Fortran Virtual Memory

1 SUMMARY

This package providesread/writefacilitiesfor one or more dir ect-access filesthrough a single in-cor e buffer, so
that actual input-output operations are often avoided. The buffer is divided into fixed-length pages and all
input-output is performed by transferring a single page to or from a single record of afile (the length of arecord is
equal to the length of a page).

Each set of datais addressed asavirtual array, that is, asif it were avery large array. The lower bound of the virtual
array is 1. Each element of the virtual array hasinitial value zero. Any contiguous section of the virtual array may be
read or written, without regard to page boundaries.

The virtual array is permitted to be too large to be accommodated in a single file, in which case the package opens
secondary files with names that it constructs from the name of the primary file by appending ‘1, ‘2’, Werefer to
the set of files as a superfile. Each superfile is identified by the name of its primary file or the index that it is given
when it isopened. To allow the secondary filesto reside on different devices, the user isrequired to supply an array of
path names; the full name of afile is the concatenation of a path name with the file name.

To facilitate finite-element assembly and the multifrontal method, there is an option to add data from the virtual
array to a given array under the control of a map.

ATTRIBUTES

Authors: JK. Reid and J.A. Scott, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX10 0QX, U.K.
Types: Redl (single, double), Complex (single, double), Integer.

Language: Fortran 95 + TR15581 (allocatable components).

Calls: _COPY. For efficiency, the user should use an optimised version of this BLAS routine (not required by the
integer version).

2 HOW TO USE THE PACKAGE

2.1 Thecalling sequence
Access to the package requires a use statement such as

Sngle precision version
use Fortran_Virtual _Menmory_single

Double precision version
use Fortran_Virtual Menmory_doubl e

Integer version
use Fortran_Virtual _Menmory_integer

Complex version
use Fortran_Virtual _Menory_conpl ex

Double complex version
use Fortran_Virtual Menory_doubl e_conpl ex

If it isrequired to use two modules at the same time, the derived type FVM dat a (Section 2.1) must be renamed in one
of the use statements.

There are six entries:
() FYM.initialize must be caled once to initialize a structure of derived type FVM dat a and to allocate and

Fortran Virtual Memory

initialize its array components.

(2) FYM open must be called for each superfile that isto be accessed through the package. It gives the superfile an
index and opensitsfiles.

(3) FYM r ead performs the reading from a superfile.
(4) FVYM wr i t e performs the writing to a superfile.
(5) FWM cl ose should be called for each superfile that is no longer required to be accessed through the package.

(6) FYM end should be called to dedlocate array components of the structure once no further superfiles are
required to be accessed through the package.

In the following, | NTEGER(| ong) denotes | NTEGER(ki nd = sel ect ed_i nt _ki nd(18)) and the package type
denotes

Default REAL inFortran_Virtual _Menory_single,

DOUBLE PRECI SIONinFortran_Virtual _Menory_doubl e,

Default | NTEGERin Fortran_Virtual _Menory_i nt eger,

Default COMPLEX in Fortran_Virtual _Menory_conpl ex.

COVPLEX(ki nd =kind(0.0d0)) inFortran_Virtual Menory_conpl ex.

2.2 Thederived type

A single derived type, FVM dat a, is accessible from the package. For each instance, the user must declare an object of
this type to hold the buffer and all associated data. The object has alarge number of components, only some of which
can be accessed by the user. These components, which can be accessed by the user but must not be altered, are:

entry isascaar component of type default | NTEGER that indicates which of the six entries of the list in Section 2.1
was last invoked.

file_size isascaar component of type | NTEGER(| ong) that holds the actual size of each file, see argument
file_sizeinSection2.3.1.

i ostat is a scalar component of type default | NTEGER that, in the event of an error, holds the Fortran | OSTAT
parameter.

| page is a scalar component of type default | NTEGER that holds the size of each page of the in-core buffer, see
argument | page in Section 2.3.1.

ncal | _read isascalar component of type | NTEGER(| ong) that holds the total number of calls made to FVM r ead
sincethecal toFVM.initiali ze.

