let <

GF(2),+, · > be the finite field of order 2, where GF(2) = Z2 = {0, 1}, ’+’ the

’integer addition modulo 2’ and ’·’ the ’integer multiplication modulo 2’. Vn is the

vector space of n-tuples of elements from GF(2). The direct sum of x ∈ Vn1 and

y ∈ Vn2 is defined as x⊕ y = (x1, . . . , xn1 , y1, . . . , yn2) ∈ Vn1+n2 . The inner prod-

uct of x,y ∈ Vn is denoted by x ·y, and the inner product of real vectors x,y ∈ Rn

is denoted by 〈x,y〉.
One can now define binary functions between this type of vector spaces, whose

linearity analysis (for robustness-against-attacks purposes) will become very impor-

tant. f : Vn → GF(2) is called a Boolean function and Fn is the set of all

Boolean functions on Vn. Ln is the set of all linear Boolean functions on Vn:

Ln = {lu ∀u ∈ Vn | lu(x) = u · x} and An is the set of all affine Boolean functions

on Vn.

It is possible to characterize Boolean functions via alternative and very useful

associated mappings. In the following, some of these mappings are presented. The

real-valued mapping χu(x) = (−1)
∑i=n

i=1 uixi = (−1)u·x for x,u ∈ Vn is called a

character. The character form of f ∈ Fn is defined as χf (x) = (−1)f(x). The Truth

Table of χf is called as the (1,−1)-sequence vector or sequence vector of f and is

denoted by ξf ∈ R2n .

Let f ∈ Fn be a Boolean function; the Walsh Transform of f at u ∈ Vn is the

n-dimensional Discrete Fourier Transform and can be calculated as follows:

χ̂f (u) = 〈ξf , ξlu〉 =
∑
x∈Vn

(−1)f(x)+ux (1.2)

The autocorrelation of f ∈ Fn with respect to the shift u ∈ Vn is a measure of

the statistical dependency among the involved variables (indicating robustness against

randomness-based attacks). It is the cross-correlation of f with itself, denoted by

rf (u) : Vn → Z and defined by ∗:

rf (u) =
∑
x∈Vn

χf (x)χf (x + u) =
∑
x∈Vn

(−1)f(x)+f(u+x) (1.3)

The directional derivative of f ∈ Fn in the direction of u ∈ Vn is defined by:

∆uf(x) = f(x + u) + f(x), x ∈ Vn . (1.4)

We shall call the linear kernel of f the set of those vectors u such that ∆uf is

a constant function. The linear kernel of any Boolean function is a subspace of Vn.

Any element u of the linear kernel of f is said to be a linear structure of f .

∗Most authors omit the factor 1
2n
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Given f ∈ Fn, a nonzero function g ∈ Fn is called an annihilator of f if fg = 0.

We now extend the scope of the study by considering functions between any

pair of binary-valued vector spaces. F : Vn → Vm, F (x) = (f1(x), . . . , fm(x)) is

called a Vector Boolean function and Fn,m is the set of all Vector Boolean Functions

F : Vn → Vm. Each fi : Vn → GF(2) ∀ i ∈ {1, . . . ,m} is a coordinate function

of F . The indicator function of F ∈ Fn,m, denoted by θF : Vn × Vm → {0, 1}, is

defined in [8] as:

θF (x,y) =

{
1 if y = F (x)

0 if y 6= F (x)
(1.5)

Again, several mappings associated with a Vector Boolean Functions can be de-

fined, in similar terms to the binary functions case. Hence, the character form of

(u,v) ∈ Vn × Vm can be defined as follows: χ(u,v)(x,y) = (−1)u·x+v·y. Simi-

larly, let F ∈ Fn,m be a Vector Boolean function; its Walsh Transform is the two-

dimensional Walsh Transform defined by:

θ̂F (u,v) =
∑
x∈Vn

∑
y∈Vm

θF (x,y)χ(u,v)(x,y) =
∑
x∈Vn

(−1)ux+vF (x) (1.6)

Also, the autocorrelation of F ∈ Fn,m with respect to the shift (u,v) ∈ Vn×Vm

is the cross-correlation of F with itself, denoted by rF (u,v) : Vn×Vm → Z, so that

[31]:

rF (u,v) =
∑
x∈Vn

χvF (x + u)χvF (x) =
∑
x∈Vn

(−1)vF (x+u)+vF (x) (1.7)

Let F ∈ Fn,m and u ∈ Vn, then the difference Vector Boolean function of F in

the direction of u ∈ Vn, denoted by ∆uF ∈ Fn,m is defined as follows: ∆uF (x) =

F (x + u) + F (x), x ∈ Vn. If the following equality is satisfied: ∆uF (x) = c, c ∈
Vn ∀x ∈ Vn then u ∈ Vn is called a linear structure of F .

Finally, we define the simplifying notation for the maximum of the absolute values

of a set of real numbers {auv}u,v, characterized by vectors u and v, as: max (auv) =

max(u,v) {|auv|}. Using the same simplifying notation, we can define the
∗

max (·)
operator on a set of real numbers {auv}u,v, as:

∗
max (auv) = max(u,v)6=(0,0){|auv|}.

This notation will be used in some criteria definitions.

1.7 Design Philosophy

The core of VBF library is the VBF class which represents Vector Boolean Functions

whose data members and member functions make use of the NTL modules listed in

Table 1.1. However, some new cryptography-related member functions were added

to the previous modules. Besides, new modules which are not present in NTL, are

defined and they are listed in Table 1.2.

Note that the modulus P in GF2E may be any polynomial with degree greater

than 0, not necessarily irreducible. Objects of the class GF2E are represented as a
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Table 1.1: NTL modules used in VBF

CLASS NAME DESCRIPTION

GF2 Galois Field of order 2 denoted by GF(2)

vec GF2 Vectors over GF(2)

mat GF2 Matrices over GF(2)

RR Arbitrary-precision floating point numbers

vec RR Vectors over reals

mat RR Matrices over reals

ZZ Signed, arbitrary length integers

vec ZZ Vectors over integers

mat ZZ Matrices over integers

GF2X Implements polynomial arithmetic modulo 2

GF2E Polynomials in F2[X] modulo a polynomial P

GF2EX Polynomials over GF2E

vec GF2E Vectors over GF2E

GF2X of degree less than the degree of P . GF2EX can be used, for example, for

arithmetic in GF(2n)[X].

Table 1.2: New modules created for VBF

CLASS NAME DESCRIPTION

pol Polynomial in ANF of a Boolean Function

vec pol Polynomials in ANF of a Vector Boolean Function

The main file in the library, called VBF.h has the definitions of the objects de-

scribed in the next chapters.



Chapter 2

Using the library

This chapter describes how to compile programs that use VBF and how to evaluate

new algorithms.

2.1 An Example Program

The following program demonstrates the use of the library to analyze Vector Boolean

Functions represented in decimal representation of its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::vec_long vec_F;

NTL::vec_ZZ c;

NTL::mat_GF2 A, T;

NTL::mat_ZZ W, LP, DP;

NTL::mat_ZZ Ac;

long a;

int n;

char file[33];

// Load VBF definitions

7
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sprintf(file,"%s.dec",argv[1]);

ifstream input(file);

if(!input) {

cerr << "Error opening " << file << endl;

return 0;

}

input >> vec_F;

n = atoi(argv[2]);

F.putDecTT(vec_F,n);

input.close();

sprintf(file,"%s.anf",argv[1]);

ofstream output(file);

if(!output) {

cerr << "Error opening " << file << endl;

return 0;

}

A = ANF(F);

cout << "Argument Dimension = " << F.n() << endl;

cout << "Argument space has " << F.spacen() << " elements."<< endl;

cout << "Image Dimension = " << F.m() << endl;

cout << "Image space has " << F.spacem() << " elements." << endl << endl;

cout << "Writing Algebraic Normal Form to file: " << file << endl;

cout << "[Columns = Image components]" << endl;

output << A << endl;

output.close();

sprintf(file,"%s.tt",argv[1]);

ofstream output1(file);

if(!output1) {

cerr << "Error opening " << file << endl;

return 0;

}

T = TT(F);

cout << endl << "Writing Truth Table to file: " << file << endl;

cout << "[Columns = Image components]" << endl;

output1 << T << endl;

output1.close();
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sprintf(file,"%s.wal",argv[1]);

ofstream output2(file);

if(!output2) {

cerr << "Error opening " << file << endl;

return 0;

}

W = Walsh(F);

cout << endl << "Writing Walsh Spectrum to file: " << file <<endl;

output2 << W << endl;

output2.close();

sprintf(file,"%s.lp",argv[1]);

ofstream output3(file);

if(!output3) {

cerr << "Error opening " << file << endl;

return 0;

}

LP = LAT(F);

cout << endl << "Writing Linear Profile to file: " << file << endl;

cout << "[To normalize divide by " << LP[0][0] << "]" << endl;

output3 << LP << endl;

output3.close();

sprintf(file,"%s.dp",argv[1]);

ofstream output4(file);

if(!output4) {

cerr << "Error opening " << file << endl;

return 0;

}

DP = DAT(F);

cout << endl << "Writing Differential Profile to file: " << file << endl;

cout << "[To normalize divide by " << DP[0][0] << "]" << endl;

output4 << DP << endl;

output4.close();

sprintf(file,"%s.pol",argv[1]);

ofstream output5(file);
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if(!output5) {

cerr << "Error opening " << file << endl;

return 0;

}

cout << endl << "Writing the polynomials in ANF to file: " << file << endl;

Pol(output5,F);

output5.close();

sprintf(file,"%s.ls",argv[1]);

ofstream output6(file);

if(!output6) {

cerr << "Error opening " << file << endl;

return 0;

}

cout << endl << "Writing Linear structures to file: " << file << endl;

LS(output6,F);

output6.close();

sprintf(file,"%s.ac",argv[1]);

ofstream output7(file);

if(!output7) {

cerr << "Error opening " << file << endl;

return 0;

}

Ac = AC(F);

cout << endl << "Writing Autocorrelation Spectrum to file: " << file << endl;

output7 << Ac << endl;

output7.close();

sprintf(file,"%s.cy",argv[1]);

ofstream output8(file);

if(!output8) {

cerr << "Error opening " << file << endl;

return 0;

}

cout << endl << "Writing Cycle Structure to file: " << file << endl;

printCycle(output8,F);
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output8.close();

cout << endl << "Nonlinearity: " << nl(F) << endl;

nlr(a,F,2);

cout << "Second order Nonlinearity: " << a << endl;

cout << "Linearity distance: " << ld(F) << endl;

cout << "Algebraic degree: " << deg(F) << endl;

cout << "Algebraic immunity: " << AI(F) << endl;

cout << "Absolute indicator: " << maxAC(F) << endl;

cout << "Sum-of-squares indicator: " << sigma(F) << endl;

cout << "Linear potential: " << lp(F) << endl;

cout << "Differential potential: " << dp(F) << endl;

cout << "Maximum Nonlinearity (if n is even): " << nlmax(F) << endl;

cout << "Maximum Linearity distance: " << ldmax(F) << endl;

int type;

typenl(type, F);

if (type == BENT) {

cout << "It is a bent function" << endl;

} else if (type == ALMOST_BENT) {

cout << "It is an almost bent function" << endl;

} else if (type == LINEAR) {

cout << "It is a linear function" << endl;

}

cout << "The fixed points are: " << endl;

cout << fixedpoints(F) << endl;

cout << "The negated fixed points are: " << endl;

cout << negatedfixedpoints(F) << endl;

cout << "Correlation immunity: " << CI(F) << endl;

if (Bal(F))

{

cout << "It is a balanced function" << endl;

} else

{

cout << "It is a non-balanced function" << endl;

}

cout << "The function is PC of degree " << PC(F) << endl;

return 0;
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}

A set of files associated with the decimal representation of KASUMI S-boxes

(S7.dec and S9.dec) are in the ”Example” directory. If we use as input of the program

above ”S7.dec” (S7 Decimal representation), the output would be:

• S7.ac (Autocorrelation Spectrum)

• S7.anf (ANF Table)

• S7.cy (Cycle structure)

• S7.dp (Differential Profile)

• S7.lp (Linear Profile)

• S7.ls (Linear structures): It is an empty vector because there is no linear struc-

tures

• S7.pol (Polynomial representation)

• S7.tt (Truth Table)

• S7.wal (Walsh Spectrum)

The same applies to S9 S-box analysis.

2.2 Compiling

There is only one library header files called ”VBF.h”. You should include a statement

like this in the program that make use of VBF library,

#include "VBF.h"

If the directory is not installed on the standard search path of your compiler you

will also need to provide its location to the preprocessor as a command line flag.

The default location of the ”NTL” directory is ”/usr/local/include/NTL”. A typical

compilation command for a source file ”ex.cpp” with the GNU C++ compiler g++

included in a Makefile is,

GPP=g++

LIBS=-lntl

NTLINC= -I/usr/local/include -L/usr/local/lib

ex: ex.cpp VBF.h

$(GPP) $(NTLINC) -Wall ex.cpp -o ex.exe $(LIBS)
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This results in an executable file ”ex.exe” if the following command is executed:

$ make ex

In order to execute the example program included in the ”Example” program with

S7.dec and S9.dec, the following commands must be executed:

$ ./ex.exe S7 7

$ ./ex.exe S9 9

2.3 How to evaluate new algorithms

In order to evaluate an algorithm, we need to obtain a representation of this al-

gorithm that can be used to initialize a VBF class. These representations are the

Truth Table, Hexadecimal representation (only for Boolean functions), Decimal rep-

resentation of its Truth Table, its trace together with the irreducible polynomial,

Polynomials in ANF, ANF Table, Characteristic Function, Walsh Spectrum, permu-

tation representation, Expansion and Compression DES vector representation, DES

S-Box representation.

As an example we are going to describe the procedure followed to evaluate FI

function in KASUMI algorithm. We used an implementation of KASUMI in c as you

can see below:

/*-----------------------------------------------------------------------

* Kasumi.c

*-----------------------------------------------------------------------

*

* A sample implementation of KASUMI, the core algorithm for the

* 3GPP Confidentiality and Integrity algorithms.

*

* This has been coded for clarity, not necessarily for efficiency.

*

* This will compile and run correctly on both Intel (little endian)

* and Sparc (big endian) machines. (Compilers used supported 32-bit ints).

*

* Version 1.1 08 May 2000

*

*-----------------------------------------------------------------------*/

#include <iostream>

#include <fstream>

#include <string>
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#include <sstream>

#include "VBF.h"

#include "Kasumi.h"

/*--------- 16 bit rotate left ------------------------------------------*/

#define ROL16(a,b) (u16)((a<<b)|(a>>(16-b)))

/*------- unions: used to remove "endian" issues ------------------------*/

typedef union {

u32 b32;

u16 b16[2];

u8 b8[4];

} DWORD;

typedef union {

u16 b16;

u8 b8[2];

} WORD;

/*-------- globals: The subkey arrays -----------------------------------*/

static u16 KLi1[8], KLi2[8];

static u16 KOi1[8], KOi2[8], KOi3[8];

static u16 KIi1[8], KIi2[8], KIi3[8];

/*---------------------------------------------------------------------

* FI()

* The FI function (fig 3). It includes the S7 and S9 tables.

* Transforms a 16-bit value.

*---------------------------------------------------------------------*/

static u16 FI( u16 in, u16 subkey )

{

u16 nine, seven;

static u16 S7[] = {

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,

55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,



2.3. HOW TO EVALUATE NEW ALGORITHMS 15

53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,

20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,

117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,

112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,

102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,

64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};

static u16 S9[] = {

167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,

183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,

175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,

95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,

165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,

501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,

232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,

344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,

487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,

475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,

363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,

439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,

465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,

173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,

280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,

132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,

35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,

50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,

72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,

185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,

1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,

336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,

47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,

414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,

266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,

311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,

485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,

312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,

284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,

97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,

438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,

43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};

/* The sixteen bit input is split into two unequal halves, *
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* nine bits and seven bits - as is the subkey */

nine = (u16)(in>>7);

seven = (u16)(in&0x7F);

/* Now run the various operations */

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

seven ^= (subkey>>9);

nine ^= (subkey&0x1FF);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

in = (u16)((seven<<9) + nine);

return( in );

}

/*---------------------------------------------------------------------

* FO()

* The FO() function.

* Transforms a 32-bit value. Uses <index> to identify the

* appropriate subkeys to use.

*---------------------------------------------------------------------*/

static u32 FO( u32 in, int index )

{

u16 left, right;

u16 l,r;

/* Split the input into two 16-bit words */

left = (u16)(in>>16);

right = (u16) in;

l = left;

r = right;
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/* Now apply the same basic transformation three times */

left ^= KOi1[index];

left = FI( left, KIi1[index] );

left ^= right;

right ^= KOi2[index];

right = FI( right, KIi2[index] );

right ^= left;

left ^= KOi3[index];

left = FI( left, KIi3[index] );

left ^= right;

in = (((u32)right)<<16)+left;

return( in );

}

/*---------------------------------------------------------------------

* FL()

* The FL() function.

* Transforms a 32-bit value. Uses <index> to identify the

* appropriate subkeys to use.

*---------------------------------------------------------------------*/

static u32 FL( u32 in, int index )

{

u16 l, r, a, b;

/* split out the left and right halves */

l = (u16)(in>>16);

r = (u16)(in);

/* do the FL() operations */
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a = (u16) (l & KLi1[index]);

r ^= ROL16(a,1);

b = (u16)(r | KLi2[index]);

l ^= ROL16(b,1);

/* put the two halves back together */

in = (((u32)l)<<16) + r;

return( in );

}

/*---------------------------------------------------------------------

* Kasumi()

* the Main algorithm (fig 1). Apply the same pair of operations

* four times. Transforms the 64-bit input.

