
A

IDR(s) MATLAB implementation manual.

MARTIN B. VAN GIJZEN and PETER SONNEVELD, Delft University of Technology

1. INTRODUCTION

IDR(s) was introduced in [Sonneveld and van Gijzen 2008] as a family of iterative methods
for solving large nonsymmetric linear systems

Ax = b

with A ∈ C
N×N , x, b ∈ C

N . This manual describes the function idrs.m which is the MATLAB
implementation of IDR(s)-biortho, the IDR(s) variant that is described in [van Gijzen and
Sonneveld 2011]. The features of idrs are illustrated with a test set of 11 examples.
The function idrs.m and the accompanying test set is part of ACM collected algorithms
(CALGO) and can be downloaded from

http://calgo.acm.org/.
To run the test set go to the directory IDRS in a MATLAB command window. Typing
test idrs in this directory opens a menu that gives the choice between the 11 different tests.
idrs.m contains online help instructions that can be seen by typing help idrs (help idrs.m
under MATLAB 7.5.0).
The codes have been tested under MATLAB 6.5.0, MATLAB 7.5.0, MATLAB 7.7.0 and under
OCTAVE 3.2.3.

2. DESCRIPTION OF THE INPUT AND THE OUTPUT PARAMETERS.

The most basic call to idrs is:
[x] = idrs(A,b); .

This call uses default values for all the input parameters that are not specified, and only
returns the solution. The most general call to the function idrs is as follows:

[x,flag,relres,iter,resvec,repl] = idrs(A,b,s,tol,maxit,M1,M2,x0,options) .
This call makes it possible to set all the input parameters by user chosen values, and gives
information about the iterative process as output. Input parameters that are empty or not
specified take default values.
The names and the ordering of the parameters of idrs are analogous to the MATLAB built-
in iterative solvers gmres, bicgstab, cgs, qmr, and bicg. Yet, there are some important
differences. The next two subsections describe the input and the output parameters, and
also indicate differences in definition of the parameters with the corresponding ones in the
MATLAB built-in routines.

2.1. Input parameters

A: The parameter A defines the system matrix A. It can be a square N × N (complex
or real) two dimensional array, or a structure if the action of A is defined by a
function. In the latter case, the name of the function must be specified in the field
A.name. Other fields can be used to pass parameters to the function that performs
the matrix-vector multiplication v = Au. For example, if the name of this function is
mv, then A.name = ’mv’. The parameter list of mv should be as follows: v = mv(u,
A). See also example 2 in section 3. Note that the way a function is passed to idrs
differs from the way functions are passed to the MATLAB built-in iterative solvers
(these use function handles).
A must be specified.

Part of this research has been funded by the Dutch BSIK/BRICKS project.
Author’s addresses: M..B. van Gijzen and P. Sonneveld, Delft Institute of Applied Mathematics, Mekelweg 4, 2628
CD Delft, The Netherlands, E-mail: M.B.vanGijzen@tudelft.nl, P.Sonneveld@tudelft.nl

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this
notice on the first page or initial screen of a display along with the full citation. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0098-3500/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

A:2 M.B. van Gijzen and P. Sonneveld

b: The parameter b defines the right-hand-side vector. b must be a one-dimensional
complex or real array of size N .
b must be specified.

s: The parameter s specifies the dimension of the so-called shadow space in IDR(s). It
must be a positive scalar integer.
The default is s = 4.

tol: The parameter tol specifies the tolerance that must be satisfied: ‖ri‖/‖b‖ < tol,
where ri is the (recursively computed) residual b− Axi. tol must be a positive real
scalar.
The default is tol = 1e-8.

maxit: The parameter maxit specifies the maximum number of iterations. maxit must be
a positive integer scalar. Each iteration corresponds to one matrix-vector multipli-
cation. Note: if a residual replacement strategy is used it is possible that a few
additional matrix-vector multiplications are performed, see options below.
The default is maxit = min(2*N,1000), with N the problem size.

