
Algorithm xxx: LSTRS Software Manual

MARIELBA ROJAS

Technical University of Denmark

SANDRA A. SANTOS

State University of Campinas

and

DANNY C. SORENSEN

Rice University

The software manual of a MATLAB 6.0 implementation of the LSTRS method is presented.
LSTRS was described in M. Rojas, S.A. Santos and D.C. Sorensen, A new matrix-free method
for the large-scale trust-region subproblem, SIAM J. Optim., 11(3):611-646, 2000. LSTRS is
designed for large-scale quadratic problems with one norm constraint. The method is based on a
reformulation of the trust-region subproblem as a parameterized eigenvalue problem, and consists
of an iterative procedure that finds the optimal value for the parameter. The adjustment of the
parameter requires the solution of a large-scale eigenvalue problem at each step. LSTRS relies
on matrix-vector products only and has low and fixed storage requirements, features that make
it suitable for large-scale computations. In the MATLAB implementation, the Hessian matrix
of the quadratic objective function can be specified either explicitly, or in the form of a matrix-
vector multiplication routine. Therefore, the implementation preserves the matrix-free nature of
the method. A description of the MATLAB software, version 1.2, is presented. A guide for using
the software and examples are provided.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Documentation

General Terms: Algorithms, Design

Additional Key Words and Phrases: ARPACK, constrained quadratic optimization, Lanczos
method, regularization, MATLAB, trust-region

Authors’s Addresses:
M. Rojas, Informatics and Mathematical Modelling, Technical University of Denmark, 2800
Kgs. Lyngby, Denmark (mr@imm.dtu.dk). This author was supported in part by NSF cooperative
agreement CCR-9120008, the Research Council of Norway, and the Science Research Fund of
Wake Forest University.
S.A. Santos, Department of Applied Mathematics, State University of Campinas, CP 6065,
13081-970, Campinas, SP, Brazil (sandra@ime.unicamp.br). This author was supported by

FAPESP (06/53768-0), CNPq (302412/2004-2), FINEP and FAEP-UNICAMP.
D.C. Sorensen, Department of Computational and Applied Mathematics, Rice University, 6100
Main St., Houston, TX 77005-1892, USA (sorensen@caam.rice.edu). This author was supported
in part by NSF Grants CCR-0306503, ACI-0325081 and CCF-0634902.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–9.

2 · Rojas, Santos, and Sorensen

1. INTRODUCTION

This document contains the software manual for version 1.2 of a MATLAB [The
MathWorks, Inc. 2000] 6.0 implementation of the LSTRS method [Rojas et al.
2000] for large-scale quadratic problems with a quadratic constraint, or trust-region
subproblems:

min
1
2
xT Hx + gT x subject to (s.t.) ‖x‖ ≤ ∆, (1)

where H is an n × n, real, symmetric matrix, g is an n-dimensional real vector, ∆
is a positive scalar, and ‖ · ‖ denotes the Euclidean norm.

The MATLAB implementation of LSTRS described in this manual allows the
user to specify the matrix H both explicitly, a feature that can be useful for small
test problems, and implicitly, in the form of a matrix-vector multiplication routine,
hence preserving the matrix-free nature of the original method. LSTRS is an itera-
tive method that requires, at each step, the solution of a parameterized eigenvalue
problem for the bordered matrix

Bα =
(

α gT

g H

)
with α a scalar parameter. An eigenpair {λ, (1, xT)T} of Bα provides points λ, φ(λ) =
−gT x, and φ′(λ) = xT x, used in rational interpolation schemes to update the pa-
rameter α.

In the software, several options are available for the solution of the eigenvalue
problems, namely: the MATLAB routine eig (QR method), a slightly modified
version of eigs (a MEX-file interface for ARPACK [Lehoucq et al. 1998]), a com-
bination of eigs with a Tchebyshev Spectral Transformation, or a user-provided
routine.

The remainder of this document is organized as follows. In Section 2, we describe
the main features of the software: data structures, interface, and components.
In Section 3, we provide instructions for installing and running the software. In
Section 4, we illustrate the use of the software with several examples.