*---------------------------------------------------------------------*/

void Kasumi( u8 *data )

{

u32 left, right, temp;

DWORD *d;

int n;

/* Start by getting the data into two 32-bit words (endian correct) */

d = (DWORD*)data;

left = (((u32)d[0].b8[0])<<24)+(((u32)d[0].b8[1])<<16)

+(d[0].b8[2]<<8)+(d[0].b8[3]);

right = (((u32)d[1].b8[0])<<24)+(((u32)d[1].b8[1])<<16)

+(d[1].b8[2]<<8)+(d[1].b8[3]);

n = 0;

do{

temp = FL( left, n );

temp = FO( temp, n++ );

right ^= temp;

temp = FO( right, n );

temp = FL( temp, n++ );
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left ^= temp;

}while( n<=7 );

/* return the correct endian result */

d[0].b8[0] = (u8)(left>>24); d[1].b8[0] = (u8)(right>>24);

d[0].b8[1] = (u8)(left>>16); d[1].b8[1] = (u8)(right>>16);

d[0].b8[2] = (u8)(left>>8); d[1].b8[2] = (u8)(right>>8);

d[0].b8[3] = (u8)(left); d[1].b8[3] = (u8)(right);

}

/*---------------------------------------------------------------------

* KeySchedule()

* Build the key schedule. Most "key" operations use 16-bit

* subkeys so we build u16-sized arrays that are "endian" correct.

*---------------------------------------------------------------------*/

void KeySchedule( u8 *k )

{

static u16 C[] = {

0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };

u16 key[8], Kprime[8];

WORD *k16;

int n;

/* Start by ensuring the subkeys are endian correct on a 16-bit basis */

k16 = (WORD *)k;

for( n=0; n<8; ++n )

key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n].b8[1]));

/* Now build the K’[] keys */

for( n=0; n<8; ++n )

Kprime[n] = (u16)(key[n] ^ C[n]);

/* Finally construct the various sub keys */

for( n=0; n<8; ++n )

{

KLi1[n] = ROL16(key[n],1);

KLi2[n] = Kprime[(n+2)&0x7];

KOi1[n] = ROL16(key[(n+1)&0x7],5);
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KOi2[n] = ROL16(key[(n+5)&0x7],8);

KOi3[n] = ROL16(key[(n+6)&0x7],13);

KIi1[n] = Kprime[(n+4)&0x7];

KIi2[n] = Kprime[(n+3)&0x7];

KIi3[n] = Kprime[(n+7)&0x7];

}

}

In the main procedure, we defined an algorithm to obtain the Truth Table of FI

function for the key values that are between ”first” and ”last” parameters.

int main(int argc, char *argv[])

{

using namespace VBFNS;

u16 l,k;

long i,j,first,last;

std::stringstream number;

char file[33];

NTL::vec_GF2 vn,vs;

first = atoi(argv[1]);

last = atoi(argv[2]);

for (i = first; i <= last; i++)

{

sprintf(file,"%ld.tt",i);

ofstream output(file);

if(!output)

{

cerr << "Error opening " << file << endl;

return 0;

}

output << "[";

number << i;

number >> std::hex >> k;

for (j = 0; j < 65536; j++)

{

number << j;
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number >> std::hex >> l;

l = FI( l, k );

vn = to_vecGF2(l,16);

output << vn << endl;

}

output << "]" << endl;

output.close();

}

}





Chapter 3

Representations and

characterizations

This chapter presents a review of theory relevant to the study of the typical forms

of Vector Boolean function representations and chacterizations. We will consider

representations those that uniquely represents a Vector Boolean function. Character-

izations does not uniquely determine the Vector Boolean function in contrast to the

previous matrices but provide some useful information in the context of cryptography.

Representations included in this chapter are the Truth Table (TT), the polyno-

mials in Algebraic Normal Form (Pol) and ANF Table (ANF), the Image (Char),

Component functions Truth Table(LTT), Sequence vectors of Component functions

CTT, the Trace Representation (Trace) and Affine function Representation. A defi-

nition for all these representations are given and the relationships among them and

their various properties are also discussed.

Characterizations such as Linear Profile (LP), Differential Profile (DP), Autocor-

relation Spectrum (AC), Linear Structures (LS) are introduced. A definition for all

these represen- tations are given and the relationships among them and the above

representations and their various properties are also discussed.

The basic concepts of linear and differential cryptanalysis are introduced in terms

of the Linear Profile and Differential Profile, together with other properties related

with these attacks, such as: linear potential, differential potential, linear or differential

relations associated with a specific value.

Affine equivalence analysis of Boolean functions by means of VBF library is de-

scribed. It is showed how to obtain the Frequency distribution of the absolute values

of the Walsh Spectrum and of the Autocorrelation Spectrum.

It is possible to check randomness of a Vector Boolean function outputs with

VBF by means of its cycle structure, and the analysis of the presence of fixed points

or negated fixed points.

23
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Finally, some other representations useful in block ciphers are described such as

the Permutation Vector (Per), Expansion and Compression DES permutations and

DES-like S-box representations. The description of each representation and character-

ization is complemented with the description of the methods in VBF related to them.

Most of the member functions of V BF have an in-line definition, for instance: void

TT(NTL::mat GF2& X, VBF& F) is also defined as inline NTL::mat GF2 TT(VBF&

F).

The figure summarizes the relationships among the different representations.

The representations which are Boolean matrices are coloured in red, those which

are Integer matrices are coloured in blue, those that are vector of integers are coloured

in yellow and those which are polynomial are coloured in green.

3.1 Truth Table

3.1.1 Description

A Vector Boolean function F ∈ Fn,m can be uniquely represented by its Truth Table

which is a matrix with 2n rows and m columns whose elements are the values of F

taken on all possible vector of Vn ordered lexicographically.

Definition 3.1.1. Let F ∈ Fn,m, if we take into account the one-to-one mapping

of Vn onto the set of integers, we are able to define any vector Boolean function

by the corresponding set of values:

F (αi) ∈ Vm ∀ i ∈ {0, . . . , 2n − 1} (3.1)
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The matrix with 2n rows and m columns will be referred as the Truth Table

of F and will be generally written as TTF :

TTF =


f1(α0) . . . fm(α0)

f1(α1) . . . fm(α1)

. . . . . . . . . . . . . . . . . . . . .

f1(α2n−1) . . . fm(α2n−1)

 (3.2)

each αi = (x1, . . . , xn) ∈ Vn i ∈ {1, . . . , 2n − 1} is a vector whose decimal

equivalent is dec(αi) = i =
∑n

j=1 xj2
n−j , and all the vectors of Vn can be listed

so that α0 < α1 < · · · < α2n−1 .

As a total order is defined over the assignments (inputs) of the Vector Boolean

Function, the Truth Table can be uniquely represented by this matrix. Any function

F can be uniquely described by its Truth Table TTF ∈ M2n×m(GF(2)) (or by the

Truth Tables of its coordinate functions TTfi i ∈ {1, . . . ,m}) and it holds that:

γ : Fn,m → M2n×m(GF(2))

F → TTF
(3.3)

is an isomorphism between the vector spaces Fn,m and M2n×m(GF(2)), so that

#Fn,m=22
n·m.

The Truth Table for an n-variable Boolean function f should be in lexicographical

form, i.e., TTf = (f(0), f(1), f(2), . . . , f(2n − 1)). Since the Truth Table length

might be too large, we represent it in hexadecimal rather than in binary notation. The

hexadecimal Truth Table is obtained by replacing each four bits by their corresponding

hexadecimal form. For instance, to enter TTf = (0, 0, 1, 1, 1, 1, 1, 1) one should just

write TTf = 3f .

The distance between two Vector Boolean functions F,G ∈ Fn,m is defined as

the number of bits that are different in their respective Truth Tables:

d(F,G) =
∑
x∈Vn

d (F (x), G(x)) (3.4)

where d (F (x), G(x)) is the Hamming distance between the two vectors F (x), G(x) ∈
Vm.

The weight of a Vector Boolean function F ∈ Fn,m is equal to the distance

between F and the corresponding zero Vector Boolean function 0 ∈ Fn,m where

0(x) = 0 ∀x ∈ Vn.

In order to obtain certain characterizations (such as Autocorrelation Spectrum),

it is important to take into account two additional representations related to the

Truth Table: LTT and CTT.
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We will denote by LTT of F ∈ Fn,m the matrix whose columns are the Truth

Tables of the 2m component functions of F . We will denote by CTT of F the matrix

whose columns are the sequence vectors of the 2m component functions of F ∗.

3.1.2 Library

A VBF class can be initialized by a Boolean Matrix representing the Truth Table with

the following method:

void puttt(const NTL::mat_GF2& T)

To obtain the Truth Table of a Vector Boolean function the following method

must be used:

void TT(NTL::mat_GF2& X, VBF& F)

A VBF class can be initialized by a collection of strings separated by carriage

returns defined by s with the following method:

void putHexTT(istream& s)

Each row must be the hexadecimal representation of the Truth Table of the

coordinate functions of a Vector Boolean function. To obtain the Truth Table in

hexadecimal representation the following method must be used:

void getHexTT(ostream& s)

Analogously a VBF class can be initialized by a collecting of strings with binary

representation of the Truth Table of coordinate functions:

void putBinTT(istream& s)

To obtain its Truth Table in binary representation the following method must be

used:

void getBinTT(ostream& s)

A VBF class can be initialized by a Boolean vector representing the decimal

representation of the Truth Table of a Vector Boolean Function defined by a vector

of outputs in lexicographic order, called d, and knowing the number of component

Boolean functions m:

void putDecTT(const NTL::vec_long& d,const long& m)

∗Sometimes it is called the Polarity Truth Table.
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To obtain the Truth Table in decimal representation the following method must

be used:

NTL::vec_long getDecTT() const

To obtain the weight of a Vector Boolean function F the following method must

be used:

void weight(long& w, VBF& F)

A VBF class can be initialized by a Boolean Matrix representing the Truth Table

of their component functions with the following method:

void putltt(const NTL::mat_GF2& L)

To obtain the Truth Table of the component functions of a Vector Boolean

function the following method must be used:

void LTT(NTL::mat_GF2& X, VBF& F)

A VBF class can be initialized by a Boolean Matrix representing its Polarity Truth

Table with the following method:

void putctt(const NTL::mat_ZZ& C)

To obtain the Polarity Truth Table of a Vector Boolean function the following

method must be used:

void CTT(NTL::mat_ZZ& X, VBF& F)

Example 3.1.1. The Truth Table of the NibbleSub S-box is the following:

[[1 1 1 0]

[0 1 0 0]

[1 1 0 1]

[0 0 0 1]

[0 0 1 0]

[1 1 1 1]

[1 0 1 1]

[1 0 0 0]

[0 0 1 1]

[1 0 1 0]

[0 1 1 0]

[1 1 0 0]

[0 1 0 1]
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[1 0 0 1]

[0 0 0 0]

[0 1 1 1]

]

If we use a file with this matrix as the input of the following program, we can

obtain its hexadecimal, binary and decimal representation, as well as the Truth

Tables of the components functions and its Polarity Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input)

{

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The hexadecimal representation is: " << endl;

F.getHexTT(cout);

cout << endl << "The binary representation is: " << endl;

F.getBinTT(cout);

cout << endl << "The decimal representation is: " << endl

<< F.getDecTT() << endl;

cout << endl << "The Truth Table of the component functions is: "

<< endl << LTT(F) << endl;



3.1. TRUTH TABLE 29

cout << endl << "The Polarity Truth Table is: "

<< endl << CTT(F) << endl;

return 0;

}

The output of this program would be:

The hexadecimal representation is:

a754

e439

8ee1

368d

The binary representation is:

1010011101010100

1110010000111001

1000111011100001

0011011010001101

The decimal representation is:

[14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7]

The Truth Table of the component functions is:

[[0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1]

[0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1]

[0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1]

[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]

[0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1]

[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]

[0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

[0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0]

[0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0]

[0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0]

[0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0]

[0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0]

[0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1]

]
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The Polarity Truth Table is:

[[1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1]

[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]

[1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1]

[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]

[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]

[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

[1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1]

[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]

[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]

[1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1]

[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]

[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]

[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]

[1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1]

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]

]

3.2 Trace Representation

3.2.1 Description

We identify a Boolean function in n variables with a function from GF(2n) to GF(2)

and Vector Boolean function in n variables with a function from GF(2n) to GF(2n).

A trace is a function over a finite field GF(2n) defined as follows:

tr(x) =
2n−1∑
i=0

xi (3.5)

Since there is is an isomorphism between Vn and GF(2n), it is possible to identify

the trace function with a Boolean function in n variables. Analogously, a Vector

Boolean function can be identified with trace as follows:

Definition 3.2.1. When m = n, we endow Vn with the structure of the field

GF(2n). Any F ∈ Fn,n admits a unique univariate polynomial representation over

GF(2n), of degree at most 2n − 1:

F (x) =

2n−1∑
i=0

δix
i, δi ∈ GF(2n) (3.6)
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A general way to derive this polynomial representation is given by a Lagrange

interpolation from the knowledge of the irreducible polynomial of degree n over

GF(2) associated with the field GF (2n) and the Truth Table of F .

The interpolation attack [21] is efficient when the degree of the univariate poly-

nomial representation of the S-box over GF(2n) is low or when the distance of the

S-box to the set of low univariate degree functions is small. This attack exploits

the low degree of the algebraic relation between some input (respective output) and

intermediate data to infer some keybits relating the output (respective input) and

the intermediate data.

3.2.2 Library

A VBF class can be initialized giving its trace f and the irreducible polynomial g with

the following methods:

void putirrpol(GF2X& g)

void puttrace(string& f)

To obtain a Vector Boolean function trace representation the following method

must be used:

void Trace(GF2EX& f, VBF& F)

and to print the trace representation use the following method:

void print(NTL_SNS ostream& s, GF2EX& f, const long& m)

Example 3.2.1. The following program provides the Trace representation over

GF(2n)of a Vector Boolean function with Truth Table in a file with extension

”.tt”. GF(2n) is constructed with the irreducible polynomial whose correspond-

ing GF2X representation is in a file with extension ”.irr”. The class GF2X im-

plements polynomial arithmetic modulo 2 and a polynomial is represented as a

coefficient vector.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;
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GF2X g;

GF2EX f;

int d;

char file[33];

sprintf(file,"%s.irr",argv[1]);

ifstream input1(file);

if(!input1) {

cerr << "Error opening " << file << endl;

return 0;

}

input1 >> g;

F.putirrpol(g);

input1.close();

sprintf(file,"%s.tt",argv[1]);

ifstream input(file);

if(!input) {

cerr << "Error opening " << file << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The trace representation is " << endl;

f = Trace(F);

d = deg(g);

print(cout,f,d);

return 0;

}

In this cipher, GF(28) is constructed with the irreducible polynomial g(x) =

x8 +x4 +x3 +x+1. The inputs of this program would be the Truth Table of the

Rijndael S-box SRD (described in Figure 2.6), provided in a file with extension

“.tt”, and the corresponding GF2X representation of g : [110110001], provided

in a file with extension “.irr”. The output of the program would be a GF2EX

which represents polynomials over GF2E; hence, it can be used, for example, for

arithmetic in GF(2n):

05·x254+09·x253+f9·x251+25·x247+f4·x239+01·x223+b5·x191+8f ·x127+63 (3.7)
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where the coefficients are elements of GF(28).

3.3 Polynomials in ANF

3.3.1 Description

Definition 3.3.1. Any vector Boolean function F ∈ Fn,m can be uniquely rep-

resented by m multivariate polynomials over GF(2) (called coordinate functions)

where each variable has power at most one. Each of these polynomials can be

expressed as a sum of all distinct kth-order product terms (0 < k ≤ n) of the

variables in the form:

f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn + a12x1x2 + · · ·+ an−1,nxn−1xn + · · ·
+a12...nx1x2 . . . xn =

∑
I∈P(N) aI

(∏
i∈I xi

)
=
∑

I∈P(N) aIx
I, aI ∈ GF(2)

(3.8)

where P(N) denotes the power set of N = {1, . . . , n}. This representation of f

is called the algebraic normal form (ANF) of f . The algebraic normal form is

thus a set of multivariate polynomials and the constant functions (those obtained

by decomposition) are the coefficients of the 2n products of input variables (i.e.

monomials).

3.3.2 Library

A VBF class can be initialized giving its Polynomials in ANF with the following

method:

void putpol(vec_pol& p)

To obtain its representation as Polynomials in ANF, the following method must

be used:

void Pol(NTL_SNS ostream& s, VBF& F)

Example 3.3.1. The following program provides the Polynomials in ANF Vector

Boolean function from its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;
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VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

Pol(cout,F);

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

1+x4+x2+x2x3+x2x3x4+x1+x1x2+x1x2x3

1+x3x4+x2+x2x4+x1+x1x3+x1x3x4

1+x4+x3+x3x4+x2x4+x2x3+x1x4+x1x3+x1x2+x1x2x4+x1x2x3

x3+x2x4+x1+x1x4+x1x3x4

which corresponds to the coordinate functions of NibbleSub as follows:

f1(NibbleSub) = 1 + x4 + x2 + x2x3 + x2x3x4 + x1 + x1x2 + x1x2x3
f2(NibbleSub) = 1 + x3x4 + x2 + x2x4 + x1 + x1x3 + x1x3x4
f3(NibbleSub) = 1 + x4 + x3 + x3x4 + x2x4 + x2x3 + x1x4 + x1x3 + x1x2 + x1x2x4 + x1x2x3
f4(NibbleSub) = x3 + x2x4 + x1 + x1x4 + x1x3x4

(3.9)

3.4 ANF Table

3.4.1 Description

Definition 3.4.1. ANF table of F , denoted by ANFF ∈ M2n×m(GF(2)), repre-

sents the 2n coefficients of the polynomials of each of the m coordinate functions

in ANF .

