
Overview of SuiteSparseQR, a multifrontal
multithreaded sparse QR factorization package

Timothy A. Davis∗

May 20, 2011

1 The SuiteSparseQR subset

The SuiteSparseQR meta-package is a subset of the SuiteSparse meta-package, and includes
following packages:

• SPQR: SuiteSparseQR itself

• CHOLMOD: which SPQR relies on for its symbolic QR analysis

• AMD: approximate minimum degre ordering

• CAMD: constrained approximate minimum degre ordering, for use with METIS

• COLAMD: column approximate minimum degre ordering

• CAMD: constrained column approximate minimum degre ordering, for use with METIS

• UFconfig: configuration parameters for all SuiteSparse packages

An overview of SuiteSparseQR (SPQR) is given below. Details of each package are de-
scribed in full user manuals in the Doc directories. In particular, refer to SuiteSparseQR/SPQR/Doc
for more details on SuiteSparseQR.

∗Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, USA.
email: davis@cise.ufl.edu, DrTimothyAldenDavis@gmail.com. http://www.cise.ufl.edu/∼davis. Portions of
this work were supported by the National Science Foundation, under grants 0203270, 0620286, and 0619080.

1

2 Using SuiteSparseQR in MATLAB

The simplest way to use SuiteSparseQR is via MATLAB. To compile for MATLAB, use
these commands in the MATLAB Command Window:

cd SuiteSparseQR/SPQR/MATLAB

spqr_install

spqr_demo

MATLAB R2009a (and later versions) include SuiteSparseQR as the built-in sparse QR
method. The following features are new to the sparse qr in R2009a:

1. The prior MATLAB qr does not exploit singletons. It uses COLMMD, which is slower
than COLAMD and provides lower quality orderings.

2. For rank-deficient matrices, R=qr(A) returns R in a “squeezed” form that can be diffi-
cult to use in subsequent MATLAB operations. Let r be the estimated rank. SuiteS-
parseQR can also return R in upper trapezoidal form as [R11 R12 ; 0 0] where R11

is r-by-r upper triangular, via [Q,R,E]=qr(A). Computing condest(R(1:r,1:r)) is
simple with the upper trapezoidal R.

3. SuiteSparseQR fully supports sparse complex rectangular matrices; the prior MATLAB
qr and x=A\b do not.

4. SuiteSparseQR exploits parallelism. The prior MATLAB sparse qr does not.

MATLAB R2009a does not expose all of the new features of SuiteSparseQR. These
features are available only if SuiteSparseQR is installed by the end user:

1. A more efficient representation of Q as a MATLAB struct, with a set of Householder
vectors, Q.H, coefficients Q.Tau, and a permutation Q.P. This takes much less space
than representing Q as a sparse matrix. It is often the case that nnz(Q.H) is less than
nnz(R).

2. The MATLAB statement x=A\b when A is under-determined computes a basic solution.
SuiteSparseQR can do this too, but it can also compute a minimum 2-norm solution
far more efficiently than MATLAB can. With the MATLAB qr this can only be done
with Q in its matrix form, which is costly.

3. Default parameters can be modified, which can:

• change the rank-detection tolerance τ ,

• request the return of the complete QR, the “economy QR,” (where R has min(m,n)
rows and Q has min(m,n) columns) or the “rank-sized QR” (where R has r rows
and Q has r columns, with r being the estimated rank of A).

• change the default ordering (COLAMD, AMD, METIS, and strategies where mul-
tiple orderings are tried and the one with the least nnz(R) is chosen),

• and control the degree of parallelism exploited by TBB and the BLAS.

2

3 Using SuiteSparseQR in C and C++

SuiteSparseQR relies on CHOLMOD for its basic sparse matrix data structure: a compressed
sparse column format. CHOLMOD provides interfaces to the AMD, COLAMD, and METIS
ordering methods, supernodal symbolic Cholesky factorization (namely, symbfact in MAT-
LAB), functions for converting between different data structures, and for basic operations
such as transpose, matrix multiply, reading a matrix from a file, writing a matrix to a file,
and many other functions.

For Linux/Unix/Mac users who want to use the C++ callable library:

• To compile the C++ library and run a short demo, just type make in the Unix shell,
in the top-level directory.