2. THE MATLAB SOFTWARE

In this section, we describe our MATLAB 6.0 implementation of the LSTRS method
from [Rojas et al. 2000]. In the following, the teletype font is used for MATLAB
codes, built-in types and routines; boldface is used for file names, parameters,
variables (including structure fields), and also to highlight parts of MATLAB codes.

2.1 Data structures

The main data structures, implemented with the MATLAB type struct, are the
following:

—A structure for the bordered matrix Bα, with fields: H (the Hessian matrix),
g (the gradient vector), alpha (the scalar parameter α), dim (one plus the di-
mension of the trust-region subproblem), bord (scalar indicating if the structure
represents a bordered matrix (1), or if only the Hessian is to be used (0)), and
Hpar (parameters for H, whenever H is a matrix-vector multiplication routine,
cf. Section 2.2.1).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 3

—A structure for the LSTRS iterate chosen from two eigenpairs of Bα. The fields
of the structure are: lambda (the eigenvalue), nu (the first component of the
eigenvector), anu (the absolute value of nu), u (an n-dimensional vector con-
sisting of the last n components of the eigenvector), and noru (the norm of the
vector u).

—A structure for the interpolation points, with fields: lambda (λ),
fi (φ(λ)), and norx (

√
φ′(λ)).

2.2 Interface

The front-end routine is called lstrs. The most general call to this routine is of the
form:

[x,lambda,info,moreinfo] = ...
lstrs(H,g,delta,epsilon,eigensolver,lopts,Hpar,eigensolverpar);

The parameter H specifies either the Hessian matrix or a matrix-vector multi-
plication routine; eigensolver specifies the eigensolver routine. The required input
parameters are: H, g, delta. The remaining parameters are optional with default
values provided where appropriate. A detailed specification of the parameters fol-
lows. The type and default values for the optional parameters are given between
curly brackets.

2.2.1 Input parameters.
Required (3):

(1) H {string, function handle, or double}: matrix-vector multiplication rou-
tine, or an n × n array containing a symmetric matrix.

(2) g {double}: n × 1 array.
(3) delta {double}: positive scalar (trust-region radius).

Optional (5):

(1) epsilon {struct}: contains the tolerances for the stopping criteria. The fields
are:
—Delta {double, 10−4}: boundary solutions.
—HC {double, 10−4}: quasi-optimal solutions.
—Int {double, 10−10}: interior solutions.
—alpha {double, 10−8}: size of the safeguarding interval for α.
—nu {double, 10−2}: small components.

(2) eigensolver {string or function handle, ’eigs lstrs gateway’}: specifies
the eigensolver routine. Current choices for the eigensolver are:
—User-provided. See Section 2.2.3 for the calling sequence.
—eig gateway: gateway to MATLAB routine eig (QR method).
—eigs lstrs gateway: gateway to eigs lstrs, a modified version of MAT-

LAB’s eigs (ARPACK [Lehoucq et al. 1998] implementation of the Implicitly
Restarted Arnoldi Method [Sorensen 1992]). The modified routine returns
more information, including the number of converged eigenvalues and the
smallest Ritz value.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · Rojas, Santos, and Sorensen

—tcheigs lstrs gateway: gateway to a routine that computes the eigenpairs
of a given matrix from the eigenpairs of a Tchebyshev matrix polynomial
of degree 10. It is a combination of eigs lstrs and a Tchebyshev Spectral
Transformation as described in [Rojas and Sorensen 2002].

(3) lopts {struct}: options for lstrs with fields:
—maxiter {double, 50}: scalar indicating the maximum number of LSTRS

iterations allowed.
—message level {double, 1}: scalar indicating the level of messages desired.

The options are: no messages (0), a message per iteration plus a summary
at the end (1), and more detailed messages (2).

—name {string}: the problem name.
—plot {string, ’no’}: indicates if a plot of the solution is desired. The

possible values are: a string beginning with ’y’ or ’Y’ (plot), or any other
string (no plot).

