Valid HTML 4.0! Valid CSS!
%%% -*-BibTeX-*-
%%% ====================================================================
%%%  BibTeX-file{
%%%     author          = "Nelson H. F. Beebe",
%%%     version         = "1.07",
%%%     date            = "30 April 2024",
%%%     time            = "10:58:11 MST",
%%%     filename        = "tsc.bib",
%%%     address         = "University of Utah
%%%                        Department of Mathematics, 110 LCB
%%%                        155 S 1400 E RM 233
%%%                        Salt Lake City, UT 84112-0090
%%%                        USA",
%%%     telephone       = "+1 801 581 5254",
%%%     FAX             = "+1 801 581 4148",
%%%     URL             = "https://www.math.utah.edu/~beebe",
%%%     checksum        = "52357 2989 15444 145967",
%%%     email           = "beebe at math.utah.edu, beebe at acm.org,
%%%                        beebe at computer.org (Internet)",
%%%     codetable       = "ISO/ASCII",
%%%     keywords        = "ACM Transactions on Social Computing (TSC);
%%%                        bibliography; BibTeX",
%%%     license         = "public domain",
%%%     supported       = "yes",
%%%     docstring       = "This is a COMPLETE BibTeX bibliography for
%%%                        ACM Transactions on Social Computing (TSC)
%%%                        (CODEN ????, ISSN 2469-7818 (print),
%%%                        2469-7826 (electronic)).  The journal appears
%%%                        quarterly, and publication began with volume
%%%                        1, number 1, in February 2018.
%%%
%%%                        At version 1.07, the COMPLETE journal
%%%                        coverage looked like this:
%%%
%%%                             2018 (  19)    2020 (  24)    2022 (   4)
%%%                             2019 (  12)    2021 (  12)    2023 (   8)
%%%
%%%                             Article:         79
%%%
%%%                             Total entries:   79
%%%
%%%                        The journal Web page can be found at:
%%%
%%%                            http://tsc.acm.org/
%%%
%%%                        The journal table of contents page is at:
%%%
%%%                            http://dl.acm.org/pub.cfm?id=J1546
%%%                            http://dl.acm.org/citation.cfm?id=2632163
%%%
%%%                        Qualified subscribers can retrieve the full
%%%                        text of recent articles in PDF form.
%%%
%%%                        The initial draft was extracted from the ACM
%%%                        Web pages.
%%%
%%%                        ACM copyrights explicitly permit abstracting
%%%                        with credit, so article abstracts, keywords,
%%%                        and subject classifications have been
%%%                        included in this bibliography wherever
%%%                        available.  Article reviews have been
%%%                        omitted, until their copyright status has
%%%                        been clarified.
%%%
%%%                        URL keys in the bibliography point to
%%%                        World Wide Web locations of additional
%%%                        information about the entry.
%%%
%%%                        BibTeX citation tags are uniformly chosen
%%%                        as name:year:abbrev, where name is the
%%%                        family name of the first author or editor,
%%%                        year is a 4-digit number, and abbrev is a
%%%                        3-letter condensation of important title
%%%                        words. Citation tags were automatically
%%%                        generated by software developed for the
%%%                        BibNet Project.
%%%
%%%                        In this bibliography, entries are sorted in
%%%                        publication order, using ``bibsort -byvolume.''