M1: The parameter M1 defines the left factor of the preconditioner M = M1M2. If M2 is
not specified or empty then M1 defines M. M1 can be a real or complex matrix of the
same size asA, or a structure if the action ofM1 is defined by a function. In the latter
case, the name of the function must be specified in the field M1.name. Other fields
can be used to pass parameters to the function that performs the preconditioning
operation v = M−1

1
u. For example, if the name of this function is m1, then M1.name

= ’m1’. The parameter list of m1 should be as follows: v = m1(u, A). See also
example 4 in section 3.
The default is M1 = I, with I the identity.

M2: The parameter M2 defines the right factor of the preconditioner M = M1M2. If M1 is
not specified or empty then M2 defines M . M2 can be a real or complex matrix of the
same size as A, or a structure if the action of M2 is defined by a function. As for M1,
this structure should have a field M2.name. See also example 4 in section 3.
The default is M2 = I, with I the identity.

x0: The parameter x0 specifies the initial guess x0. x0 must be a one-dimensional array
of dimension N .
The default is x0 = 0, the zero vector.

options: Some more advanced parameters can be set or changed via the structure options.
These are:
options.smoothing: The field options.smoothing must be a logical (or binary: 0

means false, 1 means true). Setting options.smoothing = 1
switches residual smoothing on. Residual smoothing results
in monotonically decreasing residual norms at the expense of
two extra vectors of storage and a few extra vector operations.
Although monotonic decrease of the residual norms is a desir-
able property, the rate of convergence of the unsmoothed pro-
cess and the smoothed process is basically the same. Residual
smoothing is discussed in example 5 of section 3.
The default is options.smoothing = 0: no residual smoothing.

options.omega: The field options.omega must be a real scalar. In IDR(s), a
value for the iteration parameter ω must be chosen in every
s + 1th step. The most natural choice is to select ω to mini-
mize the norm of the next residual. This corresponds with the
parameter setting options.omega = 0. In practice, this may
lead to values of ω that are so small that the other iteration
parameters cannot be computed with sufficient accuracy. In
such cases it is better to increase the value of ω sufficiently
such that a compromise is reached between accurate compu-
tations and reduction of the residual norm. The parameter
setting options.omega = 0.7 (”maintaining the convergence
strategy”) results in such a compromise. The effect of these
different choices for ω is illustrated by example 6.
The default is options.omega = 0.7: ”maintaining the conver-
gence strategy”.

options.P: The field options.Pmust be a real or complex two-dimensional
array of size N × s. It makes it possible to pass a user-defined

IDR(s) MATLAB implementation manual. A:3

shadow matrix P . See also examples 7 and 11 for illustrations.
The default is P = randn(N,s): P random, normally dis-
tributed.

options.replace: The parameter options.replace is a logical that determines
whether a residual replacement strategy is employed to in-
crease the accuracy of the solution. This strategy is discussed
in example 9 of section 3.
The default is options.replace = 0: no residual replacement.

2.2. Output parameters

If no output parameters are specified idrs will show the online help, i.e., typing idrs has the
same effect as help idrs. Note: under MATLAB 7.5.0 this does not work as expected. To get
online help under MATLAB 7.5 one should type help idrs.m.

x The parameter x is an array of length N and gives the solution vector.
flag The parameter flag is an integer scalar that gives information about the way the

process was terminated:
flag = 0: Successful termination. The tolerance was met within the maximum num-

ber of iterations.
flag = 1: The process was terminated because the maximum number of iterations

was reached.
flag = 2: The computed solution does not satisfy the required tolerance. This can

be caused by build-up of rounding errors. See examples 8-10 of section 3
for a discussion on causes and remedies.

flag = 3: One of the iteration parameters became zero, causing breakdown.
relres: The parameter relres is a real scalar that gives the relative norm of the true resid-

ual, i.e. relres = ‖b − Ax‖/‖b‖. This value should be smaller than tol, but due to
build-up of rounding errors it can be larger. In that case flag = 2.

iter: The parameter iter is an integer scalar that gives the total number of iterations
that has been performed. Note that the meaning of iter is slightly different from the
corresponding parameter in the MATLAB built-in iterative solvers, which gives the
iteration number for which the residual norm was minimal.

resvec: The parameter resvec is a real one-dimensional array of size iter+1 that gives for
every iteration (starting with iteration 0) the norm of the recursively computed resid-
ual.

repl: The parameter repl is an integer scalar that gives the number of residual replace-
ments. This parameter can only be nonzero if options.replace = 1.