—correction {string, ’yes’}: indicates if, in the hard case, a correction term
in the direction of an eigenvector corresponding to the smallest eigenvalue of
the Hessian matrix H , should be added. The possible values are: a string
beginning with ’y’ or ’Y’ (add), or any other string (do not add).

—interior {string, ’yes’}: indicates if, when the existence of an interior
solution is detected, such solution should be computed. The possible values
are: a string beginning with ’y’ or ’Y’ (compute), other string (do not
compute).

—intsoltol {double, epsilon.Delta}: a scalar indicating the accuracy with
which an interior solution should be computed.

—deltaU {string or double, ’rayleigh’}: a string indicating how to initial-
ize δU (an upper bound for δ1, the smallest eigenvalue of H), or a scalar with
the initial value. Possible values: ’rayleigh’, a Rayleigh quotient with a
random vector; ’mindiag’, the minimum of the diagonal of H ; or a scalar.
Note that the ’mindiag’ option is only available for problems where the
Hessian is given as an array. For problems where the Hessian is available
implicitly as a matrix-vector multiplication routine, the minimum of the di-
agonal is still a good choice to initialize δU . However, in this case, the user
must provide this value.

—alpha {string or double, ’min’}: a string indicating how to initialize the
parameter α, or a scalar with the initial value. Possible values: ’min’,
α(0) = min{0, αU}; ’deltaU’, α(0) = δU ; or a scalar.

—maxeigentol {double, []}: the desired maximum relative accuracy in the
eigenpairs, in case the user wants to adjust this accuracy at each iteration.
Possible values are [] for no adjustment, a scalar (maximum relative ac-
curacy), or a structure containing the maximum relative accuracy of the
eigenpairs (maxeigentol) and the accuracy of the norm of the current it-
erate (itermaxacc), i.e. |∆−||xk|||

∆ . Two different adjustment strategies are
implemented in the routine adjust eigentol.

—heuristics {double, 0}: a scalar indicating if eigenvalues equal to zero and
Lanczos vectors (not converged eigenvectors) should be used to construct
an LSTRS iterate. When set to 0, the heuristics is not used. The strategy

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 5

is only available in combination with the eigensolver ’eigs lstrs’. Possible
values: any scalar.

(4) Hpar {struct}: parameters for H, whenever H is a matrix-vector multiplica-
tion routine. See Section 2.2.2 for more details.

(5) eigensolverpar {struct}: parameters for the eigensolver routine.
If the eigensolver is eigs lstrs gateway or tcheigs lstrs gateway, the pa-
rameter eigensolverpar should be used as the parameter OPTS in MAT-
LAB’s eigs, which specifies the options for ARPACK. LSTRS uses the follow-
ing default values for eigs’ options: eigensolverpar.tol = 10−2,
eigensolverpar.maxit = 13, eigensolverpar.issym = 1, and
eigensolverpar.p = 7 (or n + 1 if n < 7). Note that eigensolverpar.p
is the number of vectors used by ARPACK, and hence by LSTRS.
The variable eigensolverpar.v0 allows the user to specify an initial vector
for the Arnoldi/Lanczos process. For LSTRS, eigensolverpar.v0 must be an
(n + 1) × 1 array of type double. In the software, the first column of
the Lanczos-basis matrix for the bordered matrix in a given iteration is used
as the initial vector for the Lanczos process on the bordered matrix in the next
iteration. Finally, LSTRS allows a new field k to be added to eigensolver-
par. This field is used to specify the number of wanted (small) eigenvalues.
The default value for eigensolverpar.k is 2. If a number less than 2 is spec-
ified, the parameter is set to 2. A value greater than 2 is allowed. Note that
eigensolverpar.k < eigensolverpar.p ≤ n must hold.

All the optional parameters can be set to the empty array []. This is useful
when we want to use the default value for one parameter but choose the value of
the next. In this way, the value [] is used to skip a parameter. The order in which
the parameters appear in the header of the function determines which parameter
is skipped. For example, the first [] to appear in a calling sequence corresponds
to epsilon.