%%%
%%%                        The checksum field above contains a CRC-16
%%%                        checksum as the first value, followed by the
%%%                        equivalent of the standard UNIX wc (word
%%%                        count) utility output of lines, words, and
%%%                        characters.  This is produced by Robert
%%%                        Solovay's checksum utility.",
%%%  }
%%% ====================================================================
@Preamble{"\input bibnames.sty" #
    "\ifx \undefined \booktitle  \def \booktitle #1{{{\em #1}}}    \fi" #
    "\ifx \undefined \TM         \def \TM          {${}^{\sc TM}$} \fi"
}

%%% ====================================================================
%%% Acknowledgement abbreviations:
@String{ack-nhfb = "Nelson H. F. Beebe,
                    University of Utah,
                    Department of Mathematics, 110 LCB,
                    155 S 1400 E RM 233,
                    Salt Lake City, UT 84112-0090, USA,
                    Tel: +1 801 581 5254,
                    FAX: +1 801 581 4148,
                    e-mail: \path|beebe@math.utah.edu|,
                            \path|beebe@acm.org|,
                            \path|beebe@computer.org| (Internet),
                    URL: \path|https://www.math.utah.edu/~beebe/|"}

%%% ====================================================================
%%% Journal abbreviations:
@String{j-TSC                   = "ACM Transactions on Social Computing (TSC)"}

%%% ====================================================================
%%% Bibliography entries:
@Article{Crowston:2018:IAT,
  author =       "Kevin Crowston",
  title =        "Introduction to {{\booktitle{ACM Transactions on
                 Social Computing}}}",
  journal =      j-TSC,
  volume =       "1",
  number =       "1",
  pages =        "1:1--1:??",
  month =        feb,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3181713",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:50 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3181713",
  acknowledgement = ack-nhfb,
  articleno =    "1e",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Schmitz:2018:OSN,
  author =       "Heinz Schmitz and Ioanna Lykourentzou",
  title =        "Online Sequencing of Non-Decomposable Macrotasks in
                 Expert Crowdsourcing",
  journal =      j-TSC,
  volume =       "1",
  number =       "1",
  pages =        "1:1--1:??",
  month =        feb,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3140459",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:50 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3140459",
  abstract =     "We introduce the problem of Task Assignment and
                 Sequencing, which models online optimization in expert
                 crowdsourcing settings that involve non-decomposable
                 macrotasks. Non-decomposition is a property of certain
                 types of complex problems, like the formulation of an
                 R\\&D approach or the definition of a research
                 methodology, which cannot be handled through the
                 ``divide-and-conquer'' approach typically used in
                 microtask crowdsourcing. In contrast to splitting the
                 macrotask to multiple microtasks and allocating them to
                 several workers in parallel, our model supports the
                 sequential improvement of the macrotask one worker at a
                 time, across distinct time slots of a given timeline,
                 until a sufficient quality level is achieved. Our model
                 assumes an online environment where expert workers are
                 available only at specific time slots and worker/task
                 arrivals are not known a priori. With respect to this
                 setting, we propose TAS-ONLINE, an online algorithm
                 that aims to complete as many tasks as possible within
                 budget, required quality, and a given timeline, without
                 any future input information regarding job release
                 dates or worker availabilities. Experimental results
                 comparing TAS-ONLINE to five benchmarks show that it
                 achieves more completed jobs, lower flow times, and
                 higher job quality. This work bears practical
                 implications for providing performance and quality
                 guarantees to expert crowdsourcing platforms that wish
                 to integrate non-decomposable macrotasks into their
                 offered services.",
  acknowledgement = ack-nhfb,
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Tolmie:2018:MAP,
  author =       "Peter Tolmie and Rob Procter and Mark Rouncefield and
                 Maria Liakata and Arkaitz Zubiaga",
  title =        "Microblog Analysis as a Program of Work",
  journal =      j-TSC,
  volume =       "1",
  number =       "1",
  pages =        "2:1--2:??",
  month =        feb,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3162956",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:50 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3162956",
  acknowledgement = ack-nhfb,
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Garimella:2018:QCS,
  author =       "Kiran Garimella and Gianmarco {De Francisci Morales}
                 and Aristides Gionis and Michael Mathioudakis",
  title =        "Quantifying Controversy on Social Media",
  journal =      j-TSC,
  volume =       "1",
  number =       "1",
  pages =        "3:1--3:??",
  month =        feb,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3140565",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:50 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3140565",
  abstract =     "Which topics spark the most heated debates on social