ncall _write is a scalar component of type | NTEGER(| ong) that holds the total number of calls made to
FYMwitesincethecal toFVM.initialize.

ni o_read isascaar component of type | NTEGER(| ong) that holds the number of records read from files during
calstoFVM read and FYM wri te sincethecall toFVM initi ali ze.

nio_wite isascalar component of type | NTEGER(| ong) that holds the number of records written to files during
calstoFYM read and FYM wri t e sincethecal toFVYM.initi ali ze.

npage is a scalar component of type default | NTEGER that holds the number of pages in the in-core buffer, see
argument | page in Section 2.3.1.

nwd_read isascalar component of type | NTEGER(| ong) that holds the the number of scalars of the package type
accessed by callsto FVM read sincethecall toFVM.initiali ze.

nwd_write isascaar component of typel NTEGER(| ong) that holds the the number of scalars of the package type

Fortran Virtual Memory

stored by calsto FVM write sincethecall toFVM.initiali ze.
stat isascaar component of type default | NTEGER that, in the event of an error, holds the Fortran STAT parameter.

2.3 Argument lists

We use sgquare brackets [] to indicate optional arguments. Optional arguments follow the argument data. We
recommend that all optional arguments be called by keyword, not by position.

2.3.1 Initialization
This call must be made before any other calls that have the same structure dat a as an argument.
CALL FWM.initialize(iflag,data[,path,file_size,|page, npage,!p])

i flag isascalar of | NTENT(QUT) and type default | NTEGER. A successful return isindicated by i f | ag having the
value zero. A negative value is associated with an error message which will be output on unit | p. Possible
negative value are:

-1 Allocation error. The STAT parameter is returned in dat a¥%st at .
-2 Oneor more of therestrictionsfi | e_si ze=l page, | page=1, and npage=1 violated.
- 8 Deallocation error. The STAT parameter isreturned in dat a%st at .

- 16 The character length of pat h istoo great.

data isascalar of | NTENT(OUT) and type FVM dat a. On exit, its components will have been initiaized. If values
other than the default values for npage, | page, and fi |l e_si ze specified in Section 2.2 are required, the user
should use the optional arguments to overwrite the defaults. It must not be altered by the user.

pat h isan optional assumed-shape rank-one array of | NTENT(| N) , type default CHARACTER and character length at
most 400. If pat h is absent, the behaviour is as if it were present with the value (/' ' /) . For each superfile
named f i | enane that is opened by FVM open, the name of the primary fileispath(i)//fil enane for an
elementi of pat h. Secondary files have names that are constructed by appending 1, 2, ... to this form, perhaps
with a different element of pat h. Thevalue’ ' is permitted for an element of pat h. For an old file, the paths
are al searched until the file is found. If si ze(pat h) >1, there is a check for each new file to make sure that
there is room for it, which may be expensive (see Section 4). Restriction: | en(pat h) <400.

file_size isanoptional scalar of | NTENT(| N) andtypel NTEGER(| ong) . If present, fi | e_si ze must be set to the
target size each file, measured in scalars of the package type. If absent, the value 2% is used. The actual sizeis
| page* (file_sizel/l page).N.B. Thisdoesnot limit the size of a superfile which may consist of many files.
Restriction: fil e_si ze=l page.

| page isan optional scalar of | NTENT(| N) and type default | NTEGER. If present, | page must be set to the size of
each page of the in-core buffer, that is, the number of scalars of the package type in each page and each record
of the superfile. If absent, the value 2'* = 4096 is used. Redtriction: | page>1.

npage isan optional scalar of | NTENT(| N) and type default | NTEGER. If present, npage must hold the number of
pages in the in-core buffer associated with dat a. If absent, the value 1600 is used. Restriction: npage>1.

I'p isan optiona scalar of | NTENT(| N) and type default | NTEGER. If present, | p must hold the unit number for
diagnostic messages. If not present, | p = 6 isused. If | p is negative, messages are suppressed.