The ANF table of F , denoted by ANFF ∈ M2n×m(GF(2)), is defined by:

ANFF
i = ANFfi i ∈ {1, . . . ,m} (3.10)
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where ANFF
i is the i-th column of ANFF .

The ANF Table can be derived from the Truth Table by a binary matrix transfor-

mation called the Algebraic Normal Form Transformation (implemented in the VBF

library with getanf method). The Truth Table can be obtained from the ANF Table

using a method we call rev.

3.4.2 Library

A VBF class can be initialized giving its ANF table with the following method:

void putanf(const NTL::mat_GF2& A)

To obtain its representation as ANF table, the following method must be used:

void ANF(NTL::mat_GF2& X, VBF& F)

Example 3.4.1. The following program provides the ANF Table of a Vector

Boolean function from its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The ANF Table is:" << endl;

cout << ANF(F) << endl;

return 0;

}
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If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The ANF Table is:

[[1 1 1 0]

[1 0 1 0]

[0 0 1 1]

[0 1 1 0]

[1 1 0 0]

[0 1 1 1]

[1 0 1 0]

[1 0 0 0]

[1 1 0 1]

[0 0 1 1]

[0 1 1 0]

[0 1 0 1]

[1 0 1 0]

[0 0 1 0]

[1 0 1 0]

[0 0 0 0]

]

3.5 Image

3.5.1 Description

Definition 3.5.1. The characteristic or indicator function of F ∈ Fn,m, denoted

by θF : Vn ×Vm → {0, 1}, is defined by:

θF (x,y) =

{
1 if y = F (x)

0 if y 6= F (x)
(3.11)

Definition 3.5.2. The Image of F can be represented by a matrix whose rows

are indexed by x ∈ Vn and whose columns are indexed by y ∈ Vm in lexicographic

order, denoted by Img(F) ∈ M2n×2m(GF(2)) and defined as follows:

Img(F) =


θF (α0,α0) . . . θF (α0,α2m−1)

θF (α1,α0) . . . θF (α1,α2m−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θF (α2n−1,α0) . . . θF (α2n−1,α2m−1)

 (3.12)

where θF (x,y) is the value of the indicator function at (x,y).
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Lemma 3.5.1. By equation 1.5, it is clear that all the rows of the matrix Img(F)

have one element equal to one and the rest is zero, that is ∀ i ∈ {1, . . . , 2n}:

Img(F)i =
[
ai1 . . . ai2m

]
where (∃!j ∈ {1, . . . , 2m} aij = 1) ∧ (aik = 0 ∀ k 6= j ∈ {1, . . . , 2m})

(3.13)

The Image of F can be derived from the Truth Table by a method implemented

in the VBF library called charfunct. The Truth Table can be obtained from the

Characteristic function using a method we call truthtable.

3.5.2 Library

A VBF class can be initialized giving its Image with the following method:

void putchar(const NTL::mat_ZZ& C)

To obtain its representation as Image, the following method must be used:

void Charact(NTL::mat_ZZ& C, VBF& F)

Example 3.5.1. The following program provides the Image of a Vector Boolean

function from its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();
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cout << "The Image is:" << endl;

cout << Charact(F) << endl;

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The Image is:

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

]

This matrix can be easily interpreted with the aid of the figure 3.1 in which

the rows and columns are indexed with the corresponding vector:

You can see for instance that the output of 0000 is 1110.

3.5.3 Description

Linear and affine functions are considered as cryptographically weak functions. It is

important to measure if a Vector Boolean function has some similarity with these

functions. The similarity is measured by means of correlation. The values of Walsh

Spectrum provide a measure of the correlation of the Vector Boolean function with

the different Vector Boolean Linear functions.

Theorem 3.5.2. Let Hn be the Walsh-Hadamard matrix of order 2n, then the

vectors associated with its columns constitute an orthogonal basis for R2n over R
so that:

xHn = y,∀x,y ∈ R2n (3.14)
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Figure 3.1: Image representations of NibbleSub.

Corollary. Let f ∈ Fn, its sequence ξf ∈ R2n can be defined as a linear combi-

nation of the sequences of all the linear functions over Vn, as they coincide with

the rows of Hn.

ξf = aα0ξlα0
+ · · ·+ aα2n−1

ξlα2n−1
(3.15)

where au = 1
2n 〈ξf , ξlu〉

Definition 3.5.3. Let a Boolean function f ∈ Fn, the Walsh Transform of f at

u ∈ Vn is the n-dimensional Discrete Fourier Transform and can be calculated

as follows:

Wf (u) = χ̂f (u) =W{ξf}(u) = 〈ξf , ξlu〉 =
∑
x∈Vn

χf (x)χu(x) (3.16)

or, as it is most often written as:

Wf (u) =
∑
x∈Vn

(−1)f(x)+u·x (3.17)

As a result, the Walsh Transform of f ∈ Fn at u is the coefficient of the

sequence of f (ξf ) with respect to the basis constituted by the sequences of linear

functions, scaled by a factor of 1
2n . If Wf is the Walsh transform of f , we say

that ξf and Wf form a Transform pair and write:

ξf
W←→ Wf (ξf corresponds to Wf ) (3.18)

Definition 3.5.4. The Walsh Spectrum of f can be represented by a matrix

whose rows are indexed by u ∈ Vn in lexicographic order, denoted by WS(f) ∈
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M2n×1(R) and defined as follows:

WS(f) =
[
χ̂f (α0) . . . χ̂f (u) . . . χ̂f (α2n−1)

]T
(3.19)

where χ̂f (u) is the value of the spectrum at u. A Boolean function is uniquely

determined by its Walsh Spectrum.

Definition 3.5.5. The Walsh Spectrum of F can be represented by a matrix

whose rows are indexed by u ∈ Vn and whose columns are indexed by v ∈ Vm in

lexicographic order, denoted by WS(F ) ∈ M2n×2m(R) and defined as follows:

WS(F ) =


θ̂F (α0,α0) . . . θ̂F (α0,α2m−1)

θ̂F (α1,α0) . . . θ̂F (α1,α2m−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ̂F (α2n−1,α0) . . . θ̂F (α2n−1,α2m−1)

 (3.20)

where θ̂F (u,v) is the value of the spectrum at (u,v).

We can deduce that the columns of this matrix are the spectra of the Boolean

functions lv ◦ F for all the linear functions lv ∈ Lm.

3.5.4 Library

A VBF class can be initialized giving its Walsh Spectrum with the following method:

void putwalsh(const NTL::mat_ZZ& W)

To obtain its representation as Walsh Spectrum the following method must be

used:

void Walsh(NTL::mat_ZZ& W, VBF& F)

Example 3.5.2. The following program provides the Walsh Spectrum of a Vector

Boolean function from its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;
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ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The Walsh Spectrum is:" << endl;

cout << Walsh(F) << endl;

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The Walsh Spectrum is:

[[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 -4 -4 0 0 -4 12 4 4 0 0 4 4 0 0]

[0 0 -4 -4 0 0 -4 -4 0 0 4 4 0 0 -12 4]

[0 0 0 0 0 0 0 0 4 -12 -4 -4 4 4 -4 -4]

[0 4 0 -4 -4 -8 -4 0 0 -4 0 4 4 -8 4 0]

[0 -4 -4 0 -4 0 8 4 -4 0 -8 4 0 -4 -4 0]

[0 4 -4 8 4 0 0 4 0 -4 4 8 -4 0 0 -4]

[0 -4 0 4 4 -8 4 0 -4 0 4 0 8 4 0 4]

[0 0 0 0 0 0 0 0 -4 4 4 -4 4 -4 -4 -12]

[0 0 -4 -4 0 0 -4 -4 -8 0 -4 4 0 8 4 -4]

[0 8 -4 4 -8 0 4 -4 4 4 0 0 4 4 0 0]

[0 8 0 -8 8 0 8 0 0 0 0 0 0 0 0 0]

[0 -4 8 -4 -4 0 4 0 4 0 4 8 0 4 0 -4]

[0 4 4 0 -4 8 0 4 -8 -4 4 0 4 0 0 4]

[0 4 4 0 -4 -8 0 4 -4 0 0 -4 -8 4 -4 0]

[0 -4 -8 -4 -4 0 4 0 0 -4 8 -4 -4 0 4 0]

]

Remark. We can see that the Walsh Spectrum of f1(NibbleSub) where

NibbleSub = (f1(NibbleSub), f2(NibbleSub), f3(NibbleSub), f4(NibbleSub))

(3.21)
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corresponds to the Spectrum of l(1,0,0,0) ◦ NibbleSub. As a consequence, the

Walsh Spectrum of f1(NibbleSub) coincides with the 9-th column of WS(NibbleSub),

that is, the column indexed by the vector (1, 0, 0, 0).

3.6 Linear Profile and Linear Cryptanalysis

3.6.1 Description

A complete enumeration of all linear approximations of the S-box is given in the Linear

Profile †, which is a matrix whose rows are indexed by u ∈ Vn and whose columns

are indexed by v ∈ Vm in lexicographic order, denoted by LP(F ) ∈ M2n×2m(R). It

holds that LP(F )(u,v) = |WS(F )(u,v)|2. The lower bound of the Linear Profile

values is 0 and the upper bound is 22n.

If we divide each element in the Linear Profile by the value on LP(F )(0,0),

these values represent the number of matches between the linear equation repre-

sented in hexadecimal as ”Input Sum” and the sum of the output bits represented

in hexadecimal as ”Output Sum”. Hence, subtracting to these values 1
2 give the

probability bias for the particular linear combination of input and output bits. The

hexadecimal value representing a sum, when viewed as a binary value indicates the

variables involved in the sum. For a linear combination of input variables represented

as u1 · x1 + · · · + un · xn where ui ∈ GF(2), the hexadecimal value represents the

binary value u1 . . . un, where u1 is the most significant bit. Similarly, for a linear

combination of output bits v1 ·y1 + · · ·+vm ·ym where vi ∈ GF(2), the hexadecimal

value represents the binary vector (v1, . . . , vm).

In Linear Profiles, we are looking for entries with large value. If all of the entries

are small, then the S-box does not have a very linear structure, and it may make

Linear Cryptanalysis on the cipher difficult. The Linear potential of F , defined as

lp(F ) = 1
22n
· ∗
max

(
WS(F )(u,v)2

)
is a measure of linearity in Linear Cryptanalysis,

and satisfies [8] 2−n ≤ lp(F ) ≤ 1 so that the lower bound holds if and only if F

has maximum nonlinearity (F is bent) and the upper bound is reached when F is

linear or affine. This criterion can take values from 1
2n to 1. The larger lp(F ) is, the

”closer” to a Linear Vector Boolean function is F .

3.6.2 Library

Note that the Linear Profile does not uniquely determine a Vector Boolean func-

tion. Thus, a VBF class cannot be initialized by its Linear Profile. To obtain its

representation as Linear Profile, the following method must be used:

void LAT(NTL::mat_ZZ& LP, VBF& F)

†In the literature, an equivalent matrix called Linear Approximation Table is used as well.
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In the VBF library, several methods have been defined in order to analyse the

feasibility of Linear Cryptanalysis: Linear potential and Linear relations associated

with a specific value of the Linear Profile. The method used to obtain the linear

potential is the following:

void lp(NTL::RR& x, VBF& F)

If we want to obtain the linear expressions associated with the value of the Linear

Profile ”w”, we will use this method:

void linear(NTL_SNS ostream& s, VBF& a, ZZ& w)

If we want to obtain the probability bias |pL − 1
2 | that a linear expression holds

with the value of the Linear Profile ”w”, we will use this method:

void ProbLin(NTL::RR& x, VBF& a, NTL::ZZ& w)

Example 3.6.1. The following program finds out the Linear Profile of a Vector

Boolean function together with the linear expressions that have the highest value,

except from the value in LP(F )(0,0), their probability, this highest value and the

linear potential.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

NTL::ZZ w;

NTL::RR bias;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();
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cout << "The Linear Profile is:" << endl;

cout << LAT(F) << endl;

w = maxLAT(F);

cout << endl << "The highest value of the Linear Profile is= "

<< w << endl << endl;

cout << "The linear expressions that have the highest value are:"

<< endl;

linear(cout,F,w);

ProbLin(bias,F,w);

cout << endl;

cout << "These expressions hold with probability bias= "

<< bias << endl;

cout << endl << "The linear potential is= " << lp(F) << endl;

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The Linear Profile is:

[[256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 16 16 0 0 16 144 16 16 0 0 16 16 0 0]

[0 0 16 16 0 0 16 16 0 0 16 16 0 0 144 16]

[0 0 0 0 0 0 0 0 16 144 16 16 16 16 16 16]

[0 16 0 16 16 64 16 0 0 16 0 16 16 64 16 0]

[0 16 16 0 16 0 64 16 16 0 64 16 0 16 16 0]

[0 16 16 64 16 0 0 16 0 16 16 64 16 0 0 16]

[0 16 0 16 16 64 16 0 16 0 16 0 64 16 0 16]

[0 0 0 0 0 0 0 0 16 16 16 16 16 16 16 144]

[0 0 16 16 0 0 16 16 64 0 16 16 0 64 16 16]

[0 64 16 16 64 0 16 16 16 16 0 0 16 16 0 0]

[0 64 0 64 64 0 64 0 0 0 0 0 0 0 0 0]

[0 16 64 16 16 0 16 0 16 0 16 64 0 16 0 16]

[0 16 16 0 16 64 0 16 64 16 16 0 16 0 0 16]

[0 16 16 0 16 64 0 16 16 0 0 16 64 16 16 0]

[0 16 64 16 16 0 16 0 0 16 64 16 16 0 16 0]
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]

The highest value of the Linear Profile is= 144

The linear expressions that have the highest value are:

x4=y2+y3+y4

x3=y1+y2+y3

x3+x4=y1+y4

x1=y1+y2+y3+y4

These expressions hold with probability bias= 0.0625

The linear potential is= 0.5625

The figure 3.2 represents the Linear Profile of NibbleSub and emphasizes in

red the elements which achieve the highest value.

Figure 3.2: Linear Profile of NibbleSub.

3.7 Differential Profile and Differential Cryptanalysis

3.7.1 Description

The first step of Differential Cryptanalysis is to compute the characteristics of inputs

and the outputs of the S-boxes, which we will then combine together to form a charac-

teristic for the complete cipher. Consider a n×m S-box with input x = (x1, . . . , xn)

and output y = (y1, . . . , ym). All difference pairs of an S-box, (∆x,∆y), can be

examined and the probability of ∆y given ∆x can be derived by considering input

pairs (x
′
,x
′′
) such that x

′
+ x

′′
= ∆x. Since the ordering of the pair is not relevant,

for a n ×m S-box we need only consider all 2n values for x
′

and then the value of
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∆x constrains the value of x
′′

to be x
′′

= x
′

+ ∆x. We can derive the resulting

values of ∆y for each input pair (x
′
,x
′′

= x
′
+ ∆x).

We can tabulate the complete differential data for an S-box in the Differential

Profile ‡, which the rows represent ∆x values and the columns represent ∆y values.

If we divide each element in the Differential Profile by the value on DP(F )(0,0),

these values represent the probability of the corresponding output difference ∆y value

given the input difference ∆x, that is (∆x⇒ ∆y), called characteristic. In general,

entries in the Differential Profile with fewer bits set in the ∆x and ∆y that have

higher probability are desirable.

Definition 3.7.1. Let F ∈ Fn,m, if we denote by DF (u,v) the set of vectors

where the difference Vector Boolean Function of F in the direction of u ∈ Vn

coincides with v ∈ Vm by:

DF (u,v) = {x ∈ Vn | ∆uF (x) = v} (3.22)

Definition 3.7.2. Let F ∈ Fn,m where n ≥ m. The matrix containing all possible

values of #DF (u,v) is referred to as its XOR or Differential Distribution Table.

Nyberg in [29] introduced the concept of differential uniformity as a measure of

the resistance to differential crytanalysis as follows:

Definition 3.7.3. A Vector Boolean function F ∈ Fn,m is called differentially

du(F )-uniform if for all u 6= 0 ∈ Vn and v ∈ Vm:

# {x ∈ Vn | F (x + u) + F (x) = v} ≤ du(F ) (3.23)

Let du(F ) (differential uniformity of F ) is the largest value in Differential

Distribution Table of F (not counting the first entry in the first row), namely,

du(F ) = max
(u,v)6=(0,0)

#DF (u,v) = max
(u,v) 6=(0,0)

# {x ∈ Vn | F (x) + F (x + u) = v}

(3.24)

Definition 3.7.4. Let define the function δF : Vn ×Vm → Q as follows:

δF (u,v) =
1

2n
#DF (u,v) (3.25)

Definition 3.7.5. The Differential Profile of F can be represented by a matrix

whose rows are indexed by u ∈ Vn and whose columns are indexed by v ∈ Vm in

lexicographic order, denoted by DP(F ) ∈ M2n×2m(R) and defined as follows:

DP(F ) = 22n+m


δF (α0,α0) . . . δF (α0,α2m−1)

δF (α1,α0) . . . δF (α1,α2m−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δF (α2n−1,α0) . . . δF (α2n−1,α2m−1)


‡In the literature, an equivalent matrix called Difference Distribution Table is used as well.
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Definition 3.7.6. The maximum value of δF (u,v) is called the differential po-

tential of F :

dp(F ) = max {δF (u,v) | ∀u ∈ Vn,v ∈ Vm, (u,v) 6= (0,0)}

Corollary. The differential uniformity of F ∈ Fn,m and its differential potential

are related as follows:

dp(F ) =
1

2n
du(F ) (3.26)

It is a measure of the robustness against differential cryptanalysis where 2−m ≤
dp(F ) ≤ 1 and the lower bound holds if and only if F is bent and the upper bound

is reached when F is linear or affine. The differential uniformity of F ∈ Fn,m and its

differential potential are related by dp(F ) = 2−ndu(F ).