3. EXAMPLES

This section describes the 11 tests that are part of the distribution. To run the tests, type
test idrs in the command window.
The results that are presented in this section have been carried out using MATLAB 7.5.0 on a
standard PC with an Intel Core 2 duo processor and 4 Gb of RAM that runs under LINUX. We
remark that the results vary slightly (but not essentially) if a different computer or another
MATLAB version or OCTAVE is used due to finite precision effects and due to differences in
the random number generators.

3.1. Testproblem

We illustrate the features of idrs with the finite difference discretisation of the following
convection-diffusion-reaction equation with homogeneous Dirichlet boundary conditions on
the unit cube:

−ǫ∆u+ ~β · ∇u− ru = F

The right-hand-side vector F is defined by the solution u(x, y, z) = x(1− x)y(1− y)z(1− z).
The problem is discretised using central differences with grid size h = 0.1. The resulting
linear system consists of 729 equations. The physical parameters are chosen as follows: ǫ =

0.02 (diffusion), ~β = (0/
√
5 1/

√
5 2/

√
5)T (convection), and r = 6 (reaction).

The test problem is generated using the following call to the function make systems:

[A, b] = make_system(eps, beta, r, h);.

A:4 M.B. van Gijzen and P. Sonneveld

0 100 200 300 400 500 600 700
−10

−8

−6

−4

−2

0

2

4

6

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 1

IDR(1)
IDR(2)
IDR(4)
IDR(8)
Bi−CGSTAB
GMRES

Fig. 1. Convergence of unpreconditioned IDR(s).

3.2. Example 1: unpreconditioned IDR(s).

The first example uses unpreconditioned IDR(s) and, except for s, default parameters. The
call is:

[x,flag,relres,iter,resvec] = idrs(A,b,s);

Figure 1 shows the convergence for IDR(s), for s = 1,2,4 and 8. All methods achieve the re-
quired accuracy, meaning that flag = 0 and that relres < tol, with tol = 1e-8 (default).
Figure 1 also shows the convergence of GMRES and Bi-CGSTAB. The convergence curves of
IDR(s) are in between the convergence curves of GMRES and Bi-CGSTAB, and are increas-
ingly closer to the GMRES curve for higher s.

3.3. Example 2: IDR(s) with SSOR-preconditioning using Eisenstat’s trick.

The second example shows IDR(s) with SSOR-preconditioning. The matrix-vector multiplica-
tion and the preconditioning operation are combined using Eisenstat’s trick.
Let

A = L+D + U

where L, D, and U are the strictly lower triangular part, the main diagonal, and the strictly
upper triangular of A, respectively. The SSOR preconditioner (more accurately Symmetric
Gauss-Seidel preconditioner) is defined by

B = (L+D)D−1(U +D) = (LD−1 + I)(U +D) .

The (two sided) preconditioned system now reads

D(L+D)−1A(U +D)−1y = D(L+D)−1b ,

x = (U +D)−1y (1)

In order to make multiplications with the preconditioned system matrix Ã more efficient we
rewrite this matrix as follows

Ã = D(L+D)−1A(U +D)−1

= D(L+D)−1(L+D −D + U +D)(U +D)−1

= D((U +D)−1 + (L+D)−1 − (L+D)−1D(U +D)−1)

= D(U +D)−1 + (LD−1 + I)−1 − (LD−1 + I)−1D(U +D)−1

= (UD−1 + I)−1 + (LD−1 + I)−1(I − (UD−1 + I)−1) .