                 media? Identifying those topics is not only interesting
                 from a societal point of view but also allows the
                 filtering and aggregation of social media content for
                 disseminating news stories. In this article, we perform
                 a systematic methodological study of controversy
                 detection by using the content and the network
                 structure of social media. Unlike previous work, rather
                 than studying controversy in a single hand-picked topic
                 and using domain-specific knowledge, we take a general
                 approach to study topics in any domain. Our approach to
                 quantifying controversy is based on a graph-based
                 three-stage pipeline, which involves (i) building a
                 conversation graph about a topic, (ii) partitioning the
                 conversation graph to identify potential sides of the
                 controversy, and (iii) measuring the amount of
                 controversy from characteristics of the graph. We
                 perform an extensive comparison of controversy
                 measures, different graph-building approaches, and data
                 sources. We use both controversial and
                 non-controversial topics on Twitter, as well as other
                 external datasets. We find that our new
                 random-walk-based measure outperforms existing ones in
                 capturing the intuitive notion of controversy and show
                 that content features are vastly less helpful in this
                 task.",
  acknowledgement = ack-nhfb,
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Liu:2018:CSM,
  author =       "Weichen Liu and Sijia Xiao and Jacob T. Browne and
                 Ming Yang and Steven P. Dow",
  title =        "{ConsensUs}: Supporting Multi-Criteria Group Decisions
                 by Visualizing Points of Disagreement",
  journal =      j-TSC,
  volume =       "1",
  number =       "1",
  pages =        "4:1--4:??",
  month =        feb,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3159649",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:50 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3159649",
  abstract =     "Groups often face difficulty reaching consensus. For
                 complex decisions with multiple criteria, verbal and
                 written discourse alone may impede groups from
                 pinpointing and moving past fundamental disagreements.
                 To help support consensus building, we introduce
                 ConsensUs, a novel visualization tool that highlights
                 disagreement by asking group members to quantify their
                 subjective opinions across multiple criteria. To
                 evaluate this approach, we conducted a between-subjects
                 experiment with 87 participants on a comparative hiring
                 task. The study compared three modes of sensemaking on
                 a group decision: written discourse only, visualization
                 only, and written discourse plus visualization. We
                 confirmed that the visualization helped participants
                 identify disagreements within the group and then
                 measured subsequent changes to their individual
                 opinions. The results show that disagreement
                 highlighting led participants to align their ratings
                 more with the opinions of other group members. While
                 disagreement highlighting led to better score
                 alignment, participants reported a number of reasons
                 for shifting their score, from genuine consensus to
                 appeasement. We discuss further research angles to
                 understand how disagreement highlighting affects social
                 processes and whether it produces objectively better
                 decisions.",
  acknowledgement = ack-nhfb,
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Morstatter:2018:IFB,
  author =       "Fred Morstatter and Liang Wu and Uraz Yavanoglu and
                 Stephen R. Corman and Huan Liu",
  title =        "Identifying Framing Bias in Online News",
  journal =      j-TSC,
  volume =       "1",
  number =       "2",
  pages =        "5:1--5:??",
  month =        jun,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3204948",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3204948",
  abstract =     "It has been observed that different media outlets
                 exert bias in the way they report the news, which
                 seamlessly influences the way that readers' knowledge
                 is built through filtering what we read. Therefore,
                 understanding bias in news media is fundamental for
                 obtaining a holistic view of a news story. Traditional
                 work has focused on biases in terms of ``agenda
                 setting,'' where more attention is allocated to stories
                 that fit their biased narrative. The corresponding
                 method is straightforward, since the bias can be
                 detected through counting the occurrences of different
                 stories/themes within the documents. However, these
                 methods are not applicable to biases which are implicit
                 in wording, namely, ``framing'' bias. According to
                 framing theory, biased communicators will select and
                 emphasize certain facts and interpretations over others
                 when telling their story. By focusing on facts and
                 interpretations that conform to their bias, they can
                 tell the story in a way that suits their narrative.