2.3.2 Opening a superfile

This call must be made for each superfile that is to be accessed through the package before any such access.
CALL FVM open(filenane,ifile,iflag,data[,|enw,|p])

filenanme isascalar of | NTENT(| N) and type default CHARACTER and length at most 400. On entry, f i | ename must
contain the name of the superfile. See argument path in Section 2.3.1 for a description of the naming

Fortran Virtual Memory

convention for the files of a superfile. Restriction: | en(fi | ename) <400.

ifile isascaar of | NTENT(OUT) and type default | NTEGER. On successful exit, i fi | e holds the index that it has
given to the superfile. The value is positive.

i flag isascalar of | NTENT(OUT) and type default | NTEGER. A successful return isindicated by i f | ag having the
value zero. A negative value is associated with an error message which will be output on unit | p. Possible
negative values are:

-1 Allocation error. The STAT parameter is returned in dat a%t at .
-5 Error in Fortran | NQUI RE statement. The | OSTAT parameter is returned in dat a% ost at .
—7 Error in Fortran OPEN statement. The | OSTAT parameter is returned in dat a% ost at .
- 8 Deallocation error. The STAT parameter isreturned in dat a%st at .
—11 | enw>0 but either the primary file or one or more of the secondary files does not exist.

—12 A file of the given name aready exists but | enw is not present or | enw<0. The file path is
pat h(dat a% ostat) .

—13 The character length of fi | ename is too great.
—17 The Fortran OPEN statement was not successful for any of the elements of pat h.
data isascalar of | NTENT(| NOUT) and type FVM dat a. It must not be altered by the user.

| enw isan optional scalar of | NTENT(| N) and type | NTEGER(| ong) . If present with a non-positive value or absent,
afileof namepat h(i)//fil ename must not exist and anew fileis created. If present with a positive value, a
fileof namepath(i)//fil ename must already exist and | enwmust hold the length in pages of the part of the
virtual array that has been written (that is, the number of records that have been written) and is not to be
regarded as having been overwritten by zeros. FVMwill behave asif pages beyond this contain zeros. If | enwis
so large that more than one file is needed, the appropriate number of secondary files must exist.

I'p isan optiona scalar of | NTENT(| N) and type default | NTEGER. If present, | p must hold the unit number for
diagnostic messages. If not present, or if | p isequal to the unit number of afile that has already been opened for
data, | p =6 isused. If | p is negative, messages are suppressed.

2.3.3Toread from or writeto avirtual array

This call provides read accessto avirtual array

CALL FWMread(ifile,loc,n,read_array,iflag,data[,!p, map, discard])
and this call provides write access to avirtual array
CALL FYWMwrite(ifile,loc,n,wite_array,iflag,data[,!p,inactive])

ifile isascaar of I NTENT(IN) and type default | NTEGER that holds the index of the superfile, as returned by
FVM open. Restriction: i fil e>0.

I oc isascalar of | NTENT(IN) and type | NTEGER(| ong) that holds the address of the first entry within the virtual
array of the datato be read or written. Restriction: | oc>0.

n isascalar of | NTENT(1 N) and type default | NTEGER that holds the number of scalars of the package typeto be
transferred. If n<0, no action is taken.

read_array isanarray of | NTENT(1 NOUT) and of the package type. If map is absent, read_array hassizen and
superfile dataisread into it asif the virtual array were the array vi rt ual _ar r ay and the statement
read_array(1:n) =virtual _array(loc:loc+n-1)
were executed. If map ispresent, read_array hassize at least maxval (map) and superfile dataisadded into it
asif the statement

Fortran Virtual Memory

read_array(map(1:n)) =read_array(map(1:n)) +virtual _array(loc:|oc+n-1)
were executed.

wite array isanarray of | NTENT(IN) of sizen and of the package type. Dataiswrittenfromwr i te_array asif
the virtual array werethe array vi rtual _array and the statement
virtual _array(loc:loc+n-1) =wite_array(1:n)
were executed.

i flag isascalar of | NTENT(OQUT) and type default | NTEGER. A successful return isindicated by i f | ag having the
value zero. A negative value is associated with an error message which will be output on unit | p. Possible
negative values are:

-3 | oc isnot positive.
-4 Attempt to access a superfile that is not open under Fortran_Virtual _Menory.
-5 Error in Fortran | NQUI RE statement. The | OSTAT parameter is returned in dat a% ost at .
-6 Error in Fortran READ. The | OSTAT parameter isreturned in dat a% ost at .
-7 Error in Fortran OPEN statement. The | OSTAT parameter is returned in dat a% ost at .
-9 ifilelessthanl.