2.2.2 Calling specifications for the matrix-vector multiplication routine. If H is
a matrix-vector multiplication routine, it is called as H(v,Hpar), where v is an
n× 1 array of type double, and Hpar is a structure containing parameters for H.
If H is the Hessian matrix, the routine H should compute:

w = H v.
If H does not require any parameters besides v, MATLAB’s varargin mechanism

can be used in the specification of the function, as in the function mv in Figure 2.

2.2.3 Calling specifications for the eigensolver routine. As explained in Section
2.2.1, the user may provide the eigensolver routine, which will be called as:

[nconv,lambda1,y1,lambda2,y2] = ...
eigensolver(Balpha,eigensolverpar);

As before, if only Balpha is needed as parameter, MATLAB’s varargin can be
used to define the routine, as in:

function [nconv,lambda1,y1,lambda2,y2,it,mvp] = ...
user eigensolver(Balpha,varargin)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · Rojas, Santos, and Sorensen

The eigensolver routine should return:

—nconv: number of converged eigenvalues.
—lambda1, y1: the smallest eigenvalue of Bα, and a corresponding eigenvector.
—lambda2, y2: any of the remaining eigenvalues of Bα, and a corresponding

eigenvector. In practice, faster convergence can be expected if this eigenvalue is
either the second or a value close to the second smallest eigenvalue.

The eigensolver routine should receive the following input parameters:

—Balpha: a bordered matrix data structure as described in Section 2.1.
—eigensolverpar: parameters (usually of type struct) for the eigensolver routine.

2.2.4 Output parameters. The routine lstrs returns four parameters:

—x: the solution to the trust-region subproblem.
—lambda: the corresponding Lagrange multiplier.
—info: an integer representing the result of the computation, with the following

possible values:
0: x is a boundary solution.
1: x is an interior solution.
2: x is a quasi-optimal solution.
-1: an interior solution was detected and, as instructed by the user, the linear
system was not solved, x is the current iterate.
-2: x is an approximation to the solution corresponding to the last value of
α available when the safeguarding interval could not be further decreased.
Note that x might contain a correction term in the direction of an eigenvector
corresponding to the smallest eigenvalue of the Hessian matrix. Note also that
x can take the value empty ([]) if there is no iterate available.
-3: the maximum number of iterations was reached, x is the current iterate,
or empty if there is no iterate available.
-4: it was not possible to compute an iterate. This can happen when the
eigensolver cannot compute the necessary eigenvectors, x is empty.

—moreinfo: a structure with fields exitcond, mvp, iter, solves, kkt and alpha,
which contain, respectively, strings indicating all the stopping criteria that were
satisfied, the number of matrix-vector products, the number of LSTRS iterations,
the number of calls to the eigensolver, the value ‖(H−λI)x+g‖

‖g‖ , and the final value
of the parameter α.

2.3 Global variables

The global variable mvp lstrs is used to count the number of matrix-vector prod-
ucts performed. The variable is used only in three routines: lstrs method (initial-
ization), matvec (update), and output.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 7

2.4 Output

In addition to the output parameters previously described, when the message level
is chosen as 1 or 2, the following information is displayed: information on each
iteration, and at the end, a summary of cost indicators (iterations, matrix-vector
products). The value ‖(H−λI)x+g‖

‖g‖ is provided as an indication of how well the
solution pair satisfies this optimality condition. The Lagrange multiplier λ is also
displayed.

The program then displays the first stopping criterion that x satisfies. In case
more than one stopping criteria are satisfied, these are displayed separately.

When lopts.message level is 1 or 2, the name (if provided) of the problem,
its dimension, and the value of ∆ are displayed at the beginning of the execu-
tion, followed by the name of the eigensolver routine used. Additionally, a plot
of the LSTRS solution (blue on the screen, dashed in Figure 9) can be provided,
depending on the value of the input parameter lopts.plot. This information can
be particularly useful when only one trust-region problem needs to be solved, as in
regularization.

2.5 Files

The LSTRS software follows a structured, top-down design. The MATLAB M-files
containing the components of the software are presented in Figure 1.