                 Automatic detection of framing bias is challenging
                 since nuances in the wording can change the
                 interpretation of the story. In this work, we aim to
                 investigate how the subtle pattern hidden in language
                 use of a news agency can be discovered and further
                 leveraged to detect frames. In particular, we aim to
                 identify the type and polarity of frame in a sentence.
                 Extensive experiments are conducted on real-world data
                 from different countries. A case study is further
                 provided to reveal possible applications of the
                 proposed method.",
  acknowledgement = ack-nhfb,
  articleno =    "5",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Simperl:2018:VCS,
  author =       "Elena Simperl and Neal Reeves and Chris Phethean and
                 Todd Lynes and Ramine Tinati",
  title =        "Is Virtual Citizen Science A Game?",
  journal =      j-TSC,
  volume =       "1",
  number =       "2",
  pages =        "6:1--6:??",
  month =        jun,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3209960",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3209960",
  abstract =     "The use of game elements within virtual citizen
                 science is increasingly common, promising to bring
                 increased user activity, motivation, and engagement to
                 large-scale scientific projects. However, there is an
                 ongoing debate about whether or not gamifying systems
                 such as these is actually an effective means by which
                 to increase motivation and engagement in the long term.
                 While gamification itself is receiving a large amount
                 of attention, there has been little beyond individual
                 studies to assess its suitability or success for
                 citizen science; similarly, while frameworks exist for
                 assessing citizen science performance, they tend to
                 lack any appreciation of the effects that game elements
                 might have had. We therefore review the literature to
                 determine what the trends are regarding the performance
                 of particular game elements or characteristics in
                 citizen science, and survey existing projects to assess
                 how popular different game features are. Investigating
                 this phenomenon further, we then present the results of
                 a series of interviews carried out with the EyeWire
                 citizen science project team to understand more about
                 how gamification elements are introduced, monitored,
                 and assessed in a live project. Our findings suggest
                 that projects use a range of game elements with points
                 and leaderboards the most popular, particularly in
                 projects that describe themselves as ``games.''
                 Currently, gamification appears to be effective in
                 citizen science for maintaining engagement with
                 existing communities, but shows limited impact for
                 attracting new players.",
  acknowledgement = ack-nhfb,
  articleno =    "6",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Shi:2018:MPR,
  author =       "Chuan Shi and Jian Liu and Yiding Zhang and Binbin Hu
                 and Shenghua Liu and Philip S. Yu",
  title =        "{MFPR}: A Personalized Ranking Recommendation with
                 Multiple Feedback",
  journal =      j-TSC,
  volume =       "1",
  number =       "2",
  pages =        "7:1--7:??",
  month =        jun,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3216368",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3216368",
  abstract =     "Recently, recommender systems have played an important
                 role in improving web user experiences and increasing
                 profits. Recommender systems exploit users' behavioral
                 history (i.e., feedback on items) to build models. The
                 feedback usually includes explicit feedback (e.g.,
                 ratings) and implicit feedback (e.g., browsing history,
                 click logs), which are both useful for improving
                 recommendations. However, as far as we are concerned,
                 no existing works have integrated both explicit and
                 multiple implicit feedback simultaneously. Therefore,
                 we propose a unified and flexible model, named Multiple
                 Feedback-based Personalized Ranking (MFPR), to make
                 full use of multiple feedback, which uses a
                 personalized ranking framework. To train model MFPR, we
                 design an algorithm to generate ordered item pairs as
                 labeled data, with consideration of both rating scores
                 and multiple implicit feedback. Extensive experiments
                 on two real-world datasets validate the effectiveness
                 of the MFPR model. With the integration of multiple
                 feedback, MFPR significantly improves recommendation
                 performance.",
  acknowledgement = ack-nhfb,
  articleno =    "7",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Tausczik:2018:ECS,
  author =       "Yla Tausczik and Rosta Farzan and John Levine and
                 Robert Kraut",
  title =        "Effects of Collective Socialization on Newcomers'
                 Response to Feedback in Online Communities",
  journal =      j-TSC,
  volume =       "1",
  number =       "2",
  pages =        "8:1--8:??",
  month =        jun,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3191834",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3191834",
  abstract =     "Collective socialization involves introducing new
                 members to an organization as a group or cohort. In
                 traditional offline organizations, collective
                 socialization is a standard and effective socialization
                 strategy. This article investigates the impact of
                 collective socialization on newcomers' motivation and
                 learning in an online community and the effect it has
                 on newcomers' reaction to feedback from the community.