- 15 Error in Fortran WRI TE. The | OSTAT parameter is returned in dat a% ost at .

—17 The Fortran OPEN statement was not successful for any of the elements of pat h.

data isascalar of | NTENT(| NOUT) and type FVM dat a. It must not be altered by the user.

I p isan optiona scalar of | NTENT(I N) and type default | NTEGER. If present, | p must hold the unit number for
diagnostic messages. If not present, or if | p isequal to the unit number of afile that has already been opened for
data, | p =6 isused. If | p is negative, messages are suppressed.

map is an optional array of | NTENT(IN), size n, and type default | NTEGER. Its purpose is explained under the
description of read_arr ay.

di scard isan optiona scalar of I NTENT(1N) and type default LOJ CAL. If present with the value . TRUE. , it is
assumed that the data will not be read again.

i nactive isanoptional scalar of | NTENT(I N) and type | NTEGER(| ong) . If present, it identifies a range of entries
in the superfile that are unlikely to be needed before other datain the buffer. If i nacti ve <1 oc, therangeis
i nactive: | oc+n-1; otherwise, therangeis| oc: max(l oc+n-1, i nactive).

2.3.4 Closing a superfile

This call declares that no further access is to be made through the package to a particular superfile. Any information
that belongs to the superfile but is in the buffer is optionally transferred to the files and the files are closed. One line
of output documenting the action is optionally produced on unit | p.

CALL FWM close(ifile,lenwnumfile,iflag,data[,!p,!|keep])

ifile isascalar of | NTENT(IN) and type default | NTEGER that holds the index the superfile, as returned by
FVM open. Restriction: i fil e>0.

| enw isascalar of | NTENT(QUT) and type | NTEGER(| ong) . On exit, | enw holds the length in pages of the part of
the virtual array that has been written.

num file isascalar of | NTENT(QUT) and type default | NTEGER. On exit, num fi | e is the number of secondary
files that have been used.

i flag isascalar of | NTENT(QUT) and type default | NTEGER. A successful return isindicated by i f | ag having the
value zero. A negative value is associated with an error message which will be output on unit | p. Possible

Fortran Virtual Memory

negative values are:

-4 Attempt to access a superfile that is not open under Fortran_Virtual _Menory.
-5 Error in Fortran | NQUI RE statement. The | OSTAT parameter is returned in dat a% ost at .
-9 ifilelessthanl.

- 14 Error in Fortran CLOSE statement. The | OSTAT parameter is returned in dat a% ost at .

- 15 Error in Fortran WRI TE. The | OSTAT parameter is returned in dat a% ost at .

—17 The Fortran OPEN statement was not successful for any of the elements of pat h.

data isascalar of | NTENT(| NOUT) and type FVM dat a. It must not be altered by the user.

I'p isan optiona scalar of | NTENT(| N) and type default | NTEGER. If present, | p must hold the unit number for
diagnostic messages. If not present, or if | p isequal to the unit number of afile that has already been opened for
data, | p =6 isused. If | p is negative, messages are suppressed.

| keep is an optional scalar of | NTENT(IN) and type default LOG CAL. If present and set to . FALSE. or if the
superfile has size zero, the files are deleted on being closed. Otherwise, the files are kept.

2.3.5 Final call

This call deallocates the (private) array components of dat a. The call should be made after FVM cl ose has been
called for each virtual array accessed through the package with the same structure dat a.

CALL FVM end(iflag,data[,!p])

i flag isascalar of | NTENT(OQUT) and type default | NTEGER. A successful return isindicated by i f | ag having the
value zero. A negative value is associated with an error message which will be output on unit | p. Possible
negative values are:

- 8 Deallocation error. The STAT parameter isreturned in dat a%st at .
-10 FVM cl ose has not been called for one or more of the superfiles that were opened.
data isascalar of | NTENT(| NOUT) and type FVM dat a. It must not be altered by the user.