3.7.2 Library

Note that the Differential Profile does not uniquely determine a Vector Boolean

function. Thus, a VBF class cannot be initialized by its Differential Profile. To

obtain its representation as Differential Profile, the following method must be used:

void DAT(NTL::mat_ZZ& DP, VBF& F)

In the VBF library, several methods have been defined in order to analyse the

feasibility of differential cryptanalysis: Differential potential and Differential relations

associated with a specific value of the Differential profile. The method used to obtain

the differential potential is the following:

void dp(NTL::RR& x, VBF& F)

If we want to obtain the characteristics associated with the value of the Differ-

ential Profile ”w”, we will use this method:

void differential(NTL_SNS ostream& s, VBF& a, ZZ& w)

If we want to obtain the probability that a characteristic (∆x⇒ ∆y) holds with

the value of the Differential Profile ”w”, we will use this method:

void ProbDif(NTL::RR& x, VBF& a, NTL::ZZ& w)

Example 3.7.1. The following program finds out the Differential Profile of a

Vector Boolean function together with the characteristics that have the highest

value, except from the value in DP(F )(0,0), their probability, this highest value

and the differential potential.
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#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

NTL::ZZ w;

NTL::RR p;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The Differential Profile is:" << endl;

cout << DAT(F) << endl;

w = maxDAT(F);

cout << endl << "The highest value of the Differential Profile is= "

<< w << endl;

cout << endl << "The characteristics that have the highest value are:"

<< endl;

differential(cout,F,w);

ProbDif(p,F,w);

cout << endl << "These expressions hold with probability= " << p << endl;

cout << endl << "The differential potential is= " << dp(F) << endl;

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output



3.8. AUTOCORRELATION SPECTRUM 49

of the program would be the following:

The Differential Profile is:

[[4096 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 512 0 0 0 512 0 512 1024 0 1024 512 0 0]

[0 0 0 512 0 1536 512 512 0 512 0 0 0 0 512 0]

[0 0 512 0 512 0 0 0 0 1024 512 0 512 0 0 1024]

[0 0 0 512 0 0 1536 0 0 512 0 1024 512 0 0 0]

[0 1024 0 0 0 512 512 0 0 0 1024 0 512 0 0 512]

[0 0 0 1024 0 1024 0 0 0 0 0 0 512 512 512 512]

[0 0 512 512 512 0 512 0 0 512 512 0 0 0 0 1024]

[0 0 0 0 0 0 512 512 0 0 0 1024 0 1024 512 512]

[0 512 0 0 512 0 0 1024 512 0 512 512 512 0 0 0]

[0 512 512 0 0 0 0 0 1536 0 0 512 0 0 1024 0]

[0 0 2048 0 0 512 0 512 0 0 0 0 0 512 0 512]

[0 512 0 0 512 512 512 0 0 0 0 512 0 1536 0 0]

[0 1024 0 0 0 0 0 1024 512 0 512 0 512 0 512 0]

[0 0 512 1024 512 0 0 0 1536 0 0 0 0 0 512 0]

[0 512 0 0 1536 0 0 0 0 1024 0 512 0 0 512 0]

]

The highest value of the Differential Profile is= 2048

The characteristics that have the highest value are:

[1 0 1 1]->[0 0 1 0]

These expressions hold with probability= 0.5

The differential potential is= 0.5

The figure 3.3 represents the Differential Profile of NibbleSub and emphasizes

in blue the elements which achieve the highest value.

3.8 Autocorrelation Spectrum

3.8.1 Description

The Autocorrelation provides a useful description of a Vector Boolean function in

relation to some cryptographic criteria. It is derived from the sequences of the

component functions of the Vector Boolean function and does not uniquely determine

the Vector Boolean function itself.
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Figure 3.3: Differential Profile of NibbleSub.

Definition 3.8.1. The directional derivative of f ∈ Fn in the direction of u ∈ Vn

is defined as:

∆uf(x) = f(x + u) + f(x), x ∈ Vn (3.27)

Similarly, the directional derivative of the sequence of a Boolean function ξf
in the direction of u ∈ Vn is defined as:

∆uχf (x) = χf (x + u) · χf (x), x ∈ Vn (3.28)

The autocorrelation of f ∈ Fn with respect to the shift u ∈ Vn, rf (u), is defined

by the Polarity Truth Table to be:

rf (u) =
∑
x∈Vn

χf (x)χf (x + u) (3.29)

From this definition of the autocorrelation function we note two important prop-

erties:

1. For every Boolean function rf (0) = 2n, since (χf (x))2 = 1 ∀x ∈ Vn.

2. The value of rf (u) when u 6= 0 must be proportional to the correlation between

f(x + u) and f(x), i.e.: rf (u) = 2n · C (f(x + u), f(x)).

The Aucorrelation Spectrum gives an indication of the imbalance of all first order

derivatives of the component functions of a Vector Boolean function. As differen-

tial cryptanalysis exploits imbalanced derivatives of Vector Boolean functions, the

Aucorrelation Spectrum is vital in the analysis.

Definition 3.8.2. Autocorrelation Spectrum, denoted by R(F ) ∈ M2n×2m(Z),

obtained by Equation 1.7. The columns of the matrix correspond to the Au-

tocorrelation Spectrum of their component functions. The lower bound of the

Autocorrelation Spectrum values is −2n and the upper bound is 2n.
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3.8.2 Linear structures

If the directional derivative of f ∈ Fn in the direction of u ∈ Vn: ∆uf(x) =

f(x + u) + f(x) is a constant function, then u is a linear structure of f [23], [9].

The zero vector 0 is a trivial linear structure since ∆0f(x) = 0 ∀x ∈ Vn. From the

point of view of autocorrelation, a vector in Vn is a linear structure if it satisfies the

following:

Definition 3.8.3. The vector u ∈ Vn is a linear structure of f if and only if

|rf (u)| = 2n.

The notion of linear structures can be extended for the case of Vector Boolean

functions. The definition of a Vector Boolean function that has a linear structure

was originally proposed by Chaum [9] and Evertse [17]. They defined that a Vector

Boolean function F has a linear structure by considering the existence of nontrivial

linear structure in any of the component functions of F .

Definition 3.8.4. F ∈ Fn,m is said to have a linear structure if there exists

a nonzero vector u ∈ Vn together with a nonzero vector v ∈ Vm such that

v · F (x) + v · F (x + u) takes the same value c ∈ GF(2) ∀x ∈ Vn.

Definition 3.8.5. F ∈ Fn,m is said to have a linear structure if there exists

a nonzero vector u ∈ Vn together with a nonzero vector v ∈ Vm such that

|rv·F (u)| = 2n.

Nonlinear cryptographic functions used in block ciphers should have no nonzero

linear structures [17]. The existence of nonzero linear structures, for the functions

implemented in stream ciphers, is a potential risk that should also be avoided, despite

the fact that such existence could not be used in attacks, so far.

3.8.3 Library

To obtain its representation as Autocorrelation Spectrum, the following method must

be used:

void AC(NTL::mat_ZZ& R, VBF& F)

The method used to obtain the linear structures is the following:

void LS(NTL_SNS ostream& s, VBF& F)

Example 3.8.1. The following program finds out the Autocorrelation Spectrum

of a Vector Boolean function together with its linear structures having as input

its Truth Table.
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#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The Autocorrelation Spectrum is:" << endl;

cout << AC(F) << endl;

cout << endl << "The linear structures are: " << endl;

LS(cout,F);

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The Autocorrelation Spectrum is:

[[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

[16 0 0 0 0 0 -8 -8 -8 -8 -8 8 0 0 8 8]

[16 -8 0 -8 -8 0 0 8 8 -8 0 0 -8 8 -8 8]

[16 0 0 0 0 0 0 -16 -8 8 0 0 0 0 -8 8]

[16 0 -8 0 0 -16 0 8 0 8 -8 -8 -8 0 8 8]

[16 0 0 -8 0 0 0 -8 0 -8 8 -8 0 -8 8 8]

[16 -8 0 0 -8 0 -8 8 0 -8 0 0 8 0 -8 8]

[16 0 -8 0 0 0 0 -8 0 8 0 0 0 -8 -8 8]

[16 -8 -8 0 -8 0 0 8 -8 8 0 0 0 0 8 -8]

[16 0 0 8 0 0 0 -8 0 -8 0 0 -8 0 8 -8]
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[16 8 0 0 8 0 8 8 -8 -8 0 -8 0 0 -8 -16]

[16 0 -8 -8 0 16 -8 -8 8 8 -8 -8 8 8 -8 -8]

[16 -8 8 -8 -8 0 -8 8 0 8 0 0 0 -8 8 -8]

[16 0 0 0 0 0 8 -8 0 -16 0 0 0 0 8 -8]

[16 8 0 8 8 0 0 8 0 -8 -8 0 0 -8 -16 -8]

[16 0 8 0 0 -16 0 -8 0 8 8 8 -8 0 -8 -8]

]

The linear structures are:

([0 0 1 1],[0 1 1 1])

([0 1 0 0],[0 1 0 1])

([1 0 1 0],[1 1 1 1])

([1 0 1 1],[0 1 0 1])

([1 1 0 1],[1 0 0 1])

([1 1 1 0],[1 1 1 0])

([1 1 1 1],[0 1 0 1])

We can notice that NibbleSub S-box has seven linear structures which are the

following:

The figure 3.4 represents the Autocorrelation Spectrum of NibbleSub and

emphasizes in red the values corresponding these linear structures.

Figure 3.4: Linear structures of NibbleSub.
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3.9 Affine Function and Affine Equivalence

3.9.1 Description

A Boolean linear function is defined as a Boolean function consisting only of the sum

of single input variables. Similarly, the set of Boolean affine functions is defined as

the set of linear functions and their complements. A mathematical description of the

linear and affine Boolean functions is given as follows.

Definition 3.9.1. A Boolean linear function is defined as the sum of a subset of

the input variables, denoted

lu(x) = u1x1 + u2x2 + · · ·+ unxn (3.30)

where u = (u1, . . . , un) ∈ Vn.

Definition 3.9.2. The set of Boolean affine functions are the linear functions

and their complements, denoted

lu,b(x) = lu(x) + b (3.31)

where b ∈ GF(2).

An affine Vector Boolean function is defined in terms of a linear Vector Boolean

function and a dyadic shift. A linear Vector Boolean function involves the multiplica-

tion of the input vector by a Boolean matrix. A dyadic shift (or translation) involves

the complement of a subset of input bits. As such, an affine Vector Boolean function

may be defined as the combination of a linear Vector Boolean function and dyadic

shift. A mathematical description of the linear and affine Vector Boolean functions

is given as follows.

Definition 3.9.3. A Vector Boolean function LA,b ∈ Fn,m defined as LA,b(x) =

x · A + b with x ∈ Vn,A ∈ Mn×m(GF(2)) and b ∈ Vm so that if b = 0 then F is

linear and if b 6= 0 then F is affine.

Affine Equivalence of Boolean Functions

Equivalence classes provide a powerful tool in both the construction and analysis of

Boolean functions for cryptography. In particular, rather than considering the entire

space of 22
n

functions a reduced view can be found in the consideration of only one

function from each equivalence class.

If g(x) = f(Ax+b)+cx+d where A ∈ Mn×n(GF(2)), b, c ∈ Vn and d ∈ GF(2)

and it is an affine transformation. The functions f and g satisfying the previous

relation are called equivalent under the action of AGL(n, 2).

Of particular interest in the study of equivalence classes is the effect of the affine

transformation on the algebraic degree, the Walsh Spectrum and Autocorrelation

Spectrum of a Boolean function.
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Frequency Distribution of the Absolute Values of the Walsh Spectrum

The effect of the application of an affine transformation to a Boolean function on the

Walsh Spectrum is to rearrange the values and hence, the Walsh value distributions

are invariant under all affine transformations [34]:

χ̂g(u) = (−1)c·A
−1b(−1)u·A

−1bχ̂f

((
A−1

)
u +

(
A−1

)
c
)

(3.32)

Thus nonlinearity is also invariant under affine transformation.

Frequency Distribution of the Absolute Values of the Autocorrelation Spec-

trum

The effect of the application of an affine transformation to a Boolean function on the

Autocorrelation Spectrum is to rearrange the values and hence, the Autocorrelation

value distributions are invariant under all affine transformations [34]:

rg(u) = (−1)u·crf (Au) (3.33)

Thus absolute indicator is also invariant under affine transformation.

3.9.2 Library

A VBF class can be initialized for a affine Vector Boolean function giving its corre-

sponding matrix and vector by the following method:

void putaffine(const NTL::mat_GF2& A,const NTL::vec_GF2& b)

The method used to obtain the Frequency distribution of the absolute values of

the Walsh Spectrum is the following:

void printFWH(NTL_SNS ostream& s, VBF& F)

The method used to obtain the Frequency distribution of the absolute values of

the Autocorrelation Spectrum is the following:

void printFAC(NTL_SNS ostream& s, VBF& F)

Example 3.9.1. The following program finds out the Walsh Spectrum, Fre-

quency distribution of the absolute values of the Walsh Spectrum, Autocorrela-

tion Spectrum, and Frequency distribution of the absolute values of the Auto-

correlation Spectrum of a Vector Boolean function having as input the matrix A

and the vector b associated with an affine function where:

A =

[
0 1

1 0

]
, b = (0, 1)
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#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 A;

NTL::vec_GF2 b;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> A;

input >> b;

F.putaffine(A,b);

input.close();

cout << "The Walsh Spectrum is:" << endl << Walsh(F) << endl << endl;

cout << "Frequency distribution of the absolute values of

the Walsh Spectrum:" << endl;

printFWH(cout,F);

cout << endl;

cout << "The Autocorrelation Spectrum is:" << endl << AC(F) << endl;

cout << "Frequency distribution of the absolute values of

the Autocorrelation Spectrum:" << endl;

printFAC(cout,F);

cout << endl;

return 0;

}

The output of the program would be the following:

The Walsh Spectrum is:
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[[4 0 0 0]

[0 0 4 0]

[0 -4 0 0]

[0 0 0 -4]

]

Frequency distribution of the absolute values of the Walsh Spectrum:

(0,3),(4,1)

(0,3),(4,1)

(0,3),(4,1)

The Autocorrelation Spectrum is:

[[4 4 4 4]

[4 4 -4 -4]

[4 -4 4 -4]

[4 -4 -4 4]

]

Frequency distribution of the absolute values of the Autocorrelation Spectrum:

(4,4)

(4,4)

(4,4)

3.10 Cycle Structure, Fixed Points and Negated Fixed

Points

3.10.1 Description

Definition 3.10.1. The cycle structure of an invertible vector Boolean function

F ∈ Fn,n (permutation) describes the number of cycles and their length.

A permutation can also be written in a way that groups together the images of

a given number under repeated applications of F . For example, the permutation:

F =

[
1 2 3 4 5 6 7 8 9

3 6 4 7 5 9 1 8 2

]
(3.34)

can be written

F = (1347)(269)(5)(8) (3.35)

The first group of numbers in parentheses indicates that 1 gets mapped to 3, 3

gets mapped to 4, 4 gets mapped to 7, and 7 gets mapped back to 1. Each of the
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other groupings is interpreted in a similar way. These groups of numbers are called

cycles, and this notation for permutations is referred to as cycle notation. Following

are several facts relating to cycles and cycle notation:

• A cycle of k numbers is referred to as a k-cycle or a cycle of length k; for

example, (1347) is a 4-cycle or a cycle of length 4.

• A cycle of one number indicates that the number is mapped to itself, and 1-

cycles are often referred to as fixed points. In the example above, there are

two fixed points: 5 and 8.

• It does not matter which number is written first in a cycle, as long as the order of

the numbers is preserved. For example, (1347) = (4713), but (1347) 6= (1437).

A cycle structure with a low number of cycles of high length is considered well

suited to be used in cipher design. This fact means that many transpositions are

present.

The fixed points of F are those which belong to the set {x | F (x) = x}. The

negated fixed points of F belong to the set {x | F (x) = x} where x is the invert of

x or the vector resulting from adding 1 to each of its components.

A cryptographic primitive with a high number of fixed and/or negated fixed points

is considered to be not well designed, since it lacks the needed randomness.