                 One observational field study and two random-assignment
                 experiments involving editing Wikipedia articles show
                 that collective socialization altered the way newcomers
                 responded to feedback from the community. The
                 observational study of students editing Wikipedia
                 articles as part of a classroom assignment found that
                 those who worked relatively independently without peer
                 support made more edits in response to critical,
                 negative feedback, presumably to fix errors, whereas
                 students who had peer support did not. Two experiments
                 in which Mechanical Turk workers edited Wikipedia
                 articles independently or in a group found that working
                 in a group diffused the impact of both positive and
                 negative feedback. We discuss these findings, which
                 highlight the importance of considering the negative
                 consequences of introducing a new socialization
                 practice to an online community.",
  acknowledgement = ack-nhfb,
  articleno =    "8",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Robert:2018:GSI,
  author =       "Lionel P. {Robert, Jr.} and Andrea Forte and Claudia
                 M{\"u}ller and Michael Prilla and Adriana S. Vivacqua",
  title =        "{GROUP 2018} Special Issue Guest Editorial: Another 25
                 Years of {GROUP}",
  journal =      j-TSC,
  volume =       "1",
  number =       "3",
  pages =        "9:1--9:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3290870",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3290870",
  abstract =     "For over 25 years, the ACM International Conference on
                 Supporting Group Work (GROUP) has been and will
                 continue to be the premier venue for research on
                 Computer-Supported Cooperative Work, Human--Computer
                 Interaction, Computer-Supported Collaborative Learning,
                 and Socio-Technical Studies. The three papers in this
                 special issue demonstrate GROUP's continued commitment
                 to diverse research approaches, emerging technologies,
                 and collaborative work. We hope you enjoy these papers
                 and, like us, look forward to another 25 years of
                 GROUP.",
  acknowledgement = ack-nhfb,
  articleno =    "9",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Jabbar:2018:PIV,
  author =       "Karim Jabbar and Pernille Bj{\o}rn",
  title =        "Permeability, Interoperability, and Velocity:
                 Entangled Dimensions of Infrastructural Grind at the
                 Intersection of Blockchain and Shipping",
  journal =      j-TSC,
  volume =       "1",
  number =       "3",
  pages =        "10:1--10:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3288800",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/bitcoin.bib;
                 https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3288800",
  abstract =     "Blockchain can potentially be appropriated as a social
                 computing technology, which enables transactions across
                 people and artefacts via a large socio-technical
                 information infrastructure constituted by the actions
                 of multiple people and computers. However, Blockchain
                 is not a social computing technology a priori; instead
                 to emerge as one, much effort and work is required to
                 radically transform existing domains, including
                 wrestling with traditions, standards, and legacy. In
                 this article, we expand on previous work on Blockchain
                 as an information infrastructure, and on the notion of
                 infrastructural grind. Infrastructural grind allows us
                 to analytically explore how the emerging Blockchain
                 technology is appropriated into established business
                 domains, in our case the shipping industry. We present
                 ethnographic data unpacking three different accounts of
                 infrastructural grind taking place at the intersection
                 of the shipping and the Blockchain information
                 infrastructures. The results demonstrate that
                 infrastructural grind occurs as a result of various
                 infrastructuring activities taking place at different
                 intersections between the two infrastructures and is
                 constituted of the sum of these activities. We propose
                 a framework in which infrastructural grind is
                 constituted of three entangled dimensions:
                 permeability, interoperability, and velocity. These
                 socio-technical dimensions relate to infrastructural
                 properties such as legacy, embeddedness, and standards,
                 as well as to technical properties of specific
                 solutions deployed at specific points of
                 infrastructural grind. Our analysis shows that these
                 dimensions are enacted differently along the shipping