The multiplication v = Ãu can then be efficiently performed as follows

t = (UD−1 + I)−1u

v = t+ (LD−1 + I)−1(u− t) .

IDR(s) MATLAB implementation manual. A:5

0 5 10 15 20 25 30 35 40 45 50
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 2

IDR(1)
IDR(2)
IDR(4)
IDR(8)
Bi−CGSTAB
GMRES

Fig. 2. Convergence of IDR(s) with SSOR preconditioner, using Eissenstat’s trick.

The above technique can be implemented as follows:

K.name = ’mv’; % name of the function that performs the matrix-vector multiplication
K.D = diag(diag(A)); % field K.D contains D
K.L = tril(A)/K.D; % field K.L contains (LD^{-1}+I)
K.U = triu(A)/K.D; % field K.U contains (UD^{-1}+I)
f = K.L\b; % right-hand side of preconditioned system
[y, flag,relres,iter,resvec] = idrs(K, f); % Note: the default s=4 is taken here
x = KD\(K.U\y); % scale back

The function mv that performs the preconditioned matrix-vector multiplication is as follows

function v = mv(u, A);
t = (A.U\u);
v = t + (A.L\(u - t));
return

Figure 2 shows the convergence for IDR(s), with s = 1,2,4 and 8. As in the previous example,
also the convergence curves of GMRES and Bi-CGSTAB are shown. Note that for this example
IDR(s) does not give a significant gain over Bi-CGSTAB. The reason is that the convergence of
Bi-CGSTAB is rather close to the optimal convergence of GMRES: there is not much room for
much improvement. This is typical for well-conditioned (and well-preconditioned) problems.
For this example all methods terminate with flag = 0, which indicates that the required
accuracy is achieved. Also, the parameter relres is always smaller than 10−8, the default
tolerance. However, if we check the scaled residual norm ‖b − Ax‖/‖b‖ we get a value that is
much higher than the required tolerance. For example,

IDR(4) iteration
Relative unpreconditioned residual norm: 9.0194e-05
|b - Ax|/|b| = 5.5186e-09

The reason for this is that relres (= ‖b−Ax‖/‖b‖) corresponds to the relative residual norm
for the preconditioned system, which may differ considerably from the relative residual norm
for the unpreconditioned system if left or two-sided preconditioning is used. The next exam-
ples use implicit preconditioning, which is in IDR(s) equivalent with right-preconditioning. In
this case the residual of the preconditioned system and of the unpreconditioned system are
the same.

A:6 M.B. van Gijzen and P. Sonneveld

0 10 20 30 40 50 60 70
−10

−8

−6

−4

−2

0

2

4

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 3

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 3. Convergence of IDR(s) with SSOR preconditioning, preconditioner passed as a factored matrix.

3.4. Example 3: SSOR-preconditioned IDR(s), preconditioner passed as a factored matrix

Example 3 shows how IDR(s) can be combined with implicit SSOR-preconditioning (in IDR(s)
this is equivalent with right preconditioning). So in this case the preconditioned system reads

A((LD−1 + I)(U +D))−1y = b ,

x = ((LD−1 + I)(U +D))−1y (2)

The implementation in MATLAB is as follows:

s = 1;
tol = []; % use default
maxit = []; % use default

D = diag(diag(A));
M1 = tril(A)/D;
M2 = triu(A);

[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2);

Figure 3 shows the convergence of IDR(s) for four choices of s. Again all methods terminate
with flag = 0, meaning that the required accuracy is achieved.