I'p isan optiona scalar of | NTENT(| N) and type default | NTEGER. If present, | p must hold the unit number for
diagnostic messages. If not present, | p = 6 isused. If | p is negative, messages are suppressed.

3 METHOD

We will refer to acall of FYM wri t e as an ‘active write' if the argument i nacti ve is absent and as an ‘inactive
write' if it is present. We will refer to acall of FVM read as a‘discarding read’ if the argument di scard is present
withthevalue. true. and asa‘retaining read’ if di scar d is absent or present with the value . f al se.

The most active pages (records) of the superfile are held in the buffer. We define the activity of a page to be our
estimate how recently any of its data were written by a active write or read by aretaining read. For each buffer page,
the index of the superfile and the page number within the virtual array are stored. Wanted pages are found quickly
with the help of a simple hashing function, and hash clashes are resolved by holding doubly-linked lists of pages
having identical hash codes. Once the buffer isfull and another page iswanted, the least active buffer pageis freed. It
isidentified quickly with the aid of adoubly-linked list of pagesin order of last activity (whenever a pageis active, it
is removed from its old position and placed at the front). A flag is kept for each page to indicate whether it has
changed since its entry into the buffer so that only pages which have been changed need be written to superfile when
they are freed. On each call of FVM read or FYM wri t e, al wanted pages that are in the buffer are accessed before
those that are not in order to avoid freeing a page that may be needed.

For each superfile, a range of discarded entries is kept. If a discarding read touches the discarded range at either

Fortran Virtual Memory

end, the discarded range is expanded to include the newly discarded entries; otherwise, the discarded range consists of
the newly discarded entries. If the discarded rangeis overlapped onan FVM wrii t e, it isreset to be null (it was not felt
worthwhile to identify a part of the old discarded range that is not overlapped). If a page that is held only in the buffer
isfound to lie in the discarded range, the page is freed without writing its data to the actual file.

On an inactive write, any page involved that lies entirely within the inactive range is regarded as the least active of
the buffer pages; any other page involved is regarded as having unchanged activity.

Note that a call of FVM read may cause an actual write to occur in order to free a page and that a call of
FVM wri t e may cause an actual read to occur if only part of the page is changed.

The efficiency is application dependent. If this is important, the user may try several values of npage and | page,
monitoring the number of actual input/output operations recorded in dat a%i o_r ead and dat a%i o_write.

The array pat h allows the user to specify that the files may reside on different devices if the superfile istoo large
for one. When anew fileis opened with si ze(pat h) >1, al the alternativesin pat h aretried until oneisfound which
may be opened, fully written with data, closed, and reopened. If thisfails, the next path istried. Writing the wholefile
isexpensiveif it islarge, but avoids later failures on writing to the file or closing it; there would be no way to recover
from such afailure. If the user is sure that there is enough space, the check is avoided by specifying only one path.
Each of the superfiles may still be placed on different devices by suitable choices of fi | ename in FVM open.

4 EXAMPLESOF USE

4.1 Simple example

The following simple example opens a superfile, puts 1,2,3,...,20 into positions 10,11,.. , gets data from positions
1,2,...,40 and then closes it. Note that a virtual array is always regarded as starting with all its entries zero, so those
entries that are read without being written have the value zero. The code is as follows:

program exanpl e
use Fortran_Virtual _Menory_doubl e
implicit none
type (FYM data) :: data

integer, paraneter :: long = selected_int_kind(18)
integer :: i,ifile,iflag,n,numfile
integer(long):: lenw|oc

character(len=8) :: path(1), filenane = "testfile'
doubl e precision :: array(40)

' Initialize FVYM with path in the current directory
path(1) ="'
call FYMinitialize(iflag,data, path)
if (iflag < 0) stop

I Open superfile
call FVMopen(filename,ifile,iflag,data)
if (iflag < 0) goto 20

n =20
doi =1,n
array(i) = real (i)
end do
I Wite 1,2,3,...,20 to positions 10,11,... in the superfile
loc = 10
call FvWMwite(ifile,loc,n,array,iflag,data)

if (iflag < 0) goto 10

| Read first 40 integers fromthe superfile and then print them
loc =1
n = 40

Fortran Virtual Memory

call FVMread(ifile,loc,n,array,iflag, data)
if (iflag < 0) goto 10

wite (6,"(a)') ' Contents of array are:'
wite (6,'(10F8.1)") array(1:40)

I FVM has finished with superfile
10 call FWMclose(ifile,lenwnumfile,iflag,data,lkeep=.false.)