                 supply chain, and depending on the dynamic interplay
                 between them at various points of infrastructural
                 grind. At different points in time, the infrastructural
                 grind between Blockchain and the shipping domain will
                 thus manifest itself differently and at differential
                 velocity.",
  acknowledgement = ack-nhfb,
  articleno =    "10",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Yu:2018:MUI,
  author =       "Xianqi Yu and Yuqing Sun and Elisa Bertino and Xin
                 Li",
  title =        "Modeling User Intrinsic Characteristic on Social Media
                 for Identity Linkage",
  journal =      j-TSC,
  volume =       "1",
  number =       "3",
  pages =        "11:1--11:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3267442",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3267442",
  abstract =     "Most users on social media have intrinsic
                 characteristics, such as interests and political views,
                 that can be exploited to identify and track them, thus
                 raising privacy and identity concerns in online
                 communities. In this article, we investigate the
                 problem of user identity linkage on two behavior
                 datasets collected from different experiments.
                 Specifically, we focus on user linkage based on users'
                 interaction behaviors with respect to content topics.
                 We propose an embedding method to model a topic as a
                 vector in a latent space to interpret its deep
                 semantics. Then a user is modeled as a vector based on
                 his or her interactions with topics. The embedding
                 representations of topics are learned by optimizing the
                 joint-objective: the compatibility between topics with
                 similar semantics, the discriminative abilities of
                 topics to distinguish identities, and the consistency
                 of the same user's characteristics from two datasets.
                 The effectiveness of our method is verified on
                 real-life datasets and the results show that it
                 outperforms related methods. We also analyze failure
                 cases in the application of our identity linkage
                 method. Our analysis shows that factors such as the
                 visibility and variance of user behaviors and users'
                 group psychology can result in mis-linkages. We also
                 analyze the details of the behaviors of some
                 representative users to understand the essential
                 reasons for their identity being mis-linked. We find
                 that these users have high variance level in their
                 behaviors. According to the above experimental results,
                 we introduce a confidence score into identity linkage
                 to provide information about the accuracy of the method
                 results.",
  acknowledgement = ack-nhfb,
  articleno =    "11",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Jan:2018:APD,
  author =       "Steve T. K. Jan and Chun Wang and Qing Zhang and Gang
                 Wang",
  title =        "Analyzing Payment-Driven Targeted {Q\&A} Systems",
  journal =      j-TSC,
  volume =       "1",
  number =       "3",
  pages =        "12:1--12:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3281449",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3281449",
  abstract =     "Today's online question and answer (Q\&A) services are
                 receiving a large volume of questions. It becomes
                 increasingly challenging to motivate domain experts to
                 provide quick and high-quality answers. Recent systems
                 seek to engage real-world experts by allowing them to
                 set a price on their answers. This leads to a
                 ``targeted'' Q\&A model where users ask questions to a
                 target expert by paying the corresponding price. In
                 this article, we perform a case study on two emerging
                 targeted Q\&A systems, Fenda (China) and Whale (U.S.),
                 to understand how monetary incentives affect user
                 behavior. By analyzing a large dataset of 220K
                 questions (worth 1 million USD), we find that payments
                 indeed enable quick answers from experts, but also
                 drive certain users to game the system for profits. In
                 addition, this model requires users (experts) to
                 proactively adjust their price to make profits. People
                 who are unwilling to lower their prices are likely to
                 hurt their income and engagement over time.",
  acknowledgement = ack-nhfb,
  articleno =    "12",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Santani:2018:LSL,
  author =       "Darshan Santani and Salvador Ruiz-Correa and Daniel
                 Gatica-Perez",
  title =        "Looking South: Learning Urban Perception in Developing
                 Cities",
  journal =      j-TSC,
  volume =       "1",
  number =       "3",