The files mv.m, uutmatvec.m, simple.m, vcalls1.m, icalls.m,
vcalls2.m and regularization.m, containing the examples in Section 4, are also
distributed with the software. The file altmatvec.m contains an alternative matrix-
vector multiplication routine that does not use varargin. The file atamv.m con-
tains a matrix-vector multiplication routine for the quadratically-constrained least
squares case, i.e. when the Hessian is the matrix AT A, with A an m × n matrix
and m ≥ n.

3. INSTALLING AND RUNNING THE SOFTWARE

The LSTRS MATLAB software is distributed as an archive in either tar or zip
format in the files lstrs.tar and lstrs.zip, respectively. The Unix/Linux command
tar xvf lstrs.tar will create a directory LSTRS in the current directory where
all the M-files listed above will be stored. For the zip format we recommend that
the user creates a directory lstrs-directory and store the LSTRS files in that
directory.

In either case, the the LSTRS directory should be included in MATLAB’s search
path. This can be accomplished with one of the following commands:
path(path,’lstrs-directory’) or addpath ’lstrs-directory’.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · Rojas, Santos, and Sorensen

lstrs.m: the front-end routine.
lstrs method.m: the main LSTRS iteration.
init up bounds.m: initializes the upper bounds for α, δ1.
b epairs.m: front-end routine for eigensolver.
adjust eigentol.m: adjusts the desired relative eigenpair accuracy.
init lo bounds.m: initializes the lower bound for α.
upd deltaU.m: updates the upper bound for δ1.
adjust alpha.m: adjusts α, might need to compute eigenpairs.
convergence.m: checks the stopping criteria.
boundary sol.m: the boundary-solution stopping criterion.
interior sol.m: the interior-solution stopping criterion.
quasioptimal sol.m: the quasi-optimal-solution stopping criterion.
upd alpha safe.m: updates the safeguarding interval for α.

upd param0.m: updates α(0) by one-point interpolation scheme.
interpol1.m: one-point rational interpolation scheme.
inter point.m: chooses the interpolation point from two

eigenpairs of the bordered matrix.

safe alpha1.m: safeguards α(1).

upd paramk.m: updates α(k) by two-point interpolation scheme.
interpol2.m: two-point rational interpolation scheme.

safe alphak.m: safeguards α(k).
output.m: sets output parameter and output messages.
cg.m: the conjugate gradient method for computing

interior solutions.
correct.m: adds a suitable correction term to the current

iterate in the hard case.
eigs lstrs.m: a modified version of MATLAB’s eigs.
eig gateway.m: gateway routine for MATLAB’s eig.
eigs lstrs gateway.m: gateway routine for eigs lstrs.
tcheigs lstrs gateway.m: gateway routine for eigs lstrs combined with a

Tchebyshev spectral transformation.
matvec.m: front-end routine for matrix-vector multiplication.
tchmatvec.m: front-end routine for multiplication with

a Tchebyshev matrix polynomial.
quadratic.m: evaluates the quadratic objective function in

problem (1).
smallnu.m: determines if a scalar is small.

Fig. 1. LSTRS M-files.

4. EXAMPLES

%
% File: mv.m
% A simple matrix-vector multiplication routine
% that computes the Identity matrix times a vector v
%
function [w] = mv(v,varargin)
w = v;

Fig. 2. A matrix-vector multiplication routine without additional parameters.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 9

%

% File: uutmatvec.m

% A matrix-vector multiplication routine that

% multiplies the matrix: (I-2uu’) D (I-2uu’) times a vector v
% D is a diagonal matrix, u is a unit vector

% uutmatvecpar is a structure with two fields d and u
% containing the vectors that define the matrix

%

function [w] = uutmatvec(v,uutmatvecpar)

d = uutmatvecpar.d;

u = uutmatvecpar.u;

w = v - 2 * (u’*v) * u;
w = d .* w;
w = w - 2 * (u’*w) * u;

Fig. 3. A matrix-vector multiplication routine with additional parameters.

REFERENCES

Hansen, P. C. 1994. Regularization Tools: a MATLAB package for analysis and solution of
discrete ill-posed problems. Numer. Algo. 6, 1–35.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. 1998. ARPACK User’s Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia.