3.10.2 Library

The method used to obtain the Cycle Structure is the following:

void Cycle(NTL::vec_ZZ& v, VBF& F)

The method used to print the Cycle structure so that each row has two values

separated by a comma: the first one is the Cycle length and the second one is the

number of cycles for this length.

void printCycle(NTL_SNS ostream& s, VBF& F)

The fixed points of F are obtained by this method:

NTL::mat_GF2 fixedpoints(VBF& F)

The negated fixed points of F are obtained by this method:

NTL::mat_GF2 negatedfixedpoints(VBF& F)

Example 3.10.1. The following program prints the cycle structure of a Vector

Boolean function having as input its Truth Table.
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#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The Cycle Structure is:" << endl;

printCycle(cout,F);

cout << endl << "The fixed points are the following:"

<< endl;

cout << fixedpoints(F) << endl;

cout << endl << "The negated fixed points are the following:"

<< endl;

cout << negatedfixedpoints(F) << endl;

return 0;

}

If we use as input of this program the Truth Table of NibbleSub, the output

of the program would be the following:

The Cycle Structure is:

2,1

14,1

The fixed points are the following:
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[]

The negated fixed points are the following:

[[0 0 1 0]

[0 1 1 1]

]

which means:

Table 3.1: Cycle structure of NibbleSub.

Cycle length Number of cycles

2 1
14 1

It has no fixed points and 2 negated fixed points which are the following:

[0 0 1 0]

[0 1 1 1]

This is becauseNibbleSub[(1, 1, 0, 1)] = (0, 0, 1, 0) andNibbleSub[(1, 0, 0, 0)] =

(0, 1, 1, 1).

3.11 Permutation Vector

3.11.1 Description

If F is a Boolean permutation, that is, it is bijective and has the same number

of input bits as output bits (n = m), then it can be defined as an array: F =[
F (1) . . . F (n)

]
where F (i) is the output bit of the input bit i for F .

3.11.2 Library

A VBF class can be initialized giving its permutation vector with the following

method:

void putper(const NTL::vec_ZZ& v)

To obtain its representation as permutation vector, the following method must

be used:

void PER(NTL::vec_ZZ& v, VBF& F)

Example 3.11.1. The following program finds out the Truth Table of a Vector

Boolean function having as input its Permutation Vector:
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[ 1 2 3 4 13 14 15 16 9 10 11 12 5 6 7 8 ]

For example, you can see bit 13 moves to bit 5, while bit 5 moves to bit 13.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::vec_ZZ a;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> a;

F.putper(a);

input.close();

cout << "The Truth Table is:" << endl;

cout << TT(F) << endl;

return 0;

}

The first 10 lines of the output of the program would be the following:

The Truth Table is:

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
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3.12 DES Representations

3.12.1 Description

The VBF library accepts to types of representations of DES [16] components:

1. Expansion and Compression DES permutations. It can be used to represent

both the Compression Permutation in the Key Transformation of DES and the

Expansion Permutation Feistel Function of the DES cipher. The Compression

Permutation permutes the order of the bits as well as selects a subset of bits.

The Expansion Permutation expands the right half of the data, Ri, from 32

bits to 48 bits. Because this operation changes the order of the bits as well as

repeating certain bits, it is known as an expansion permutation.

2. DES S-box Substitution. Each S-box is a table of 4 rows and 16 columns. Each

entry in the box is a 4-bit number. The 6 input bits of the S-box specify under

which row and column number to look for the output.

The input bits specify an entry in the S-box as follows: Consider an S-box input

of 6-bits, labeled b1, b2, b3, b4, b5, and b6. Bits b1 and b6 are combined to form

a 2-bit number, from 0 to 3, which corresponds to a row in the table. The

middle 4 bits, b2 through b5, are combined to form a 4-bit number, from 0 to

15, which corresponds to a column in the table.

For example, assume that the input to the first S-box (i.e. bits 1 to 6 of the

XOR function) is 110011. The first and last bits combine to form 11, which

corresponds to row 3 of the first S-box. The middle 4 bits combine to form

1001, which corresponds to the column 9 of the same S-box. The entry under

row 3, column 9 of S-box 1 is 11 (count rows and columns starting from 0).

The value 1110 is substituted for 001011

The following figures list the eight lists the eight S-boxes used in DES. Each

S-box replaces a 6-bit input with a 4-bit output. Given a 6-bit input, the 4-bit

output is found by selecting the row using the outer two bits, and the column

using the inner four bits. For example, an input ”011011” has outer bits ”01”

and inner bits ”1101”; noting that the first row is ”00” and the first column

is ”0000”, the corresponding output for S-box S5 would be ”1001” (=9), the

value in the second row, 14th column.

3.12.2 Library

A VBF class can be initialized giving its Expansion and Compression DES permutation

vector with the following method:

void putexp_comp(const NTL::vec_ZZ& v)
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Figure 3.5: S1, S2, S3, S4 DES S-boxes.

Figure 3.6: S5, S6, S7, S8 DES S-boxes.
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A VBF class can be initialized giving its DES-like S-box representation matrix

with the following method:

void putsbox(const NTL::mat_ZZ& S)

Example 3.12.1. The following program prints the Truth Table of a Expansion

permutation and of the DES S1 S-box. The inputs are respectively the following:

[ 4 1 2 3 4 1 ]

[[14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 ]

[ 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 ]

[ 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0]

[ 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13]]

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F,G;

NTL::vec_ZZ v;

NTL::mat_ZZ S;

ifstream inputv(argv[1]);

if(!inputv) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

inputv >> v;

inputv.close();

F.putexp_comp(v);

ifstream inputS(argv[2]);

if(!inputS) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

inputS >> S;

inputS.close();



3.12. DES REPRESENTATIONS 65

G.putsbox(S);

cout << "The Truth Table of Expansion Permutation is:"

<< endl << TT(F) << endl;

cout << endl << "The Truth Table of S1 DES S-box is:"

<< endl << TT(G) << endl;

return 0;

}

The output of the program would be the following §:

The Truth Table of Expansion Permutation is:

[[0 0 0 0 0 0]

[1 0 0 0 1 0]

[0 0 0 1 0 0]

[1 0 0 1 1 0]

[0 0 1 0 0 0]

[1 0 1 0 1 0]

[0 0 1 1 0 0]

[1 0 1 1 1 0]

[0 1 0 0 0 1]

[1 1 0 0 1 1]

[0 1 0 1 0 1]

[1 1 0 1 1 1]

[0 1 1 0 0 1]

[1 1 1 0 1 1]

[0 1 1 1 0 1]

[1 1 1 1 1 1]

]

The Truth Table of S1 DES S-box is:

[[1 1 1 0]

[0 0 0 0]

[0 1 0 0]

[1 1 1 1]

[1 1 0 1]

[0 1 1 1]

[0 0 0 1]

[0 1 0 0]

[0 0 1 0]

§Only a few values of S1 Truth Table is printed for space reasons.
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[1 1 1 0]

[1 1 1 1]

[0 0 1 0]

[1 0 1 1]

[1 1 0 1]

[1 0 0 0]

[0 0 0 1]

...

3.13 Auxiliary Functions

In order to compute the matrices described above, some functions have been imple-

mented which allow to obtain some of these matrices from others:

• A function whose input is an ANF table and its output is the Truth Table:

mat GF2 rev(const mat GF2& A, int n, int m)

• A function whose input is the Characteristic Function and its output is the

Truth Table:

mat GF2 truthtable(const mat ZZ& C, int n, int m)

• A function whose input is the Truth Table and its output is the Characteristic

Function:

mat ZZ charfunct(const mat GF2& T, int n, int m)

• A function whose input is the Walsh Spectrum and its output is the Charac-

teristic Function (that is the Inverse Walsh Transform):

mat ZZ invwt(const mat ZZ& X, int n, int m).

• A matrix representing the linear combinations of Truth Table coordinate func-

tions:

void LTT(NTL::mat GF2& X, VBF& a).

• A matrix representing character form of Truth Table coordinate functions:

void CTT(NTL::mat GF2& X, VBF& a).
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3.14 Summary

Table 3.2 lists the member functions related to methods of vector Boolean functions

initialization. Table 3.3 lists the member functions related to the characterizations

of vector Boolean functions as described above. Most of the member functions of

V BF have an in-line definition, for instance: void TT(NTL::mat GF2& X, VBF& F)

is also defined as inline NTL::mat GF2 TT(VBF& F).

Table 3.2: Representation of VBF.

SYNTAX DESCRIPTION

void puttt(const NTL::mat GF2& T) TTF = T
void putHexTT(istream & s) VBF which has an hexadecimal representation

of its Truth Table defined by s
void putBinTT(istream & s) VBF which has a binary representation

of its Truth Table defined by s
void putDecTT(const NTL::vec long& d,const long& m) VBF which has an decimal representation of its Truth Table

defined by d and m is the number of component Boolean functions
void putltt(const NTL::mat GF2& L) LTTF = L
void putctt(const NTL::mat ZZ& C) CTTF = C

void putirrpol(GF2X& g) void puttrace(string& f) Set F by its trace f and the irreducible polynomial g
void putpol(vec pol& p) Set F with Polynomials in ANF equals to p

void putanf(const NTL::mat GF2& A) ANFF = A
void putchar(const NTL::mat ZZ& C) Img(F ) = C

void putwalsh(const NTL::mat ZZ& W) WS(F ) = W
void putaffine(const NTL::mat GF2& A,const NTL::vec GF2& b) F (x) = xA + b

void putper(const NTL::vec ZZ& v) VBF which is a permutation defined by v
void putexp comp(const NTL::vec ZZ& v) VBF defined by Expansion and Compression DES vector v

void putsbox(const NTL::mat ZZ& S) VBF which is a DES S-Box defined by S
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Table 3.3: Chacterizations of VBF.

SYNTAX DESCRIPTION

void TT(NTL::mat GF2& X, VBF& F) X = TTF

void getHexTT(ostream& s) s is the hexadecimal representation of the Truth Table of F
void getBinTT(ostream& s) s is the binary representation of the Truth Table of F

NTL::vec long getDecTT() const Decimal representation of the Truth Table
long weight(VBF& F) Weight of F

void LTT(NTL::mat GF2& X, VBF& F) X = LTTF

void CTT(NTL::mat ZZ& X, VBF& F) X = CTTF

void Trace(GF2EX& f, VBF& F) F has a trace representation defined by f
void Pol(NTL SNS ostream& s, VBF& F) s contains the Polynomials in ANF of F
void ANF(NTL::mat GF2& X, VBF& F) X = ANFF

void Charact(NTL::mat ZZ& X, VBF& F) X = Img(F)
void Walsh(NTL::mat ZZ& X, VBF& F) X = WS(F )
void LAT(NTL::mat ZZ& X, VBF& F) X = LP(F )

void lp(NTL::RR& x, VBF& F) lp(F ) = x
void linear(NTL SNS ostream& s, VBF& F, ZZ& x) Linear relations associated with the value x of

the Linear Profile of F
void ProbLin(NTL::RR& x, VBF& F, NTL::ZZ& w) Probability of Linear relations associated with the value w of

the Linear Profile of F
void DAT(NTL::mat ZZ& X, VBF& F) X = DP(F )

void dp(NTL::RR& x, VBF& F) dp(F ) = x
void differential(NTL SNS ostream& s, VBF& F, ZZ& x) Differential relations associated with the value x of

the Differential Profile of F
void ProbDif(NTL::RR& x, VBF& F, NTL::ZZ& w) Probability of characteristics associated with the value w of

the Differential Profile of F
void AC(NTL::mat ZZ& X, VBF& F) X = R(F )

NTL::mat GF2 LS(VBF& F) Returns a matrix whose rows are the linear structures
void printFWH(NTL SNS ostream& s, VBF& F) Frequency distribution of the absolute values of

the Walsh Spectrum
void printFAC(NTL SNS ostream& s, VBF& F) Frequency distribution of the absolute values of

the Autocorrelation Spectrum
void Cycle(NTL::vec ZZ& v, VBF& F) v is the Cycle Structure

void printCycle(NTL SNS ostream& s, VBF& F) Print Cycle Structure
NTL::mat GF2 fixedpoints(VBF& F) Return fixed points

NTL::mat GF2 negatedfixedpoints(VBF& F) Return negated fixed points
void PER(NTL::vec ZZ& v, VBF& F) v is the permutation vector defined by F
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Cryptographic Criteria

This chapter defines some properties relevant for cryptographic applications and ex-

plains how to use the package to compute them. They are defined in relation to

the representation or transform from which they are derived. Those properties are

criteria or those which provide useful information in cryptanalysis. Among the criteria

we find nonlinearity, r-th order nonlinearity, linearity distance, balancedness, correla-

tion immunity, resiliency (i.e. balancedness and correlation immunity), propagation

criterion, global avalanche criterion, algebraic degree and algebraic immunity. Other

properties described are the maximum possible nonlinearity or the maximum possible

linearity distance achievable by a Vector Boolean function with the same number of

inputs, the type of function in terms of nonlinearity.

The figure 4.1 summarizes the relationships among several representations and

the criteria studied in this chapter.

The representations which are Boolean matrices are coloured in red, those which

are Integer matrices are coloured in blue, and those which are criteria are coloured

in green.

In this chapter we apply VBF library methods to find out cryptographic criteria of

several cryptographic algorithms. Refer to http://vbflibrary.tk for an extensive

description of cryptographic criteria of modern cryptographic algorithms apart from

those described in this chapter.

4.1 Algebraic Degree

4.1.1 Description

Cryptographic algorithms using Boolean functions to achieve confusion in a cipher

(S-boxes in block ciphers, combining of filtering functions in stream ciphers) can be

attacked if the functions have low algebraic degree. The algebraic degree is a good

69
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Figure 4.1: Relationships among representations and criteria of a Vector Boolean
function.

indicator of the function’s algebraic complexity. The higher the degree of a function,

the greater is its algebraic complexity. Higher order differential attack [22] exploits

the fact that the algebraic degree of the S-box is low.

Definition 4.1.1. Algebraic degree of a Vector Boolean function F ∈ Fn,m is

defined as the minimum among the algebraic degrees of all component functions

of F [30], namely:

deg(F ) = min
g
{deg(g) | g =

m∑
j=1

vjfj , v 6= 0 ∈ Vm} (4.1)

where the algebraic order or degree of a Boolean function is the order of the

largest product term in the ANF . This criterion is obtained by generating the

ANF table and then analyzing the degree of all the component functions.

Functions with algebraic degree less than or equal to 1 are called affine. A non-

constant affine function for which F (0) = 0 is called linear. We refer to functions of

degree two as quadratic and functions of degree three as cubic.

4.1.2 Library

The method used to obtain this criterion is the following:

void deg(int& d, VBF& F)

Example 4.1.1. The following program provides the algebraic degree of a Vector

Boolean function given its Truth Table.
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#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The algebraic degree of the function is "

<< deg(F) << endl;

return 0;

}

If we use the NibbleSub S-box Truth Table as input we will find out that its

algebraic degree is 2.

The figure 4.2 represents the ANF table of NibbleSub nonzero component

functions and emphasizes in red the ANF terms of degree 4. As we can see there

are no terms of degree 4 in neither of the component functions of NibbleSub.

The figure 4.3 represents the ANF table of NibbleSub nonzero component

functions and emphasizes in blue the ANF terms of degree 3. As we can see there

are no terms of degree 3 in one of the component functions of NibbleSub, which

is marked in yellow.

The figure 4.4 represents the ANF table of NibbleSub nonzero component

functions and emphasizes in orange the ANF terms of degree 2. As we can see

there are always terms of degree 2 in all the component functions of NibbleSub.

Because of this, the algebraic degree of NibbleSub is 2.
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Figure 4.2: Algebraic Degree of NibbleSub: Degree 4.

Figure 4.3: Algebraic Degree of NibbleSub: Degree 3.
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Figure 4.4: Algebraic Degree of NibbleSub: Degree 2.

4.2 Nonlinearity

4.2.1 Description

In order to provide confusion, cryptographic functions must lie at large Hamming

distance to all affine functions. Because of Parseval’s Relation, any Vector Boolean

function has correlation with some affine functions of its input. This correlation

should be small: the existence of affine approximations of the Boolean functions

involved in a cipher allows to build attacks on this system (see, [24] for block ciphers

and [4] for stream ciphers).

Definition 4.2.1. The nonlinearity of a Boolean function f ∈ Fm is defined as

the Hamming distance between f and the subspace of affine functions [32]:

NL(f) = d(f,An) (4.2)

Definition 4.2.2. The nonlinearity of a Vector Boolean function F ∈ Fn,m is

defined as the minimum among the nonlinearities of all component functions of

F [30]:

NL(F ) = min
v 6=0

NL(v · F ) v = (v1, . . . , vm) ∈ Vm (4.3)



74 CHAPTER 4. CRYPTOGRAPHIC CRITERIA

The nonlinearity of F can be expressed in terms of the Walsh coefficients by the

following theorem:

Theorem 4.2.1. Let F ∈ Fn,m, the nonlinearity of F can be calculated in terms

of the maximum of the absolute values of its Walsh Spectrum without taking into

account the element of its first row and column, as follows:

NL(F ) = 2n−1 − 1

2

∗
max (WS(F )(u,v)) (4.4)

Corollary. Let f ∈ Fn, the nonlinearity of f can be expressed in terms of its

Walsh transform as follows:

NL(f) = 2n−1 − 1

2
max

u∈Vn 6=0
|χ̂f (u)| (4.5)

Definition 4.2.3. The spectral radius of a Boolean function f ∈ Fn is r(f) =

maxu∈Vn 6=0 |χ̂f (u)|.

This criterion is a measure of the distance of a Vector Boolean function and all

Affine Vector Boolean functions. If this distance is small, it is possible to mount

affine approximations of the Vector Boolean functions involved in a cipher to build

attacks (called linear attacks) on a block cipher [25]. In the case of stream ciphers,

these attacks are called fast correlation attacks. Thus, this property is useful to assess

the resistance of a Vector Boolean function to linear attacks (including correlation

attacks), i.e., attacks where the function F is approximated by an affine function.

