
Installation and usage of this library

Souji Koikari

September 26, 2008

Thank you very much for your interest on this library.

1 Description

This is a FORTRAN 95 library that consists of the following two parts:

• the modified scaling and squaring method for computing matrix values of ϕ-functions defined by

ϕn(hA) :=
∞∑

k=0

(hA)k

(k+n)!
, A ∈ CN×N , h ∈ C, 0 ≤ ∀n ≤ 5, (1)

• the modified block Schur–Parlett algorithm for ϕ-functions based on the sep-inverse estimate.

All functions included in the library accept, as their arguments, real or complex matrices in one of
four precisions. The assumed unit roundoff is 2−24, 2−53, 2−64, and 2−113, respectively. The modified
scaling and squaring method may be applied to diagonal, upper quasi-triangular, or square matrices,
while the modified block Schur–Parlett algorithm can be used only for upper quasi-triangular matrices.
The details of the algorithm are described in the accompanying paper published in the journal, “ACM
transactions on mathematical software”. The usage of the library is described in the following, where
we assume a UNIX-compatible system.

2 Install

Requirement

The only requirement is a FORTRAN 95 compiler that supports a C-style preprocessor. The preproces-
sor is usually invoked by a command-line option such as -fpp or -cpp. If your compiler does not support
the preprocessor, please use the cpp command directly, and eliminate all non-FORTRAN statements
from the output. We have tested the library with f95 of Sun Microsystems [6], ifort of Intel [4], and
g95 developed by Dr. Andy Vaught [7]. Unfortunately, the library may not work with the current release
of gfortran.

Directories

Six directories are found after uncompressing and extracting the source archive. The top directory
matrixcfgphi of the archive is assumed to be a current directory.

./src/ includes all source files of the library.

./examples/ includes a test program and two examples.

./lapack/ includes partially the source files of LAPACK [1]. The files in this directory are required to
use Hager–Higham estimator xLACON [2, 3] in the example programs.

./Makefiles/ includes makefiles for several FORTRAN compilers.

1



./lib/ is empty. The above example programs assume that library archives, libmtrcfgphi.so and
libxlacon.so, are stored in this directory. These libraries will be created in the directories,
./src/ and ./lapack/, respectively. When the shared object is unavailable, the extension “.a”
is used instead of “.so”.

./modules/ is empty. The above example programs assume that the modules files, *.mod, which will
be created in ./src/, are stored here.

Make and test with f95, ifort, g95, or NAGWare F95

If your compiler is one of f95 [6], ifort [4], g95 [7], and NAGWare F95, please use one of the makefiles
in ./Makefiles/. The corresponding makefiles are named as Makefile.f95sun, Makefile.ifort,
Makefile.g95, and Makefile.nagware, respectively. For example, to build the library with f95 of Sun
Microsystems,

% cat ./Makefiles/Makefile.f95sun > Makefile
% make all

Then, all module files and the library archives are created and stored in ./modules/ and ./lib/,
respectively. The root permission is not required. Example programs in ./examples are also compiled,
and three executable commands, selftestall.out, examplesquare.out, and exampleparlett.out,
are generated. The first one is the test program and the others are examples, all of which may be
executed without command line options. When you use ifort, it may be necessary to add the full
pathname of ./lib/ to your environment variable, LD_LIBRARY_PATH.

If the above procedure does not work well, or you want to modify command-line options, please edit
the following three files:

• ./src/Makefiles/Makefile.xxxxx,
• ./lapack/Makefiles/Makefile.xxxxx, and
• ./examples/Makefiles/Makefile.xxxxx,

where xxxxx is one of f95sun, ifort, g95, and nagware. These four files are implicitly used in the
procedure described in the previous paragraph.

Make and test with the other compilers

For the other compilers, please edit the first few lines of the following three files:

• ./src/Makefiles/Makefile.generic,
• ./lapack/Makefiles/Makefile.generic,
• ./examples/Makefiles/Makefile.generic.

It is necessary to specify the name of your compiler and its command-line option to invoke C-style
preprocessor. In the last file of the above list, the name of the directory storing module files must also
be specified as, e.g., -M../modules, -I../modules, or -module ../modules. After editing all these
files, execute the following commands in the top directory, matrixcfgphi, of the source archive.

% cat ./Makefiles/Makefile.generic > Makefile
% make all

All module files and the library archives are created and stored in ./modules/ and ./lib/, respectively.
The root permission is not required. Example programs in ./examples are also compiled, and three ex-
ecutable commands, selftestall.out, examplesquare.out, and exampleparlett.out, are generated.
The first one is the test program and the others are examples, all of which may be executed without
command line options.