3.5. Example 4: IDR(s) with SSOR preconditioning, preconditioner specified using function s

Example 4 shows how the action of a preconditioner can be passed as a function. We illustrate
this with the same preconditioner as in the previous example, where the matrix was passed
via the parameter list in the form of a factored matrix.
The preconditioner can be passed in the form of functions that define the action of the pre-
conditioner as follows.

s = 4; maxit = []; tol = [];
M1.name = ’m1’;
M1.D = diag(diag(A));
M1.L = tril(A)/M1.D;
M2.name = ’m2’;
M2.U = triu(A);
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2);

The function m1 and m2 are defined by

function x = m1(y, M1);
x = M1.L\ y;
return
function x = m2(y, M2);

IDR(s) MATLAB implementation manual. A:7

0 10 20 30 40 50 60 70
−10

−8

−6

−4

−2

0

2

4

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 4

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 4. Convergence of IDR(s) with SSOR preconditioning, preconditioner specified using functions.

x = M2.U\ y;
return

The resulting convergence for the four different choices of s is displayed in figure 4. The
convergence curves are the same as in figure 3.

3.6. Example 5: IDR(s) with residual smoothing

Example 5 shows the effect of residual smoothing.
The residual norms in IDR(s) do not decrease monotonically. However, alternative resid-
uals with monotonically decreasing norms can be obtained by combining IDR(s) with a
residual smoothing algorithm. In IDR(s) so-called Schönauer-Weiss smoothing [Schönauer
1987; Weiss 1990] is implemented. In this smoothing algorithm, a linear combination of the
smoothed residual r̃n−1 and the unsmoothed IDR(s)-residual is made in every iteration:

r̃n = r̃n−1 − σn(r̃n−1 − rn) r̃0 = r0.

The parameter σn is determined such that the norm of the smoothed residual is minimised,
which leads to

σn =
(r̃n−1 − rn)

H r̃n−1

(r̃n−1 − rn)H(r̃n−1 − rn)

The approximate solution vector is updated consistently with the smoothed residual as fol-
lows

x̃n = x̃n−1 − σn(x̃n−1 − xn) x̃0 = x0.

Residual smoothing can be switched on as follows:

% Other parameters (defaults):
maxit = []; tol = []; M1 = []; M2 = []; x0 = [];
s = 4;
% Switch on residual smoothing:
options.smoothing = 1;
% Call idrs:
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);

Figure 5 shows the convergence of IDR(s) with smoothed residuals. This figure should be
compared with figure 1 which shows the convergence of IDR(s) without residual smoothing.
We remark that, although the smoothed residuals curves look nicer, the rate of convergence
is essentially the same.

A:8 M.B. van Gijzen and P. Sonneveld

0 100 200 300 400 500 600
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 5

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 5. Convergence of IDR(s) with residual smoothing.

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 6

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 6. Convergence of IDR(s) with minimal residual choice for ω.

3.7. Example 6: IDR(s) with a minimum residual choice for ω

Example 6 illustrates what happens if the parameter ω is chosen to minimize the residual
norm. Note that this is the standard strategy in Bi-CGSTAB. In IDR(s), the minimum resid-
ual strategy for computing ω is used if idrs is called as follows:

% Other parameters (defaults):
maxit = []; tol = []; M1 = []; M2 = []; x0 = [];
s = 4;
% Minimal residual choice for omega:
options.omega = 0;
% Call idrs:
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);

Figure 6 shows the convergence of IDR(s) if the minimal residual strategy for ω is used.
This figure should be compared with figure 1 where the same computation is performed with
the ”maintaining the convergence” strategy for ω [Sleijpen and van der Vorst 1995; van
Gijzen and Sonneveld 2011]. The ”maintaining the convergence” strategy corresponds with
the default value options.omega = 0.7. The convergence for small values of s is much worse
for the ”minimum residual” strategy. We have this behaviour consistently for problems that

IDR(s) MATLAB implementation manual. A:9

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 7

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 7. Convergence of IDR(s) with complex shadow vectors.

have eigenvalues on both sides of the imaginary axis. Note that IDR(1) does not converge
within the maximum number of iterations. This results in flag = 1.