4.2.2 Library

The method used to obtain the nonlinearity of a Vector Boolean function is the

following:

void nl(NTL::RR& x, VBF& F)

The method used to obtain the spectral radius of a Vector Boolean function is

the following:

void SpectralRadius(NTL::ZZ& x, VBF& F)

The method used to the maximum nonlinearity that can be achieved by a Vector

Boolean function with the same number of input bits and output bits is the following:

NTL::RR nlmax(VBF& F)

The method used to obtain the type of function in terms of nonlinearity is the

following:
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void typenl(int& typenl, VBF& F)

Example 4.2.1. The following program provides the nonlinearity of a Vector

Boolean function given its Truth Table together with the maximum nonlinearity

that can be achieved by a Vector Boolean function with the same number of input

bits and output bits.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The spectral radius of the function is " << SpectralRadius(F) << endl;

cout << "The nonlinearity of the function is " << nl(F) << endl;

cout << "The maximum nonlinearity that can be achieved by

a Vector Boolean function with the same dimensions is "

<< nlmax(F) << endl;

return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

The spectral radius of the function is 12

The nonlinearity of the function is 2

The maximum nonlinearity that can be achieved by
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a Vector Boolean function with the same dimensions is 5

The figure 4.5 represents the Walsh Spectrum of NibbleSub and emphasizes

in blue its maximum absolute values.

Figure 4.5: Nonlinearity of NibbleSub.

From definition we have NL(NibbleSub) = 24−1 − 1
2 · 12 = 2

Example 4.2.2. The following program provides the nonlinearity of a Vector

Boolean function given its polynomial representation in ANF together with the

maximum nonlinearity that can be achieved by a Vector Boolean function with

the same number of input bits and output bits, and the type of function in terms

of nonlinearity.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

vec_pol p;

ifstream input(argv[1]);
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if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> p;

F.putpol(p);

input.close();

cout << "The nonlinearity of the function is " << nl(F) << endl;

cout << "The maximum nonlinearity that can be achieved by

a Vector Boolean function with the same dimensions is "

<< nlmax(F) << endl;

int type;

typenl(type, F);

if (type == BENT) {

cout << "It is a bent function" << endl;

} else if (type == ALMOST_BENT) {

cout << "It is an almost bent function" << endl;

} else if (type == LINEAR) {

cout << "It is a linear function" << endl;

}

return 0;

}

If we use the x1x2 + x3x4 as input, the output would be the following:

The nonlinearity of the function is 6

The maximum nonlinearity that can be achieved by

a Vector Boolean function with the same dimensions is 6

It is a bent function

As the nonlinearity of this Boolean function is maximal, it is a bent function.

4.3 r-th Order Nonlinearity

4.3.1 Description

As well as the affine functions, we can consider that functions with low algebraic

degree are weak functions from the cryptographic point of view. A criterion can be

defined en terms of the Hamming distance to the Reed-Muller code of order r(r < n).
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Definition 4.3.1. For every positive integer r, the r-th order nonlinearity of a

Vector Boolean function F is the minimum r-th order nonlinearity of its com-

ponent functions. The r-th order nonlinearity of a Boolean function equals its

minimum Hamming distance to functions of algebraic degrees at most r (see [7]

for details).

NLr(F ) = min
v 6=0∈Vm

NLr(v · F ) = min
v 6=0∈Vm

min
f∈Fn

d(f,v · F ) (4.6)

Computing rth-order nonlinearity is not an easy task for r ≥ 2. Unlike the first-

order nonlinearity there are no efficient algorithms to compute second-order nonlin-

earities for n ≥ 11. VBF library naive exhaustive search is employed for this purpose.

4.3.2 Library

The method used to obtain this criterion is the following:

void nlr(long& x, VBF& F, int r)

This method return -1 if the number of functions to check is too large (greater

than the maximum value of a long int variable).

Example 4.3.1. The following program provides the 2-nd order nonlinearity of

a Vector Boolean function given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

long a;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);
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input.close();

nlr(a,F,2);

cout << "The 2-nd order nonlinearity of the function is "

<< a << endl;

return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

The 2-nd order nonlinearity of the function is 0

This result is congruent to the fact that its algebraic degree is 2.

4.4 Balancedness

4.4.1 Description

The output of a Vector Boolean function F ∈ Fn,m used in a cipher must be uniformly

distributed over Vm for avoiding statistical dependence between the plaintext and the

ciphertext (which can be used in attacks).

Definition 4.4.1. F ∈ Fn,m is balanced (or has balanced output) if each pos-

sible output m-tuple occurs with equal probability 2−m. This criterion can be

evaluated from the Walsh Spectrum in the following way:

θ̂F (0,v) = 0, ∀v 6= 0 ∈ Vm (4.7)

Theorem 4.4.1. [33] f ∈ Fn is balanced if and only if the Walsh coefficient at

0 is zero:

f is balanced ⇐⇒ χ̂f (0) = 0 (4.8)

Theorem 4.4.2. [33] F ∈ Fn,m is balanced if and only if the first row of its

Walsh Spectrum has all its elements equal to zero except from the first entry:

F is balanced ⇐⇒ θ̂F (0,v) = 0, ∀v 6= 0 ∈ Vm (4.9)

Definition 4.4.2. The imbalance of a Boolean function is defined to be

I(f) = |wt(f)− 2n−1| = 2n−1|C(f, 0)| (4.10)

where 0 indicates the constant zero Boolean function.
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Imbalance is defined as the minimum Hamming distance to a balanced function

and is therefore directly proportional to the magnitude of the correlation with the con-

stant zero Boolean function. Thus, when imbalance is zero, the function is balanced.

Balancedness is a fundamental cryptographic criterion as an imbalanced function has

suboptimal unconditional entropy, i.e. it is correlated to a constant function.

The significance of the balancedness criterion is that the higher the magnitude

of a function’s imbalance (deviation from uniform distribution of outputs), the more

likelihood of a high probability linear approximation being obtained. This, in turn,

represents a weakness in the function in terms of linear cryptanalysis (see section 3.6).

In particular, a large imbalance may enable the function to be easily approximated

by a constant function.

4.4.2 Library

This criterion can only take values 0 (meaning F is not balanced) or 1 (meaning F

is balanced). The method used to obtain this criterion is the following:

void Bal(int& bal, VBF& F)

and there is also an inline function:

inline int Bal(VBF& a)

Example 4.4.1. The following program finds out if a Vector Boolean function

is balanced given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;
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F.puttt(T);

input.close();

if (Bal(F)) {

cout << "It is a balanced function" << endl;

} else {

cout << "It is not a balanced function" << endl;

}

return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

It is a balanced function

NibbleSub S-box is balanced as each possible 4-tuple occurs with equal prob-

ability 1
24

.

The figure 4.6 represents the Walsh Spectrum of NibbleSub and emphasizes

in red the first row.

Figure 4.6: Balancedness of NibbleSub.

As all Walsh Spectrum’s values are 0 except from the 0 ∈ V4, we can conclude

that NibbleSub is balanced.
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4.5 Correlation Immunity

4.5.1 Description

In stream cipher applications, it is vital that the Boolean function used as the combin-

ing function have certain properties. In addition to being balanced, possessing high

nonlinearity and high algebraic degree, the function should have correlation immunity

greater than zero to resist a divide and conquer attack [37].

This criterion describes the extent to which input values of a Vector Boolean

function F ∈ Fn,m can be guessed given the output value. Equivalently, we can say

that F is t-CI if its output distribution does not change when we fix t variables xi of

its input.

Interest in this criterion came from discovery by Siegenthaler [37] in 1984 of

an attack on pseudo-random generators using combining functions (used in stream

ciphers), called a correlation attack. This attack is based on the idea of finding

correlation between the outputs and the inputs, that is, finding S-boxes with low

resiliency.

Definition 4.5.1. A function f ∈ Fn is t−CI if and only if, for every set S of t

variables, 1 ≤ t ≤ n, given the value of f , the probability that S takes on any of

its 2t assignments of values to the t variables is 1
2t . If f is t− CI and balanced,

then it is t-resilient.

Definition 4.5.2. [40] f ∈ Fn is said to be t-CI if for each linear function

lu = u1x1 + · · ·+ unxn with 1 ≤ wt(u) ≤ t, f + lu is balanced.

Definition 4.5.3. [10] F ∈ Fn,m is an t-CI function (or (n,m, t)-CI function) if

and only if every component function of F is an t-CI function. F is said to be

t-resilient (or (n,m, t)-resilient function) if it is balanced and t-CI.

Theorem 4.5.1. [40] Let f ∈ Fn and t ∈ {1, . . . , n− 1}, f is called correlation

immune (CI) of order t if its Walsh coefficients, at values of the nonzero vector

indexes whose weight at most t, are zero:

f is a t-CI function⇔ χ̂f (u) = 0, ∀u ∈ Vn, 1 ≤ wt(u) ≤ t (4.11)

f can also be denoted as (n, 1, t)-CI function.

Theorem 4.5.2. Let F ∈ Fn,m and t ∈ {1, . . . , n− 1}, F is a correlation im-

mune Vector Boolean function of order t if its Walsh coefficients, at values of the

nonzero vector indexes whose weight at most t, are zero:

F is a t-CI function ⇔ θ̂F (u,v) = 0, ∀u ∈ Vn, 1 ≤ wt(u) ≤ t, ∀v 6= 0 ∈ Vm

(4.12)

F can also be denoted as an t-CI function.

From the definition of resiliency we can derive that a balanced Vector Boolean

function can be interpreted as a 0-resilient function.
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4.5.2 Library

The method used to obtain this criterion is the following:

void CI(int& t, VBF& F)

Example 4.5.1. The following program provides the order of correlation immu-

nity of a Vector Boolean function given its polynomial in ANF.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

vec_pol p;

int t;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> p;

F.putpol(p);

input.close();

t = CI(F);

cout << "It is a (" << F.n() << "," << F.m()

<< "," << t << ")-CI function" << endl;

return 0;

}

If we use the function f = (1+x1)(1+x2)(1+x3)(1+x4)+x1x2x3x4 polynomial

in ANF as input, the output would be the following:

It is a (4,1,1)-CI function

The figure 4.7 represents the Walsh Spectrum of f and emphasizes in red the

rows whose indexes are of weight 1.
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Figure 4.7: Correlation immunity of (1 +x1)(1 +x2)(1 +x3)(1 +x4) +x1x2x3x4.

For all this rows, the Walsh values are 0 so f is 1-CI. There are rows whose

indexes are of weight 2 and the Walsh values are not 0 so f cannot be 2-CI.

4.6 Algebraic Immunity

4.6.1 Description

A new kind of attacks, called algebraic attacks, has been introduced [11], [13], [19].

Algebraic attacks recover the secret key, or at least the initialization of the system, by

solving a system of multivariate algebraic equations. A new criterion was introduced

in order to identify a cryptographic algorithm’s immunity to this kind of attacks.

Definition 4.6.1. [11], [12], [19], [26] Denote the Boolean function obtained by

the product of the Truth Tables of two Boolean functions f, g ∈ Fn by f · g ∗.
The algebraic immunity (AI) of f is defined as the lowest degree of the function

g for which f · g = 0 or (1 + f) · g = 0. The function g for which f · g = 0 is

called an annihilator of f . Denote the set of all annihilators of f by An(f). This

set is an ideal in the ring of Boolean functions generated by 1 + f .

∗Note that this product is different from the dot product between two vectors x,y
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A function f should not be used if f or 1 + f has a low degree annihilator. If

this happens, algebraic attacks [14] can be executed.

Definition 4.6.2. The component algebraic immunity of any F ∈ Fn,m, denoted

by AI(F ), is the minimal algebraic immunity of the component functions v ·F (v)

of the Vector Boolean function with v 6= 0 ∈ Vm.

The algebraic attack exploits the existence of multivariate equations involving

the input to the S-box and its output, that is, finding S-boxes with low algebraic

immunity.

4.6.2 Library

The method used to obtain this criterion is the following:

void AI(int& ai, VBF& F)

The method used to the maximum algebraic immunity that can be achieved by

a Vector Boolean function with the same number of input bits and output bits is the

following:

int aimax(VBF& F)

Example 4.6.1. The following program provides the algebraic immunity of a

Vector Boolean function given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);



86 CHAPTER 4. CRYPTOGRAPHIC CRITERIA

input.close();

cout << "The algebraic immunity of the function is "

<< AI(F) << endl;

cout << "The maximum algebraic immunity that can be achieved by

a Vector Boolean function with the same dimensions is "

<< aimax(F) << endl;

return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

The algebraic immunity of the function is 2

The maximum algebraic immunity that can be achieved by a

Vector Boolean function with the same dimensions is 2

4.7 Global Avalanche Criterion

4.7.1 Description

The Global avalanche criterion (GAC) was introduced in [41] to measure the overall

avalanche characteristics of a Boolean function.

Definition 4.7.1. [41] Let F ∈ Fn,m, its Global avalanche criterion is defined

by two indicators:

1. The absolute indicator of F , denoted by ACmax(F ), defines the maximum

absolute non-zero value of the Autocorrelation Spectrum:

ACmax(F ) = max(|AC(F )(u,v)|) ∀u 6= 0 ∈ Vn, ∀v 6= 0 ∈ Vm (4.13)

2. The sum-of-squares indicator, denoted by σ, is the second moment of the

autocorrelation coefficients:

σ(F ) =
∑

(u,v)∈Vn×Vm

AC(F )(u,v)2 =
1

2n

∑
(u,v)∈Vn×Vm

WS(F )(u,v)4 (4.14)

In order to achieve good diffusion, cryptographic functions should achieve low

values of both indicators.
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4.7.2 Library

The methods used to obtain these criteria are the following:

void maxAC(NTL::ZZ& x, VBF& F)

void sigma(NTL::ZZ& x, VBF& F)

Example 4.7.1. The following program provides the absolute indicator and the

sum-of-squares indicator of a Vector Boolean function given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "The absolute indicator of the function is "

<< maxAC(F) << endl;

cout << "The sum-of-squares indicator of the function is "

<< sigma(F) << endl;

cout << "The maximum absolute indicator that can be achieved by

a Vector Boolean function with the same dimensions is "

<< maxACmax(F) << endl;

cout << "The maximum sum-of-squares indicator that can be achieved by

a Vector Boolean function with the same dimensions is "

<< sigmamax(F) << endl;

cout << "The minimum sum-of-squares indicator that can be achieved by

a Vector Boolean function with the same dimensions is "

<< sigmamin(F) << endl;
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return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

The absolute indicator of the function is 16

The sum-of-squares indicator of the function is 1408

The maximum absolute indicator that can be achieved by a

Vector Boolean function with the same dimensions is 16

The maximum sum-of-squares indicator that can be achieved by a

Vector Boolean function with the same dimensions is 4096

The minimum sum-of-squares indicator that can be achieved by a

Vector Boolean function with the same dimensions is 256

The figure 4.8 represents the Autocorrelation Spectrum of NibbleSub and

emphasizes in red the values in which the maximum is attained.

Figure 4.8: Absolute indicator of NibbleSub.

The figure 4.9 represents the Autocorrelation Spectrum of NibbleSub and

emphasizes in blue the columns (component functions) in which the maximum

sum-of-squares is attained.
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Figure 4.9: Sum-of-squares indicator of NibbleSub.

4.8 Linearity Distance

4.8.1 Description

Functions with non-zero linear structures are considered weak functions from cryptan-

alytic viewpoint. It is our interest to identify strong Vector Boolean functions which

are far from this weak functions. The cryptanalytic value of linear structures lies

in their potential to map a nonlinear function to a degenerate function via a linear

transformation, which may reduce the size of the keyspace.

S-boxes used in block ciphers should have no nonzero linear structures (see [18]).

The existence of nonzero linear structures, for the functions implemented in stream

ciphers, is a potential risk that should also be avoided, despite the fact that such

existence could not be used in attacks, so far.

Definition 4.8.1. The linearity distance of a Boolean function f ∈ Fn is a

characteristic defined by the distance to the set of all Boolean functions admitting

nonzero linear structures. These include, among others, all the affine functions

and all non bent quadratic functions and are defined as follows [27]:

LD(f) = d(f, LSn) = min
S∈LSn

d(f,S) (4.15)

where:

LSn = {f ∈ Fn | f has a linear structure 6= 0} (4.16)
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Theorem 4.8.1. [6] Linearity distance of a Vector Boolean function, defined as

the minimum among the linearity distances of all component functions of F , may

be computed from the Autocorrelation Spectrum using:

LD(F ) = min
v 6=0∈Vm

LD(v · F ) = 2n−2 − 1

4
·ACmax(F ) (4.17)

The differential cryptanalysis is based on the idea of finding high probable differ-

entials pairs between the inputs and outputs of S-boxes present in the cipher, that is,

finding S-boxes with low linearity distance. Differential cryptanalysis [3] can be seen

as an extension of the ideas of attacks based on the presence of linear structures [28].

If u is a linear structure of f , then the inputs of difference u result in output differ-

ences of 1 or −1 with probability 1. In differential cryptanalysis, it is only required

that inputs of difference ∆x lead to a known difference ∆y with high probability, or

with a probability that noticeably exceeds the mean. The perfect nonlinear functions

are resistant to differential cryptanalysis.

Let F ∈ Fn,m, if LD(F ) = 0, it means that f has a nontrivial linear structure.

As An ⊆ LSn, then NL(F ) ≥ LD(F ).