2



LAPACK

The directory ./lapack is included only for linking the example programs. If the library LAPACK
is already installed on your computer, and you are not interested in the example programs, the direc-
tories, ./lapack and ./examples, and the archive libxlacon.so are not necessary. In this case, the
installation can be done in the following way.

% \rm -fr ./lapack/ ./examples/
% cd ./src/
% cat ./Makefiles/Makefile.xxxxx > Makefile
% make all install

where xxxxx is one of f95sun, ifort, g95, and nagware. The module files are created and stored in
./modules, and the library archive libmtrcfgphi.so are created and stored in ./lib.

3 Usage

3.1 Generic interface

This subsection describes the usage of the library under its default configuration. Each function for real
or complex matrices in one of the four precisions can be called by a common generic name independent
of data types and floating-point precisions. The contents of the arguments are not modified. In the
following description, “an upper quasi-triangular matrix” means a block upper-triangular matrix whose
diagonal blocks are at most two-by-two and each diagonal block stores a conjugate pair of eigenvalues.

3.1.1 Scaling and squaring method

The generic name for computing ϕ-functions of a square or a diagonal matrix by the modified scaling
and squaring method is sasmtrphif, and that for an upper quasi-triangular matrix is sasqtrphif. The
following is an example for a square matrix.

use scalesquare
double precision :: hci, A(N,N), phi(N,N,0:5)
phi = sasmtrphif(5,hci,A) ! after defining hci and A.

Of course, the matrix A and the scalar hci must be defined before calling the function. The next example
treats a diagonal matrix.

use scalesquare
complex :: hci, A(N), phi(N,0:2) ! A is an N-by-N diagonal matrix.
phi = sasmtrphif(2,hci,A) ! after defining hci and A.

As is shown in the above example, a one dimensional array (a “rank one array” in the FORTRAN
terminology) is regarded as a diagonal matrix. In these two examples, the functions, ϕn(hci*A), for
0 ≤ ∀n ≤ 5 and for 0 ≤ ∀n ≤ 2 are computed, respectively. The next example shows an upper
quasi-triangular case.

use scalesquare
real :: hci, T(N,N), phi(N,N,0:3) ! T should be upper quasi-triangular.
phi = sasqtrphif(3,hci,T) ! after defining hci and T.

Real matrices should be upper quasi-triangular, and complex matrices must be strictly upper triangular.
Any unnecessary entries in the lower triangle should be exactly zero.

3



3.1.2 Modified block Schur–Parlett algorithm

The interface of the module implementing the modified block Schur–Parlett algorithm consists of two
functions. The function bspqtr1dcmpf determine a block decomposition based on the sep-inverse esti-
mate. The other function, bspqtrphif, computes ϕ-functions according to the blocking produced by
the above function. The following code shows a typical example of usage.

use blockdecomp
use schurparlett
double precision :: hci, T(N,N), phi(N,N,0:4)
type(bspblock) :: info

! After defining hci and T,
info = bspqtr1dcmpf(T) ! determines a block decomposition.
phi = bspqtrphif(4,hci,T,info) ! computes phi-functions up to phi_4.

In the above example, a block decomposition is determined based on the sep-inverse estimate provided
by Hager–Higham estimator. A decomposition once determined by bspqtr1dcmpf and stored in a
variable of the type bspblock may be used repeatedly for the other values of the scaling, hci. Real
matrices should be upper quasi-triangular, and complex matrices must be strictly upper triangular. Any
unnecessary entries in the lower triangle should be exactly zero.

3.2 Other optional features

3.2.1 BLAS

When the intrinsic function, matmul, automatically invokes xGEMM or its equivalence, the best efficiency
of this library is already available as it is. If this is not the case and the BLAS library is installed on your
computer, please add another option, -Dpure= -D__USE_BLAS, literally to the command line argument
of your FORTRAN compiler. The space after pure= is mandatory. The makefiles provided here already
include this additional option as commented lines. By this option, xGEMM is explicitly called from the
library instead of matmul, and efficiency may be improve significantly, though the pure attribute is lost
for all functions. This modification is not necessary for f95 command of Sun Microsystems, while it is
recommended for ifort command of Intel corporation.

3.2.2 Block size

The block size used for all block algorithms in the library is determined by a public parameter,
mpt_blksize, defined in a file, matrixpwrtag.f95, as

integer, parameter :: mpt_blksize = 50

If you want to use another block size, please edit this line, and recompile all files to build a new library
archive. The value of this parameter must be greater than 3. This parameter is defined as a compile-time
constant, because it helps significantly the compiler’s optimization.