3.8. Example 7: IDR(s) with complex shadow vectors

Example 7 shows a different choice of the shadow vectors.
If A is real and strongly nonsymmetric, complex random shadow vectors may give a much
faster convergence than real random shadow vectors. This effect is strongest for small values
of s.
Complex shadow vectors can be defined and passed to idrs as follows:

s = 2; tol = 1e-8; maxit = 1000;
M1 = []; M2 = []; x0 = []; im = sqrt(-1);
randn(’state’, 0); P = randn(n,s) + im * randn(n,s); P = orth(P); options.P = P;
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);

The resulting convergence curves for the four choices for s are shown in Figure 7. Comparing
Figure 1 and 7 shows that the complex choice for the shadow vectors gives considerably faster
convergence for this example. The computations, however, have to be performed using com-
plex arithmetic, which is more expensive than real arithmetic.

3.9. Example 8: IDR(s) with strict tolerance

Example 8 tries to compute the solution with a tolerance that is close to relative machine
precision.
It is well known that high peaks in the initial phase of the iterative process may destroy the
final achievable accuracy if the residuals are computed recursively [Greenbaum 1997]. An
intuitive explanation of this is as follows. In every iterative step relative errors in the order of
the machine precision ǫ are made. If the residuals are computed recursively, the errors from
an earlier stage of the process propagate through all succeeding iterations and also pollute
the later residuals. If a residual in an early stage is very large in norm, the roundoff errors
made in this phase can therefore cause a large relative error in the final residuals that are
small in norm. This usually manifests itself in a large difference between the recursively
updated residual ri and the true residual b− Axi. This so-called residual gap can be so large
that the final true residual is above the required tolerance, although the recursively computed
residual is below. To illustrate this we take a strict tolerance 10−12, i.e., the iterative process
is terminated if ‖ri‖/‖b‖ < 10−12.
A sample call with s = 2 is

s = 2; tol = 1e-12;
[x,flag,relres] = idrs(A,b,s,tol);

The resulting convergence curves for the four choices for s are shown in Figure 8. Although
the convergence curves look normal, and the norms of the recursively updated residuals di-

A:10 M.B. van Gijzen and P. Sonneveld

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 8

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 8. Convergence of IDR(s) with strict tolerance.

vided by the norm of b drop below the required tolerance, the relative norms of the true final
residuals are all above the tolerance. For example, for IDR(1) we get flag = 2, which indi-
cates that the true relative residual norm is above the tolerance, and relres = 2.7328e-11.
Note, relres is equal to the norm of the final residual divided by the norm of b, and should be
smaller than tol.
In the next two examples we will show two possible solutions to this problem.

3.10. Example 9: IDR(s) with residual replacements

Example 9 shows the effect of a few replacements of the recursively computed residual by the
true residual.
A possible cure to the loss of accuracy due to high peaks in the initial phase of the iterative
process is to replace the recursively computed residual by the true residual once the residual
norm has decreased to a sufficiently lower level after the peak. This moment has to be chosen
carefully, since replacement of small residuals may negatively affect the rate of convergence,
and the replacement of a residual that is too large in norm (to close to the peak value) may not
result in a more accurate solution. Moreover, a residual replacement requires an extra matrix-
vector multiplication. The number of residual replacements should therefore be limited for
efficiency reasons. We refer to [Sleijpen and van der Vorst 1996] for a detailed analysis and
an advanced residual replacement strategy.
In idrs the following simple replacement strategy is implemented:
A peak is considered dangerously high if

‖ri‖/‖b‖ > C(tol/ǫ) .

with ǫ the relative machine precision. The factor tol/ǫ corresponds to the size of a finite
precision number that is so large that the absolute round-off error in this number, when
propagated through the process, makes it impossible to achieve the required accuracy. The
factor C accounts for the accumulation of round-off errors. This parameter has been set to
10−3. If such a dangerous peak has been encountered, the recursively computed residual is
replaced by the true residual once the relative norm of the residual drops below 1 (i.e., when
the residual is smaller in norm than b). We remark that the above residual replacement
strategy improves the accuracy if high peaks occur, but it does not guarantee that the final
true residual is below the required tolerance.
A sample call with s = 4 is

s = 4; tol = 1e-12; maxit = [];
M1 = []; M2 = []; x0 = [];
options.replace = 1;
[x,flag,relres,iter,resvec,repl] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);

The resulting convergence curves are shown in Figure 9. Note that the rate of convergence is
slightly negatively affected if the residual replacement strategy is used. The accuracy of the

IDR(s) MATLAB implementation manual. A:11

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 9

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 9. Convergence of IDR(s) if a residual replacement strategy is used.