I Deal | ocate arrays
20 call FVM end(iflag, data)

end program exanpl e
The output produced is

Contents of array are:
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.2 Example using files of different types

The following example uses two versions of the package, one for double precision reals and one for integers, to
illustrate the generic properties. On the use statement for Fortran_Vi rtual _Menory_i nt eger , we rename the data
type FWM dat a. Thisis the only renaming that is needed.

In all the calls of package here, we have added the optional argument | p to provoke printing in the event of an
error.

For the integer data, we perform the same test as we did for the real datain the simple example. For the real data,
we perform a dlightly more complicated test involving setting the array to have all values 10.0 and adding values from
the file under the control of a map array.

The code is as follows:

program exanpl e
use Fortran_Virtual _Menory_doubl e
I Use the integer nmbdule with renam ng
use Fortran_Virtual _Menory_integer, FVM.integer_data => FVM data
implicit none
type (FYM data) :: data
type (FVM.integer_data) :: intdata
integer, paraneter :: long = selected_int_kind(18)
integer :: i,ifile(2),iflag,n,numfile
integer(long):: lenw|oc
character(len=8) :: path(1), filename(2) = (/ 'realfile', "intfile '/)
doubl e precision :: array(40)
integer :: intarray(40), map(5)

I Initialize FYM with path in the current directory
path(1) ="'
call FVM.initialize(iflag,data, path,I|p=6)
if (iflag < 0) stop
call FYMinitialize(iflag,intdata, path,|p=6)
if (iflag < 0) goto 40

I Open superfile
call FVM open(filenanme(l),ifile(l),iflag,data,l p=6)
if (iflag < 0) goto 30
call FVM open(filename(2),ifile(2),iflag,intdata,|p=6)

Fortran Virtual Memory

if (iflag <0) goto 20

=20
doi =1,n
array(i) =real (i)/10
intarray(i) =i
end do
| Wite to positions 10,11,... in the integer superfile
loc = 10

call FYMwite(ifile(2),loc,n,intarray,iflag,intdata,lp=6)
if (iflag < 0) goto 10

I Wite to positions 12,13, ... in the real superfile
loc = 12
call FYMwite(ifile(1),loc,n,array,iflag,data,! p=6)
if (iflag <0) goto 10

I Set array to 10.0, then add five file values under control of nap
array(:) = 10.0

n=>5
mep = (/ 5,7,10,22,36 /)
cal l FVNL ead(ifile(1l),loc,n,array,iflag, data, map=map, | p=6)
if (iflag <0) goto 10

! Read first 40 values fromthe integer superfile and print them
loc =1
n = 40

call FVYMread(ifile(2),loc,n,intarray,iflag,intdata,l p=6)
if (iflag <0) goto 10

wite (6,'(a
wite (6, (/
wite (6,"(/

(10F8.1))") array(1:40)

)') ' Contents of arrays are:
:(10I8))') intarray(1:40)

I FVM has finished with superfiles

10 call FWMclose(ifile(2),lenw,numfile,iflag,intdata,lkeep=. false , | p=6)
20 call FVMclose(ifile(1),lenw, numfile,iflag,data,lkeep=.false.,I|p=6)

I Deall ocate arrays

30 call FVM.end(iflag,intdata,| p=6)

40 call FVM end(iflag, data, | p=6)

end program exanpl e

The output produced is

Contents of arrays are:

10.0 10.0 10.0 10.0 10.1 10.0 10.2 10.0 10.0 10.3
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.5 10.0 10.0 10.0 10.0
0 0 0 0 0 0 0 0 0 1
2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 0
0 0 0 0 0 0 0 0 0 0