• To compile the SuiteSparseQR C++ library, in the Unix shell, do: cd SPQR/Lib ; make

• To compile and test an exhaustive test, edit the Tcov/Makefile to select the LAPACK
and BLAS libraries, and then do (in the Unix shell): cd SPQR/Tcov ; make

• Compilation options in UFconfig/UFconfig.mk, SPQR/*/Makefile, or
SPQR/MATLAB/spqr_make.m:

– -DNPARTITION to compile without METIS (default is to use METIS)

– -DNEXPERT to compile without the min 2-norm solution option (default is to in-
clude the Expert routines)

– -DHAVE_TBB to compile with Intel’s Threading Building Blocks (default is to not
use Intel TBB)

– -DTIMING to compile with timing and exact flop counts enabled (default is to not
compile with timing and flop counts)

The C++ interface is written using templates for handling both real and complex ma-
trices. The simplest function computes the MATLAB equivalent of x=A\b:

#include "SuiteSparseQR.hpp"

X = SuiteSparseQR <double> (A, B, cc) ;

The C version of this function is almost identical:

#include "SuiteSparseQR_C.h"

X = SuiteSparseQR_C_backslash_default (A, B, cc) ;

Below is a simple C++ program that illustrates the use of SuiteSparseQR. The program
reads in a least-squares problem in Matrix Market format solves it, and prints the norm of
the residual and the estimated rank of A.

3

#include "SuiteSparseQR.hpp"

int main (int argc, char **argv)

{

cholmod_common Common, *cc ;

cholmod_sparse *A ;

cholmod_dense *X, *B, *Residual ;

double rnorm, one [2] = {1,0}, minusone [2] = {-1,0} ;

int mtype ;

cc = &Common ; // start CHOLMOD

cholmod_l_start (cc) ;

A = (cholmod_sparse *) cholmod_l_read_matrix (stdin, 1, &mtype, cc) ;

B = cholmod_l_ones (A->nrow, 1, A->xtype, cc) ; // B = ones (size (A,1),1)

X = SuiteSparseQR <double> (A, B, cc) ; // X = A\B

Residual = cholmod_l_copy_dense (B, cc) ; // rnorm = norm (B-A*X)

cholmod_l_sdmult (A, 0, minusone, one, X, Residual, cc) ;

rnorm = cholmod_l_norm_dense (Residual, 2, cc) ;

printf ("2-norm of residual: %8.1e\n", rnorm) ;

printf ("rank %ld\n", cc->SPQR_istat [4]) ;

cholmod_l_free_dense (&Residual, cc) ; // free everything and finish

cholmod_l_free_sparse (&A, cc) ;

cholmod_l_free_dense (&X, cc) ;

cholmod_l_free_dense (&B, cc) ;

cholmod_l_finish (cc) ;

return (0) ;

}

All features available to the MATLAB user are also available to both the C and C++
interfaces using a syntax that is not much more complicated than the MATLAB syntax.
Additional features not available via the MATLAB interface include the ability to compute
the symbolic and numeric factorizations separately. The following is a list of user-callable
C++ functions and what they can do:

1. SuiteSparseQR: an overloaded function that provides functions equivalent to qr and
x=A\b in MATLAB.

2. SuiteSparseQR_factorize: performs both the symbolic and numeric factorizations
and returns a QR factorization object such that A*P=Q*R.

3. SuiteSparseQR_symbolic: performs the symbolic factorization and returns a QR fac-
torization object to be passed to SuiteSparseQR_numeric. To permit the reuse of this
object, singletons are not exploited.

4. SuiteSparseQR_numeric: performs the numeric factorization on a QR factorization
object, either one constructed by SuiteSparseQR_symbolic, or reusing one from a
prior call to SuiteSparseQR_numeric for a matrix A with the same pattern as the first
one, but with different numerical values.

5. SuiteSparseQR_solve: solves a linear system x=R\b, x=P*R\b, x=R’\b, or x=R’\(P’*b),
using the object returned by SuiteSparseQR_factorize or
SuiteSparseQR_numeric.

4

6. SuiteSparseQR_qmult: computes Q*x, Q’*x, x*Q, or x*Q’ using the Householder rep-
resentation of Q.

7. SuiteSparseQR_min2norm: finds the minimum 2-norm solution to an underdetermined
linear system.

8. SuiteSparseQR_free: frees the QR factorization object.

4 License

SuiteSparseQR is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

SuiteSparseQR is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

A non-GPL license is also available. Contact the author for details.

5