0 200 400 600 800 1000 1200
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 10

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Fig. 10. Convergence of IDR(s) with a restart.

solution, however, has improved. For example for s = 1 we get relres = 5.1644e-13 and flag
= 0, whereas in the previous example we had relres = 2.7328e-11 and flag = 2.

3.11. Example 10: IDR(s) with a restart

Example 10 shows how to improve the final accuracy by restarting the process.
An alternative way to improve the accuracy if the required tolerance is not met, is to restart
the process with the found solution as initial guess. A sample call with s = 2 to implement
this is:

s = 2; tol = 1e-12; maxit = []; M1 = []; M2 = [];
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit);
if (flag > 0) [x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x); end;

The convergence curves are shown in Figure 10. After restart, all processes successfully ter-
minate with flag =0 and an accuracy that is below the tolerance.

3.12. Example 11: equivalence of IDR(1) and Bi-CGSTAB

Example 11 shows that IDR(1) and Bi-CGSTAB are mathematically equivalent for a certain
choice of parameters.

A:12 M.B. van Gijzen and P. Sonneveld

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

Number of MATVECS

|r
|/|

b|

IDR(s) EXAMPLE 11

IDR(1)
Bi−CGSTAB

Fig. 11. Equivalence of IDR(1) and Bi-CGSTAB.

It is well known, see [Sonneveld and van Gijzen 2008] that Bi-CGSTAB and IDR(1) are
mathematically equivalent if the shadow vector p is chosen the same in both methods, and if
ω is computed in the same way. The classical choices for these parameters in Bi-CGSTAB are:
p = r0, and ω is computing via the minimal residual strategy.
The call to make IDR(s) mathematically equivalent to Bi-CGSTAB is therefore:

s = 1; tol = 1e-8; maxit = 40;
M1 = []; M2 = []; x0 = [];
options.P = b; options.omega = 0;
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);

Figure 11 shows the convergence in the first 20 iterations of Bi-CGSTAB (Bi-CGSTAB per-
forms 2 matrix-vector multiplications per iteration) and in the first 40 iterations of IDR(1)
with the above choice of parameters. Clearly, the convergence curves coincide until finite pre-
cision effects start to play a role.

REFERENCES

GREENBAUM, A. 1997. Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Ma-
trix Anal. Appl., 18(3):535–551.

SCHÖNAUER, W. 1987. Scientific Computing on Vector Computers, Elsevier, Amsterdam.

SLEIJPEN, G.L.G. and VAN DER VORST, H.A. 1995. Maintaining convergence properties of BiCGstab methods in
finite precision arithmetic. Numerical Algorithms, 10:203–223.

SLEIJPEN, G.L.G. and VAN DER VORST, H.A. 1996. Reliable updated residuals in hybrid Bi-CGmethods. Computing
6:141–163.

SONNEVELD, P. and VAN GIJZEN, M.B. 2008. IDR(s): a family of simple and fast algorithms for solving large non-
symmetric linear systems. SIAM J. Sci. Comp., 31(2):1035–1062.

VAN GIJZEN, M.B. and SONNEVELD, P. An elegant IDR(s) variant that efficiently exploits bi-orthogonality proper-
ties. ACM Transactions on Mathematical Software, to appear.

WEISS. R. 1990. Convergence Behavior of Generalized Conjugate Gradient Methods, PhD thesis, University of
Karlsruhe.