Rojas, M., Santos, S. A., and Sorensen, D. C. 2000. A new matrix-free algorithm for the
large-scale trust-region subproblem. SIAM J. Optim. 11, 3, 611–646.

Rojas, M. and Sorensen, D. C. 2002. A trust-region approach to the regularization of large-scale
discrete forms of ill-posed problems. SIAM J. Sci. Comput. 23, 3, 1843–1861.

Sorensen, D. C. 1992. Implicit application of polynomial filters in a k-step Arnoldi method.
SIAM J. Matrix Anal. Appl. 13, 1, 357–385.

The MathWorks, Inc. 2000. MATLAB: The Language of Technical Computing. Using MAT-
LAB Version 6. Natick, Massachussetts.

Received ?; revised ?; accepted ?

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · Rojas, Santos, and Sorensen

%

% File: simple.m

% A simple problem where the Hessian is the Identity matrix.

%

name = ’Identity’;

H = eye(50);

g = ones(50,1);

mu = -3; % chosen arbitrarily

xexact = -ones(50,1)/(1-mu);

Delta = norm(xexact);

%

% The simplest possible calls to lstrs. Default values are used.
%
% The initial vector for ARPACK is random.

% mv is the matrix-vector multiplication routine in Figure 2.

%

[x,lambda,info,moreinfo] = lstrs(H,g,Delta);

[x,lambda,info,moreinfo] = lstrs(@mv,g,Delta);

< M A T L A B >
>> simple

Problem: no name available. Dimension: 50. Delta: 1.767767e+00

Eigensolver: eigs lstrs gateway

LSTRS iteration: 0

||x||: 9.317862e-01, lambda: -6.588723e+00

|||x||-Delta|/Delta: 4.729021e-01

LSTRS iteration: 1

||x||: 1.767767e+00, lambda: -3.000000e+00

|||x||-Delta|/Delta: 2.512148e-16

Number of LSTRS Iterations: 2

Number of calls to eigensolver: 2

Number of MV products: 19

(||x||-Delta)/Delta: 2.512148e-16

lambda: -3.000000e+00

||g + (H-lambda* I)x||/||g|| = 1.159851e-15

The vector x is a Boundary Solution

Other Stopping Criteria Satisfied:

Quasi-optimal Solution

Fig. 4. Simple calls to lstrs.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 11

%

% File: vcalls1.m

% Uses the same data as in Figure 4

%

% Eigensolver is tcheigs lstrs gateway, initial vector for ARPACK is random
%

[x,lambda,info,moreinfo] = lstrs(@mv,g,Delta,[],@tcheigs lstrs gateway);

[x,lambda,info,moreinfo] = lstrs(@mv,g,Delta,[],’tcheigs lstrs gateway’);

%

% Eigensolver is eig gateway
%

[x,lambda,info,moreinfo] = lstrs(H,g,Delta,[],@eig gateway);

%

% Defining maxiter, message level, name
% Default values are used for the remaining parameters

%

lopts.maxiter = 3;

lopts.message level = 0;

lopts.name = name;

[x,lambda,info,moreinfo] = lstrs(@mv,g,Delta,[],[],lopts);

%

% File: icalls.m

% Uses the same data as in Figure 4

%

% This call produces an error: H must be a matrix, not a routine

< M A T L A B >

>> [x,lambda,info,moreinfo] = lstrs(@mv,g,Delta,@eig gateway);

??? Error using ==> lstrs

To use the eigensolver ’eig gateway’, ’H’ must be a matrix !

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%

% This call produces an error. The string name is

% interpreted as the name of an eigensolver routine

%

< M A T L A B >

>> [x,lambda,info,moreinfo] = lstrs(@mv,g,Delta,[],name);

??? Error using ==> lstrs Undefined eigensolver: ’Identity’. Not in search

path.

Fig. 5. Valid and invalid calls to lstrs.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · Rojas, Santos, and Sorensen

%

% File: vcalls2.m

% Redefining struct parameters.