4.8.2 Library

The method used to obtain the linearity distance of a Vector Boolean function is the

following:

void ld(NTL::RR& x, VBF& F)

The method used to the maximum linearity distance that can be achieved by a

Vector Boolean function with the same number of input bits and output bits is the

following:

NTL::RR ldmax(VBF& F)

Example 4.8.1. The following program provides the linearity distance of a Vec-

tor Boolean function given its Truth Table together with the maximum linearity

distance that can be achieved by a Vector Boolean function with the same number

of input bits and output bits.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;
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VBF F;

NTL::mat_GF2 T;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input >> T;

F.puttt(T);

input.close();

cout << "Linearity distance of the function is " << ld(F) << endl;

cout << "The maximum linearity distance: " << ldmax(F) << endl;

return 0;

}

If we use the NibbleSub S-box Truth Table as input, the output would be the

following:

Linearity distance of the function is 0

This result is congruent with the results in example of subsection 3.8.2. We

showed that this S-box has linear structures, and as a consequence, the distance

to the set of all Boolean functions admitting nonzero linear structures is 0.

4.9 Propagation Criterion

4.9.1 Description

This criterion is based on the properties of the derivatives of Boolean functions and

describes the behavior of a function whenever some input bits are complemented.

This concept was introduced by Preneel et al. in [35] and it is a generalization of the

Strict Avalanche Criterion (SAC) defined by Webster and Tavares in [39].

Definition 4.9.1. f ∈ Fn is said to satisfy the propagation characteristics with

respect to u ∈ Vn if and only if f(x) + f(x + u) is balanced.

Definition 4.9.2. A function f ∈ Fn satisfies the propagation criterion of de-

gree l (PC(l)) if and only if complementing any l or fewer of the input bits

complements exactly half of the function values.
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Definition 4.9.3. Let f ∈ Fn and l ∈ {1, . . . , n}, f satisfies the propagation

criterion of degree l if and only if:

f satisfies the PC(l)⇔ f(x) + f(x + u) balanced ∀u ∈ Vn, 1 ≤ wt(u) ≤ l
(4.18)

Theorem 4.9.1. Let f ∈ Fn and l ∈ {1, . . . , n}, f satisfies the propagation cri-

terion of degree l if its Autocorrelation Matrix elements, at values of the nonzero

vector indexes whose weight at most l, is zero:

f satisfies PC(l) ⇐⇒ rf (u) = 0, ∀u ∈ Vn, 1 ≤ wt(u) ≤ l (4.19)

Definition 4.9.4. F ∈ Fn,m satisfies the propagation criterion of degree l (PC(l))

if any component function of F satisfies the PC(l). This criterion can be obtained

from the Autocorrelation Spectrum in the following way:

rF (u,v) = 0, ∀u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀v 6= 0 ∈ Vm (4.20)

4.9.2 Library

The method used to obtain this criterion is the following:

void PC(int& k, VBF& F)

Example 4.9.1. The following program provides the degree of propagation cri-

terion of a Vector Boolean function given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F;

vec_pol p;

int t;

ifstream input(argv[1]);

if(!input) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}
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input >> p;

F.putpol(p);

input.close();

cout << "The function is PC of degree " << PC(F) << endl;

return 0;

}

If we use the function f = x1x2 + x3x4 polynomial in ANF as input, the

output would be the following:

The function is PC of degree 4

The figure 4.10 represents the Autocorrelation Spectrum of f and emphasizes

in red the rows whose indexes are of weight 1,2,3 and 4.

Figure 4.10: Propagation Criterion of x1x2 + x3x4.

For all this rows, the Autocorrelation values are 0. As a consequence f satisfies

PC(4).
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4.10 Summary

A list of the member functions related to these criteria may be found in Table 4.1.

Table 4.1: Cryptographic criteria.

SYNTAX DESCRIPTION

void deg(int& d, VBF& F) deg(F ) = d
void nl(NTL::RR& x, VBF& F) NL(F ) = x
void nlr(long& x, VBF& F, int r) NLr(F ) = x
void Bal(int& bal, VBF& F) If F is balanced returns 1, otherwise 0
void CI(int& t, VBF& F) F is an (n,m, t)− CI
void AI(int& i, VBF& F) AI(F ) = i
void MaxAC(NTL::ZZ& x, VBF& F) F has absolute indicator x
void sigma(NTL::ZZ& x, VBF& F) F has sum-of-squares indicator x
void ld(NTL::RR& x, VBF& F) LD(F ) = x
void PC(int& l, VBF& F) F satisfies the PC(l)

Table 4.2 lists the member functions related to bounds and other properties of

above criteria.

Table 4.2: Member functions of the cryptographic criteria.

SYNTAX DESCRIPTION

void SpectralRadius(NTL::ZZ& x, VBF& F) Spectral Radius
NTL::RR nlmax(VBF& F) Maximum possible nonlinearity
void typenl(int& typenl, VBF& F) 1 = Bent, 2 = Almost Bent, 3 = Linear
int aimax(VBF& F) Maximum possible algebraic immunity
NTL::ZZ maxACmax(VBF& F) Maximum possible absolute indicator
NTL::ZZ maxsigma(VBF& F) Maximum possible sum-of-squares indicator
NTL::ZZ minsigma(VBF& F) Minimum possible sum-of-squares indicator
NTL::RR ldmax(VBF& F) Maximum possible linearity distance



Chapter 5

Operations and constructions

over Vector Boolean Functions

In this chapter, some basic constructions for Vector Boolean functions supported by

the VBF class are described. Some of them correspond to secondary constructions,

which build (n,m) variable vector Boolean functions from (n′,m′) variable ones (with

n′ ≤ n,m′ ≤ m). The direct sum has been used to construct resilient and bent

Boolean functions [5]. The concatenation can be used to obtain resilient functions

or functions with maximal nonlinearity. The concatenation of polynomials in ANF

can be used to obtain functions of high nonlinearity with n variables from functions

with high nonlinearity with n′ variables (n′ < n). Adding coordinate functions and

bricklayering are constructions used to build modern ciphers such as CAST [2], DES

[16] and AES [15]. Additionally, VBF provides operations for identification if two

vector Boolean functions are equal, the sum of two vector Boolean functions, the

composition of two vector Boolean functions and the inverse of a Vector Boolean

function.

5.1 Equality Testing

5.1.1 Description

Definition 5.1.1. Let n ≥ 1,m ≥ 1, F,G ∈ Fn,m. F and G are equal if their

Truth Tables are the same.

5.1.2 Library

We can compare two functions for equality with the following method:

long operator==(VBF& F, VBF& G)

95
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long operator!=(VBF& F, VBF& G)

Example 5.1.1. The following program informs if two Vector Boolean functions

are equal given their Truth Tables.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, G, X;

NTL::mat_GF2 Tf, Tg;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> Tf;

F.puttt(Tf);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

input2 >> Tg;

G.puttt(Tg);

input2.close();

if (F == G) {

cout << "F and G are equal" << endl;

} else {

cout << "F and G are not equal" << endl;

}

return 0;

}
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The output for the execution of the example program with the code above

and the Truth Tables of S1 and S2 DES S-boxes as inputs would be:

F and G are not equal

5.2 Composition Function

5.2.1 Description

Definition 5.2.1. Let F ∈ Fn,p, G ∈ Fp,m and the composition function G ◦F ∈
Fn,m where G ◦ F (x) = G(F (x)) ∀x ∈ Vn. See figure 5.1.

Figure 5.1: Composition.

5.2.2 Library

It can be obtained with the following method:

void Comp(VBF& X, VBF& F, VBF& G)

Example 5.2.1. The following program provides the correlation immunity and

balancedness of two Vector Boolean functions given their Truth Tables and cal-

culates the same criteria for their composition.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, G, X;

NTL::mat_GF2 Tf,Tg;

ifstream input1(argv[1]);

if(!input1) {
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cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> Tf;

F.puttt(Tf);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

input2 >> Tg;

G.puttt(Tg);

input2.close();

cout << "Correlation immunity of F: " << CI(F) << endl;

if (Bal(F)) {

cout << "F is a balanced function" << endl;

} else {

cout << "F is a non-balanced function" << endl;

}

cout << endl;

cout << "Correlation immunity of G: " << CI(G) << endl;

if (Bal(G)) {

cout << "G is a balanced function" << endl;

} else {

cout << "G is a non-balanced function" << endl;

}

cout << endl;

Comp(X,F,G);

cout << "Correlation immunity of GoF: " << CI(X) << endl;

if (Bal(X)) {

cout << "GoF is a balanced function" << endl;

} else {

cout << "GoF is a non-balanced function" << endl;

}
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return 0;

}

If we use y0 of CLEFIA S0 cipher (see section ”Analysis of CRYPTEC project

cryptographic algorithms”) and NibbleSub Truth Tables as inputs, the output

would be the following:

Correlation immunity of F: 1

F is a balanced function

Correlation immunity of G: 0

G is a balanced function

Correlation immunity of GoF: 1

GoF is a balanced function

Example 5.2.2. The following program provides the balancedness of two Vector

Boolean functions given its polynomial representation in ANF and calculates the

balancedness for the its composition.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, G, X;

vec_pol f,g;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> f;

F.putpol(f);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;
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return 0;

}

input2 >> g;

G.putpol(g);

input2.close();

cout << "The polynomial in ANF of F is ";

cout << endl;

Pol(cout,F);

if (Bal(F)) {

cout << "F is a balanced function" << endl;

} else {

cout << "F is a non-balanced function" << endl;

}

cout << endl;

cout << "The polynomial in ANF of G is ";

cout << endl;

Pol(cout,G);

if (Bal(G)) {

cout << "G is a balanced function" << endl;

} else {

cout << "G is a non-balanced function" << endl;

}

cout << endl;

Comp(X,F,G);

cout << "The polynomial in ANF of the composition of F and G is ";

cout << endl;

Pol(cout,X);

if (Bal(X)) {

cout << "GoF is a balanced function" << endl;

} else {

cout << "GoF is a non-balanced function" << endl;

}

return 0;

}
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If we use the Boolean functions of first example described in [20] as inputs,

the output would be the following:

The polynomial in ANF of F is

x1+x2+x1x3+x1x2x3

x2+x1x2+x2x3+x1x3+x1x2x3

F is a non-balanced function

The polynomial in ANF of G is

x1+x2

G is a balanced function

The polynomial in ANF of the composition of F and G is

x2x3+x1+x1x2

GoF is a balanced function

If we use the Boolean functions of second example described in [20] as inputs,

the output would be the following:

The polynomial in ANF of F is

x3+x1x2+x1x2x3

x2+x3+x1x2+x2x3+x1x2x3

F is a non-balanced function

The polynomial in ANF of G is

x1x2

G is a non-balanced function

The polynomial in ANF of the composition of F and G is

x3

GoF is a balanced function

5.3 Functional Inverse

5.3.1 Description

Definition 5.3.1. Let n ≥ 1, F ∈ Fn,n. F−1 is the functional inverse of F if the

composition of both functions results in the identity function. See figure 5.2.

5.3.2 Library

If a Vector Boolean Function F ∈ Fn,n is invertible, then we can find its inverse with

the following method:
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Figure 5.2: Inverse.

void inv(VBF& X, VBF& F)

Example 5.3.1. The following program provides the Truth Table of a the inverse

of a Vector Boolean function given its Truth Table.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, X;

NTL::mat_GF2 Tf;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> Tf;

F.puttt(Tf);

input1.close();

inv(X,F);

cout << "The Truth Table of the inverse of F is " << endl

<< TT(X) << endl;

return 0;

}

The output for the execution of the example program with the code above

and the Truth Table of NibbleSub S-box as input will be:
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The Truth Table of the inverse of F is

[[1 1 1 0]

[0 0 1 1]

[0 1 0 0]

[1 0 0 0]

[0 0 0 1]

[1 1 0 0]

[1 0 1 0]

[1 1 1 1]

[0 1 1 1]

[1 1 0 1]

[1 0 0 1]

[0 1 1 0]

[1 0 1 1]

[0 0 1 0]

[0 0 0 0]

[0 1 0 1]

]

5.4 Sum

5.4.1 Description

Definition 5.4.1. Let n ≥ 1,m ≥ 1, F,G ∈ Fn,m. The Sum of F and G, denoted

by F +G ∈ Fn,m is the Vector Boolean Function whose Truth Table results from

the addition of the Truth Tables of F and G: TF+G = TF + TG.

5.4.2 Library

It can be obtained with the following method:

void sum(VBF& X, VBF& F, VBF& G)

Example 5.4.1. The following program provides the nonlinearity, absolute indi-

cator and linearity distance of two Vector Boolean functions given its polynomial

representation in ANF and its hexadecimal representation of Truth Table respec-

tively and calculates the same criteria for the its sum.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])
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{

using namespace VBFNS;

VBF F, G, X;

vec_pol f;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> f;

F.putpol(f);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

G.putHexTT(input2);

input2.close();

cout << "The polynomial in ANF of F is ";

cout << endl;

Pol(cout,F);

cout << "nl(F)=" << nl(F) << endl;

cout << "ACmax(F)=" << maxAC(F) << endl;

cout << "LD(F)=" << ld(F) << endl;

cout << endl;

cout << "The polynomial in ANF of G is ";

cout << endl;

Pol(cout,G);

cout << endl;

sum(X,F,G);

cout << "The polynomial in ANF of the sum of F and G is ";

cout << endl;

Pol(cout,X);
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cout << "nl(F+G)=" << nl(X) << endl;

cout << "ACmax(F+G)=" << maxAC(X) << endl;

cout << "LD(F+G)=" << ld(X) << endl;

cout << endl;

return 0;

}

If we use the Boolean function F with ANF x1x2 + x3x4 and function G with

hexadecimal representation of Truth Table 0001 as inputs, the output would be

the following:

The polynomial in ANF of F is

x1x2+x3x4

nl(F)=6

ACmax(F)=0

LD(F)=4

The polynomial in ANF of G is

x1x2x3x4

The polynomial in ANF of the sum of F and G is

x3x4+x1x2+x1x2x3x4

nl(F+G)=5

ACmax(F+G)=4

LD(F+G)=3

These results are congruent with the properties of changing one bit of the

Truth Table:

• NL(F +G) = NL(F )− 1 = 6− 1 = 5.

• ACmax(F +G) = ACmax(F ) + 4 = 0 + 4 = 4.

• LD(F +G) = LD(F )− 1 = 4− 1 = 3.

5.5 Direct Sum

5.5.1 Description

Definition 5.5.1. Let n1, n2 ≥ 1, F1 ∈ Fn1,m, F2 ∈ Fn2,m be Vector Boolean

functions. Consider the Vector Boolean function F1 ⊕ F2 ∈ Fn1+n2,m, called

direct sum, defined as (F1 ⊕ F2) ((x1,x2)) = F1(x1) + F2(x2). See figure 5.3.
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Figure 5.3: Direct Sum.

5.5.2 Library

The method included in VBF to perform this construction is the following:

void directsum(VBF& X, VBF& F, VBF& G)

Example 5.5.1. The following program provides the weight, algebraic degree,

balancedness, correlation immunity, nonlinearity and algebraic immunity of two

Vector Boolean functions given its polynomial representation in ANF and calcu-

lates the same criteria for the its direct sum.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, G, X;

ifstream input1(argv[1]);

if(!input1){

cerr << "Error opening " << argv[1] << endl;

return 0;

}

F.putHexTT(input1);
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input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

G.putHexTT(input2);

input2.close();

cout << "weight(F)=" << weight(F) << endl;

cout << "deg(F)=" << deg(F) << endl;

if (Bal(F)) {

cout << "F is a balanced function" << endl;

} else {

cout << "F is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of F=" << CI(F) << endl;

cout << "R(F)=" << SpectralRadius(F) << endl;

cout << "nl(F)=" << nl(F) << endl;

cout << "ACmax(F)=" << maxAC(F) << endl;

cout << "ld(F)=" << ld(F) << endl;

cout << "AI(F)=" << AI(F) << endl;

cout << "F is PC of degree " << PC(F) << endl;

cout << endl;

cout << "weight(G)=" << weight(G) << endl;

cout << "deg(G)=" << deg(G) << endl;

if (Bal(G)) {

cout << "G is a balanced function" << endl;

} else {

cout << "G is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of G=" << CI(G) << endl;

cout << "R(G)=" << SpectralRadius(G) << endl;

cout << "nl(G)=" << nl(G) << endl;

cout << "ACmax(G)=" << maxAC(G) << endl;

cout << "ld(G)=" << ld(G) << endl;

cout << "AI(G)=" << AI(G) << endl;

cout << "G is PC of degree " << PC(G) << endl;

cout << endl;
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directsum(X,F,G);

cout << "weight(F directsum G)=" << weight(X) << endl;

cout << "deg(F directsum G)=" << deg(X) << endl;

if (Bal(X)) {

cout << "F directsum G is a balanced function" << endl;

} else {

cout << "F directsum G is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of F directsum G=" << CI(X) << endl;

cout << "R(F directsum G)=" << SpectralRadius(X) << endl;

cout << "nl(F directsum G)=" << nl(X) << endl;

cout << "ACmax(F directsum G)=" << maxAC(X) << endl;

cout << "ld(F directsum G)=" << ld(G) << endl;

cout << "AI(F directsum G)=" << AI(X) << endl;

cout << "F directsum G is PC of degree " << PC(X) << endl;

return 0;

}

If we use the Boolean functions with the following Truth Tables (in hexadec-

imal representation) as inputs:

6cb405778ea9bd30

5c721bcaac27b1c5

The output would be the following:

weight(F)=32

deg(F)=3

F is a balanced function

Degree of Correlation immunity of F=1

R(F)=16

nl(F)=24

ACmax(F)=32

ld(F)=8

AI(F)=3

F is PC of degree 2

weight(G)=32

deg(G)=3
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G is a balanced function

Degree of Correlation immunity of G=2

R(G)=32

nl(G)=16

ACmax(G)=64

ld(G)=0

AI(G)=2

G is PC of degree 1

weight(F directsum G)=2048

deg(F directsum G)=3

F directsum G is a balanced function

Degree of Correlation immunity of F directsum G=4

R(F directsum G)=512

nl(F directsum G)=1792

ACmax(F directsum G)=4096

ld(F directsum G)=0

AI(F directsum G)=3

F directsum G is PC of degree 1

These results are congruent with the properties derived in [36] and others

derived by Jose Antonio Alvarez:

• wt(F ⊕G) = 26 · 32 + 26 · 32− 2 · 32 · 32 = 2048.