3.2.3 Higher precision

The precisions higher than double (u = 2−53) are disabled in the default configuration. If these precisions
are necessary, please add another option, -D__USE_TPREC or -D__USE_QPREC, to the command line
argument of your FORTRAN compiler. The former enables the triple precision (u = 2−64) and the latter
enables the quadruple precision (u = 2−113). The availability of these higher precisions depends on a
compiler and a computer. For example, g95 on x86 machines supports the triple precision, and ifort
supports the quadruple precision. Sun’s f95 for x86 architecture does not support these precisions, while
on a SPARC-based system, the quadruple precision is supported. Please do not enable an unsupported
precision, because it may cause a compile-time error. When the test program, selftestall.f95, is
compiled with the same option, the enabled higher precision is also tested.

4



3.2.4 Modified block Schur–Parlett algorithm

Tuning parameter P . The tuning parameter P that bounds the estimated τd and τo may be chosen freely
by setting a public variable, blksp1maxcondition, as

use blockdecomp
blksp1maxcondition = 1500.0

The default value is 150, which usually works well within our experience. When efficiency is more
important than accuracy, a larger value may be chosen as in the above example. We do not recommend
to choose an excessively large value, because such a choice may result in the overflow of computation.

Block-wise computation. In the default configuration, the functions of each diagonal block are computed
separately from other diagonal blocks. The advantage of this approach is that we can expect high
accuracy even if the spectral radius of the argument is large. Hence, the default choice is suited for
implementing exponential integrators. However, efficiency may be unsatisfactory for certain cases,
because we must repeat equivalent operations several times in the computation of the functions of
diagonal blocks. When the spectral radius of the argument is small (O(10) ∼ O(100)), and the relative
departure from normality (“dep(A)” defined in the paper) is large (1 ∼ 4), we recommend to use the
technique described in Section 2.3 of the accompanying paper. To enable the technique, please set the
module variable blockwisefunc as blockwisefunc=.false.. This variable is defined in the module
schurparlett, and its default value is .true..

Simultaneous computation. The other run-time variable is blkspfuncstride defined in the module
blockdecomp. The value of this variable must be one or two. If the value is two, which is the default
choice, two ϕ-functions are computed simultaneously at the cost of one recursion by utilizing the relation,

ϕj−1(A) = I/(j−1)! + Aϕj(A). (2)

When we compute, for example, ϕj(A) for 0 ≤ ∀j ≤ 5, the functions with odd indices are computed by
the recurrence, and the functions with even indices are simultaneously obtained according to the above
equation. If this approach fails, i.e., the error of ϕ-functions with even (or odd) indices is obviously
larger, please set blkspfuncstride=1, then all functions are computed by Parlett’s recurrence, and the
problem may be avoided, though the computational cost may increase.

3.2.5 Interface to external libraries

LAPACK. If the LAPACK library is already available on your computer, please remove the library
archive ./lib/libxlacon.so, and use your own LAPACK with your programs. If you want to enable the
interface to LAPACK subroutines other than xLACON, please add another option -Dpure= -D__USE_LAPACK
to the command-line options of your compiler. Although the pure attribute is lost, the subroutines in
LAPACK will be used as many as possible.

RECSY. The library has its interface to the library RECSY developed by Jonsson and K̊agström
[5]. It is enabled by adding -Dpure= -D__USE_RECSY to the command-line options of your compiler.
Although the pure attribute is lost, all Sylvester equations defined by real matrices in double precision
are solved by RECSYCT.

n

References

[1] E. Anderson, Z. Bai, C. H. Bishof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J. Du Croz,
A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, third edition, 1999.

[2] W. W. Hager. Condition estimates. SIAM Journal on Scientific and Statistical Computations,
5:311–316, 1984.

5



[3] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation. ACM transactions on mathematical software, 14(4):381–396,
1988.

[4] Intel corporation. Intel Fortran compiler. http://developer.intel.com/software/products/, 2008.

[5] Isak Jonsson and Bo K̊agström. Recursive blocked algorithms for solving triangular systems. I. One-
sided and coupled Sylvester-type matrix equations. ACM Transactions on Mathematical Software,
28((4)):392–415, 2002.

[6] Sun Microsystems. Sun Fortran 95 compiler. http://developers.sun.com/sunstudio/, 2008.

[7] Andy Vaught. G95 Manual. http://www.g95.org/, 2006.

6