%

% uutmatvec is the matrix-vector multiplication routine in Figure 3

% uutmatvecpar contains the parameters

%

name = ’(I-2uu’’) D (I-2uu’’)’;

uutmatvecpar.d = rand(50,1);

uutmatvecpar.u = rand(50,1);

uutmatvecpar.u = uutmatvecpar.u/norm(uutmatvecpar.u);

g = rand(50,1);

Delta = 1;

%

% These statements redefine the values of epsilon.Delta, epsilon.HC
% lstrs will use the new values

%

epsilon.Delta = 1e-3;

epsilon.HC = 1e-8;

[x,lambda,info,moreinfo] = lstrs(@uutmatvec,g,Delta,epsilon,uutmatvecpar);

%

% These statements redefine the values of opts.tol, opts.p, opts.v0 for eigs lstrs
% and lopts.message level, lopts.name
%

epar.tol = 1e-3;

epar.p = 15;

epar.v0 = ones(51,1)/sqrt(51); % Initial vector for ARPACK

lopts.message level = 2;

lopts.name = name;

[x,lambda,info,moreinfo] = ...

lstrs(@uutmatvec,g,Delta,epsilon,[],lopts,uutmatvecpar,epar);

%

% The longest possible call to lstrs
%

[x,lambda,info,moreinfo] = ...

lstrs(@uutmatvec,g,Delta,epsilon,@tcheigs lstrs gateway,lopts,uutmatvecpar,epar);

Fig. 6. Redefining struct parameters for lstrs.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

LSTRS Software Manual · 13

%

% File: regularization.m

% Computes a regularized solution for problem phillips from

% Regularization Tools [Hansen 1994], available from http://www.imm.dtu.dk/̃ pch

%

[A,b,xexact] = phillips(300);

atamvpar = A;

g = - (b’*A)’;

Delta = norm(xexact);

lopts.name = ’phillips’;

lopts.plot = ’y’;

lopts.correction = ’n’; lopts.interior = ’n’;

epsilon.Delta = 1e-2;

epar.v0 = ones(301,1)/sqrt(301); % Initial vector for ARPACK

% atamv is the routine in Figure 8

[x,lambda,info,moreinfo] = ...

lstrs(@atamv,g,Delta,epsilon,@tcheigs lstrs gateway,lopts,atamvpar,epar);

< M A T L A B >
>> regularization

Problem: phillips. Dimension: 300. Delta: 2.999927e+00

Eigensolver: tcheigs lstrs gateway

LSTRS iteration: 0

||x||: 8.327280e-01, lambda: -6.913002e+01

|||x||-Delta|/Delta: 7.224172e-01

LSTRS iteration: 1

||x||: 1.746167e+00, lambda: -1.768532e+01

|||x||-Delta|/Delta: 4.179302e-01

LSTRS iteration: 2

||x||: 2.935925e+00, lambda: -3.680399e-01

|||x||-Delta|/Delta: 2.133441e-02

LSTRS iteration: 3

||x||: 3.000546e+00, lambda: 1.883676e-03

|||x||-Delta|/Delta: 2.064169e-04

Number of LSTRS Iterations: 4

Number of calls to eigensolver: 5

Number of MV products: 342

(||x||-Delta)/Delta: 4.441000e-16

lambda: 1.904289e-03

||g + (H-lambda* I)x||/||g|| = 2.501468e-05

The vector x is a Quasi-optimal Solution

Fig. 7. Solving a regularization problem with lstrs.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · Rojas, Santos, and Sorensen

%
% File: atamv.m
% A matrix-vector multiplication routine
% that computes A’*A*v
%
function [w] = atamv(v,A)
w = A*v;
w = (w’*A)’;

Fig. 8. A matrix-vector multiplication routine that computes w = AT Av.

0 50 100 150 200 250 300
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Problem: phillips. Dimension: 300. Delta: 2.999927e+000

LSTRS Solution
Exact Solution

Fig. 9. LSTRS solution plot for regularization problem phillips. The dashed curve (LSTRS

solution) will appear as solid blue on the screen when LSTRS is executed under MATLAB. The
solid curve is the exact solution which has been added to the LSTRS plot for comparison (the
solid curve is not generated by LSTRS).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