• deg(F ⊕G) = max {3, 3} = 3.

• F is 1-resilient, G is 2-resilient, and F ⊕G is (1 + 2 + 1)-resilient.

• R(F ⊕G) = 16 · 32 = 512 because F and G are Boolean functions.

• NL(F ⊕G) = 212−1 − 1
2 · 512 = 1792.

• ACmax(F ⊕G) = max{32 · 64, 64 · 64} = 4096.

• LD(F ⊕G) = 212−2 − 1
4 · 4096 = 0.

• max{3, 2} ≤ AI(F ⊕G) = 3 ≤ min {max {3, 3} , 3 + 2}.

5.6 Concatenation

5.6.1 Description

Definition 5.6.1. Let n1, n2 ≥ 1, F1 ∈ Fn,m, F2 ∈ Fn,m be Vector Boolean

functions. Consider the Vector Boolean function F1|cF2 ∈ Fn+1,m defined as

(x, xn+1)→ (xn+1 + 1)F1(x) + xn+1F2(x) where x ∈ Vn.



110
CHAPTER 5. OPERATIONS AND CONSTRUCTIONS OVER VECTOR

BOOLEAN FUNCTIONS

5.6.2 Library

The method included in VBF to perform this construction is the following:

void concat(VBF& X, VBF& F, VBF& G)

Example 5.6.1. The following program provides the weight, algebraic degree,

balancedness, correlation immunity, nonlinearity and algebraic immunity of two

Vector Boolean functions given its polynomial representation in ANF and calcu-

lates the same criteria for its concatenation.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F, G, X;

vec_pol f,g;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

input1 >> f;

F.putpol(f);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

input2 >> g;

G.putpol(g);

input2.close();

cout << "weight(F)=" << weight(F) << endl;

cout << "deg(F)=" << deg(F) << endl;

if (Bal(F)) {
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cout << "F is a balanced function" << endl;

} else {

cout << "F is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of F=" << CI(F) << endl;

cout << "nl(F)=" << nl(F) << endl;

cout << "AI(F)=" << AI(F) << endl;

cout << endl;

cout << "weight(G)=" << weight(G) << endl;

cout << "deg(G)=" << deg(G) << endl;

if (Bal(G)) {

cout << "G is a balanced function" << endl;

} else {

cout << "G is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of G=" << CI(G) << endl;

cout << "nl(G)=" << nl(G) << endl;

cout << "AI(G)=" << AI(G) << endl;

cout << endl;

concat(X,F,G);

cout << "The polynomial in ANF of the concatenation of F and G is ";

cout << endl;

Pol(cout,X);

cout << "weight(F concat G)=" << weight(X) << endl;

cout << "deg(F concat G)=" << deg(X) << endl;

if (Bal(X)) {

cout << "F concat G is a balanced function" << endl;

} else {

cout << "F concat G is a non-balanced function" << endl;

}

cout << "Degree of Correlation immunity of F concat G="

<< CI(X) << endl;

cout << "nl(F concat G)=" << nl(X) << endl;

cout << "AI(F concat G)=" << AI(X) << endl;

return 0;

}

If we use the Boolean functions 1 + x3x4 + x2 + x2x4 + x1 + x1x3 + x1x3x4
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and x3 +x2x4 +x1 +x1x4 +x1x3x4 as inputs, the output would be the following:

weight(F)=8

deg(F)=3

F is a balanced function

Degree of Correlation immunity of F=0

nl(F)=4

AI(F)=2

weight(G)=8

deg(G)=3

G is a balanced function

Degree of Correlation immunity of G=0

nl(G)=4

AI(G)=2

The polynomial in ANF of the concatenation of F and G is

1+x4x5+x3+x3x5+x2+x2x4+x2x4x5

weight(F concat G)=16

deg(F concat G)=3

F concat G is a balanced function

Degree of Correlation immunity of F concat G=0

nl(F concat G)=8

AI(F concat G)=2

These results are congruent with the properties of this construction:

• wt(F |cG) = 8 + 8 = 16.

• deg(F |cG) = 3 ≤ 1 + max {3, 3} = 1 + 3 = 4.

• F is 0-resilient, G is 0-resilient, and F |cG is 0-resilient.

• NL(F |cG) = 8 ≥ 4 + 4 = 8.

• If AI(F ) = AI(G) = 2, then AI(F |cG) = 2 ≤ 2 + 1.

5.7 Concatenation of Polynomials in ANF

5.7.1 Description

Definition 5.7.1. Let n1, n2 ≥ 1, F1 ∈ Fn1,m, F2 ∈ Fn2,m be Vector Boolean

functions. Consider the Vector Boolean function F1|pF2 ∈ Fn1+n2,m defined as

(x1, . . . , xn1 , xn1+1, . . . , xn1+n2)→ F1(x1, . . . , xn1) +F2(xn1+1, . . . , xn1+n2) where

x ∈ Vn1+n2 .
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5.7.2 Library

The method included in VBF to perform this construction is the following:

void concatpol(VBF& X, VBF& F, VBF& G)

Example 5.7.1. The following program provides the ANF of the concatenation

of polynomials in ANF of two Vector Boolean functions given its polynomial

representation.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F,G,H;

vec_pol f,g;

NTL::mat_GF2 T;

ifstream inputf(argv[1]);

if(!inputf) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

inputf >> f;

F.putpol(f);

inputf.close();

ifstream inputg(argv[2]);

if(!inputg) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

inputg >> g;

G.putpol(g);

inputg.close();

concatpol(H,F,G);

cout << "The ANF of the concatenation of polynomials

in ANF of F and G is ";
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cout << endl;

Pol(cout,H);

return 0;

}

If we use the Boolean functions x1x2 + x3x4 and x1 + 1 as inputs, the output

would be the following:

The ANF of the concatenation of polynomials in ANF of F and G is

x1x2+x3x4+x5+1

5.8 Addition of Coordinate Functions

5.8.1 Description

Definition 5.8.1. Let F = (f1, . . . , fm1) ∈ Fn,m1 , G = (g1, . . . , gm2) ∈ Fn,m2 and

the function conformed by adding the coordinate functions (F,G) = (f1, . . . , fm1 , g1, . . . , gm2) ∈
Fn,m1+m2 . Let v ∈ Vm1+m2 ,vF ∈ Vm1 and vG ∈ Vm2 so that v = (vF,vG). See

figure 5.4.

Figure 5.4: Adding Coordinate functions.

5.8.2 Library

This construction can be obtained with the following method:
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void addimage(VBF& X, VBF& F, VBF& G)

Example 5.8.1. The following program provides the Truth Tables of the differ-

ent intermediate constructions that allow to obtain CLEFIA S0 8× 8 S-box from

the Truth Tables of the four 4-bit S-boxes SS0, SS1, SS2 and SS3 in which it is

constructed and the Truth Table of the multiplication operation in 0x2 performed

in GF(24) defined by the primitive polynomial x4 + x+ 1.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF F,G,T20,T21,U0,U1,Y0,Y1,Y;

NTL::mat_GF2 TSS0, TSS1, TSS2, TSS3, Tmul2;

NTL::mat_GF2 T2t0, T2t1, Tu0, Tu1, Ty0, Ty1, Ty;

ifstream inputSS0("SS0.tt");

if(!inputSS0) {

cerr << "Error opening " << "SS0.tt" << endl;

return 0;

}

inputSS0 >> TSS0;

inputSS0.close();

ifstream inputSS1("SS1.tt");

if(!inputSS1) {

cerr << "Error opening " << "SS1.tt" << endl;

return 0;

}

inputSS1 >> TSS1;

inputSS1.close();

ifstream inputSS2("SS2.tt");

if(!inputSS2) {

cerr << "Error opening " << "SS2.tt" << endl;

return 0;

}

inputSS2 >> TSS2;
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inputSS2.close();

ifstream inputSS3("SS3.tt");

if(!inputSS3) {

cerr << "Error opening " << "SS3.tt" << endl;

return 0;

}

inputSS3 >> TSS3;

inputSS3.close();

ifstream inputmul2("Mul2.tt");

if(!inputmul2) {

cerr << "Error opening " << "Mul2.tt" << endl;

return 0;

}

inputmul2 >> Tmul2;

inputmul2.close();

cout << "t0=" << endl;

cout << TSS0 << endl << endl;

cout << "t1=" << endl;

cout << TSS1 << endl << endl;

F.puttt(TSS1);

G.puttt(Tmul2);

Comp(T21,F,G);

T2t1 = TT(T21);

cout << "0x2.t1=" << endl;

cout << T2t1 << endl;

F.kill();

G.kill();

F.puttt(TSS0);

G.puttt(Tmul2);

Comp(T20,F,G);

T2t0 = TT(T20);

cout << "0x2.t0=" << endl;

cout << T2t0 << endl;

cout << "u0=t0+0x2.t1=" << endl;

F.kill();

F.puttt(TSS0);

directsum(U0,F,T21);

Tu0 = TT(U0);
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cout << Tu0 << endl;

G.kill();

cout << "u1=0x2.t0+t1=" << endl;

G.puttt(TSS1);

directsum(U1,T20,G);

Tu1 = TT(U1);

cout << Tu1 << endl;

G.kill();

cout << "y0=SS2(u0)=" << endl;

G.puttt(TSS2);

Comp(Y0,U0,G);

Ty0 = TT(Y0);

cout << Ty0 << endl;

G.kill();

cout << "y1=SS3(u1)=" << endl;

G.puttt(TSS3);

Comp(Y1,U1,G);

Ty1 = TT(Y1);

cout << Ty1 << endl;

addimage(Y,Y0,Y1);

Ty = TT(Y);

cout << "y=(y0,y1)=" << endl;

cout << Ty << endl;

return 0;

}

The output of this program is described in section ”Analysis of CRYPTEC

project cryptographic algorithms”.

Note that the output of S0 S-box y ∈ F8,8 is defined by the addition of

coordinate functions of both y0 ∈ F8,4 and y1 ∈ F8,4.

5.9 Bricklayer

5.9.1 Description

Definition 5.9.1. Let n1, n2,m1,m2 ≥ 1 and F1 ∈ Fn1,m1 , F2 ∈ Fn2,m2 and

the Bricklayer function F1|F2 ∈ Fn1+n2,m1+m2 . Let u1 ∈ Vn1 , u2 ∈ Vn2 and

u = (u1,u2), v1 ∈ Vm1 , v2 ∈ Vm2 and v = (v1,v2). See figure 5.5.
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Figure 5.5: Bricklayer.

5.9.2 Library

It can be obtained with the following method:

void bricklayer(VBF& X, VBF& F, VBF& G)

Example 5.9.1. KHAZAD is a block cipher designed by Paulo S. L. M. Barreto

together with Vincent Rijmen, which was presented at the first NESSIE workshop

in 2000, and, after some small changes, was selected as a finalist in the project.

This cipher uses a 8 × 8 S-box composed of smaller pseudo-randomly generated

4× 4 mini S-boxes (the P-box and the Q-box) as represented in figure 5.6.

The following program provides the Truth Tables of the different intermediate

constructions that allow to obtain KHAZAD S-box from P and Q mini S-boxes

and the permutation that apply between them.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;

VBF P, Q, PQ, R, QP, S, T, U, A;

NTL::mat_GF2 Tp, Tq;

NTL::vec_ZZ r;

ifstream inputp("P.tt");

if(!inputp) {

cerr << "Error opening " << "P.tt" << endl;
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Figure 5.6: KHAZAD S-box construction.



120
CHAPTER 5. OPERATIONS AND CONSTRUCTIONS OVER VECTOR

BOOLEAN FUNCTIONS

return 0;

}

inputp >> Tp;

P.puttt(Tp);

inputp.close();

ifstream inputq("Q.tt");

if(!inputq) {

cerr << "Error opening " << "Q.tt" << endl;

return 0;

}

inputq >> Tq;

Q.puttt(Tq);

inputq.close();

ifstream input("R.per");

if(!input) {

cerr << "Error opening " << "R.per" << endl;

return 0;

}

input >> r;

R.putper(r);

input.close();

bricklayer(PQ,P,Q);

cout << "Bricklayer of P and Q=" << endl;

cout << TT(PQ) << endl;

Comp(S,PQ,R);

cout << "Composition of 1st bricklayer

with permutation=" << endl;

cout << TT(S) << endl;

bricklayer(QP,Q,P);

cout << "Bricklayer of Q and P=" << endl;

cout << TT(QP) << endl;

Comp(T,S,QP);

cout << "Composition of previous result

with 2nd bricklayer=" << endl;

cout << TT(T) << endl;
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Comp(U,T,R);

cout << "Composition of previous result

with permutation=" << endl;

cout << TT(U) << endl;

Comp(A,U,PQ);

cout << "Composition of previous result

with 1st bricklayer=" << endl;

cout << TT(A) << endl;

return 0;

}

If we use the Truth Tables of P and Q and the representation of the permuta-

tion between them, the output are the Truth Tables described KHAZAD section

in ”Analysis of NESSIE project cryptographic algorithms”.

Table 5.1: Results of spectral radius(r),NL, lp, dp,ACmax and LD for bricklayer
of P and Q mini S-boxes.

S-box r NL lp dp ACmax LD

P 8 4 0.25 0.25 8 2
Q 8 4 0.25 0.25 8 2
P |Q 128 64 0.25 0.25 256 0
Q|P 128 64 0.25 0.25 256 0
R ◦ (P |Q) 128 64 0.25 0.25 256 0
(Q|P ) ◦ ((R ◦ (P |Q))) 96 80 0.140625 0.125 160 24
R ◦ ((Q|P ) ◦ ((R ◦ (P |Q)))) 96 80 0.140625 0.125 160 24
S = (P |Q) ◦ (R ◦ ((Q|P ) ◦ ((R ◦ (P |Q))))) 64 96 0.0625 0.03125 104 38

Example 5.9.2. The following program provides the balancedness and correla-

tion immunity (resiliency) of two Vector Boolean functions given its Truth Table

in hexadecimal representation and calculates the same criteria for the bricklayer-

ing of F and G taking as inputs their Truth Tables in hexadecimal representation.

#include <iostream>

#include <fstream>

#include "VBF.h"

int main(int argc, char *argv[])

{

using namespace VBFNS;
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VBF F, G, H;

ifstream input1(argv[1]);

if(!input1) {

cerr << "Error opening " << argv[1] << endl;

return 0;

}

F.putHexTT(input1);

input1.close();

ifstream input2(argv[2]);

if(!input2) {

cerr << "Error opening " << argv[2] << endl;

return 0;

}

G.putHexTT(input2);

input2.close();

cout << "Correlation immunity of F: " << CI(F) << endl;

if (Bal(F)) {

cout << "F is a balanced function" << endl;

} else {

cout << "F is a non-balanced function" << endl;

}

cout << "Correlation immunity of G: " << CI(G) << endl;

if (Bal(G)) {

cout << "G is a balanced function" << endl;

} else {

cout << "G is a non-balanced function" << endl;

}

bricklayer(H,F,G);

cout << "Correlation immunity of F bricklayer G: " << CI(H) << endl;

if (Bal(H)) {

cout << "F bricklayer G is a balanced function" << endl;

} else {

cout << "F bricklayer G is a non-balanced function" << endl;

}
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return 0;

}

If we use the Boolean functions with the following Truth Tables (in hexadec-

imal representation) as inputs:

6cb405778ea9bd30

5c721bcaac27b1c5

The output would be the following:

Correlation immunity of F: 1

F is a balanced function

Correlation immunity of G: 2

G is a balanced function

Correlation immunity of F bricklayer G: 1

F bricklayer G is a balanced function

5.10 Summary

Table 5.2 lists the member functions related to the previous characterizing elements.

Table 5.2: Constructions over VBF.

SYNTAX DESCRIPTION

long operator==(VBF& F, VBF& G) Returns 1 if F and G are equal
0 otherwise

void Comp(VBF& X, VBF& F, VBF& G) X = G ◦ F
void inv(VBF& X, VBF& A) X = F−1

void sum(VBF& X, VBF& F, VBF& G) X = F +G
void directsum(VBF& X, VBF& F, VBF& G) X(x,y) = F (x) +G(y)
void concat(VBF& X, VBF& F, VBF& G) X(x, xn+1) = (xn+1 + 1)F (x) + xn+1G(x)
void concatpol(VBF& X, VBF& F, VBF& G) X(x1, . . . , xn1 , xn1+1, . . . , xn1+n2)

= F (x1, . . . , xn1) +G(xn1+1, . . . , xn1+n2)
void addimage(VBF& X, VBF& F, VBF& G) X = (F,G)
void bricklayer(VBF& X, VBF& F, VBF& G) X = F |G
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