
Code binpack3d: User Manual

Silvano Martello∗, David Pisinger†, Daniele Vigo∗,
Edgar den Boef§, Jan Korst§

∗DEIS, University of Bologna, Italy
†DIKU, University of Copenhagen, Denmark

§Philips Research Laboratories, Eindhoven, The Netherlands

1 The Code

Algorithm binpack3d, described in Martello et al. [2], was coded in ANSI-C and compiled
on several platforms using cc and gcc compilers. In particular, the code has been tested
with the -pedantic option of gcc to ensure that the ANSI-C standard is strictly respected.
The n boxes are here numbered from 0 to n− 1. Box positions are referred to a coordinate
system having its origin in the lower-left-backward corner of the bin.

The algorithm comes with program test3dbpp that either reads an instance from an
input file or constructs some randomly generated instances presented in Martello, Pisinger
and Vigo [1].

A prototype of binpack3d appears as

void binpack3d(int n, int W, int H, int D, int *w, int *h, int *d,

int *x, int *y, int *z, int *bno, int *lb, int *ub,

int nodelimit, int iterlimit, int timelimit, int *nodeused,

int *iterused, int *timeused, int packingtype)

where the parameters are:

n size of the problem, i.e., number of boxes to be packed;

W,H,D width, height and depth of every bin;

w,h,d integer arrays of length n, where w[j− 1] = wj, h[j− 1] = hj, d[j− 1] =
dj are the dimensions of box j (j = 1, . . . , n);

x,y,z,bno integer arrays of length n, where the solution found is returned. For each
box j (j = 1, . . . , n), bno[j-1] is the bin number it is packed into, and
x[j-1], y[j-1], z[j-1] are the coordinates of its lower-left-backward
corner;

lb best lower bound on the solution value obtained;

1



ub objective value of the solution found, i.e., number of bins used to pack
the n boxes. If an optimal solution was found, then ub=lb;

nodelimit maximum number of decision nodes to be explored in the main branching
tree (in thousands). If set to zero, the algorithm will run until an optimal
solution is found (unless either timelimit or iterlimit is reached);

iterlimit maximum number of iterations in the ONEBIN algorithm which packs
a single bin (in thousands). If set to zero, the algorithm will run until
an optimal solution is found (unless either timelimit or nodelimit is
reached);

timelimit time limit for solving the problem, expressed in seconds. If set to zero,
the algorithm will run until an optimal solution is found (unless either
nodelimit or iterlimit is reached); otherwise, no new branching node
will be explored after timelimit seconds;

nodeused a pointer to an integer where the number of nodes in the main branch
and bound tree is returned;

iterused a pointer to an integer where the total number of iterations in ONEBIN
is returned;

timeused a pointer to an integer where the used time in milliseconds is returned;

packingtype desired packing type. If set to zero, the algorithm will search for an
optimal general packing; if set to one, it will search for a robot packing.

The general structure of the code is shown in Figure 1. Initial lower bounds and heuristic
solutions are computed at the root node. If the problem is not solved to optimality, the
tree enumeration is recursively performed through procedure rec binpack.

2 Implementation details

All parameters concerning the boxes are passed to algorithm binpack3d as integer arrays
to form a simple interface to other programs. However, internally the algorithm stores the
information of each box in a structure box that contains the following fields:

no original (input) number of the box. This number follows the box throughout
the algorithm for easy identification and debugging;

w,h,d width, height and depth of the box;

x,y,z coordinates of the current position of the lower-left-backward corner of the
box;

bno number of the bin the box is currently assigned to. If bno = 0 the box is
not currently assigned to any bin;

k boolean variable indicating whether the current box was selected when solv-
ing the single-bin subproblem;

vol volume of the box.

2



1. copy the input information to internal structures;

2. compute lower bound L2;

3. execute heuristics H1 and H2, and set u to the best solution value found;

4. while no optimal solution is found or stopping criterion is met do

comment: perform the tree enumeration;

4.1 assign the next box to an open bin or a new bin;

4.2 check feasibility of the assignment with onebin decision;

4.3 if the assignment is not feasible then backtrack;

else

check the current solution for (non-)optimality;

check node limit and time limit;

for each open bin do

if the bin can be closed then

compute a new lower bound and possibly backtrack

end for

end if

5. return the best solution found.

Figure 1: Structure of procedure binpack3d

All problem information is stored in a structure allinfo that contains the problem data
and execution parameters, working data, bound values at the root node, as well as de-
bugging, control and statistic information. Additional structures are used for the heuristic
algorithms (heurpair) and the constraint programming algorithm (domainpair).

Different upper and lower bound values may be obtained by considering the instance ac-
cording to the three different orientations. To this purpose, the computations are performed
for a single orientation (procedures bound two x, dfirst heuristic and mcut heuristic):
the overall lower and upper bound values are then obtained (through procedures bound two,
dfirst3 heuristic and mcut3 heuristic) making use of a routine rotate problem that
rotates the dimensions as w ← h ← d ← w and W ← H ← D ← W . This routine is
always called three times, so that all variables are restored to their original values after
the three iterations. When deriving upper bounds, a routine rotate solution is executed
with rotate problem, in order to ensure that solution coordinates follow the orientation
of the instance.

3



References

[1] S. Martello, D. Pisinger, D. Vigo (2000), “The Three-Dimensional Bin Packing Prob-
lem”, Operations Research 48, 256–267.

[2] S. Martello, D. Pisinger, D. Vigo, E. den Boef and J. Korst (2006), “Algorithms for
General and Robot-Packable Variants of the Three-Dimensional Bin Packing Prob-
lem”, ACM Transactions on Mathematical Software (to appear).

4