  pages =        "13:1--13:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3224182",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:51 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3224182",
  abstract =     "Mobile and social technologies are providing new
                 opportunities to document, characterize, and gather
                 impressions of urban environments. In this article, we
                 present a study that examines urban perceptions of
                 three cities in central Mexico; the study integrates a
                 mobile crowdsourcing framework to collect geo-localized
                 images of urban environments by a local youth
                 community, an online crowdsourcing platform to gather
                 impressions of urban environments along 12 physical and
                 psychological dimensions, and a deep learning framework
                 to automatically infer human impressions of outdoor
                 urban scenes. Our study resulted in a collection of
                 7,000 geo-localized images containing outdoor scenes
                 and views of each city's built environment, including
                 touristic, historical, and residential neighborhoods,
                 and 144,000 individual judgments from Amazon Mechanical
                 Turk. Statistical analyses show that outdoor
                 environments can be assessed in terms of interrater
                 agreement for most of the urban dimensions by the
                 observers of crowdsourced images. Furthermore, we
                 proposed a methodology to automatically infer human
                 perceptions of outdoor scenes using a variety of
                 low-level image features and generic deep learning
                 (CNN) features. We found that CNN features consistently
                 outperformed all the individual low-level image
                 features for all the studied urban dimensions. We
                 obtained a maximum R 2 of 0.49 using CNN features; for
                 9 out of 12 labels, the obtained R 2 values exceeded
                 0.44.",
  acknowledgement = ack-nhfb,
  articleno =    "13",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Crowston:2018:LPU,
  author =       "Kevin Crowston and Xuefei (Nancy) Deng and Yoram M.
                 Kalman",
  title =        "A Librarian, a Politician, a {UX} Expert, and a
                 Cyberbully Walk into a Special Issue",
  journal =      j-TSC,
  volume =       "1",
  number =       "4",
  pages =        "14:1--14:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3293613",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3293613",
  acknowledgement = ack-nhfb,
  articleno =    "14e",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Gasson:2018:PAS,
  author =       "Susan Gasson and Michelle Purcelle",
  title =        "A Participation Architecture to Support User
                 Peripheral Participation in a Hybrid {FOSS} Community",
  journal =      j-TSC,
  volume =       "1",
  number =       "4",
  pages =        "14:1--14:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3290837",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3290837",
  abstract =     "Participation by product users is critical to success
                 in free, open-source software (FOSS) software
                 communities as they originate and develop valuable
                 ideas for product innovation that are unlikely to
                 originate from the core software development community.
                 Users tend to be involved at the periphery of FOSS
                 communities, suggesting new product ideas, highlighting
                 problems with user documentation, or explaining when
                 the product design fails to fit with the needs of their
                 local user application domain. As an increasing number
                 of FOSS projects employ a hybrid participation model
                 that combines volunteer effort with paid software
                 development effort or product support, it can be
                 difficult for non-developer users to participate in
                 product innovation. In colocated organizations, it is
                 theorized that peripheral participants learn how to
                 engage with the practices and cultural identity of a
                 community through a sociocultural apprenticeship known
                 as legitimate peripheral participation. But we have
                 little literature that explores how legitimate
                 peripheral participation is enabled in online
                 communities. The research study presented in this
                 article explores how participation by peripheral users
                 in a hybrid FOSS project is afforded by participation
                 architecture channels and community mechanisms that
                 mediate two forms of engagement: a ``cognitive
                 apprenticeship'' that introduces participants to
                 situated domain activity, such as the community
                 processes involved in product innovation, and a
                 ``social apprenticeship'' by which participants become
                 enculturated in the system of meanings, values, norms,
                 and behaviors that govern community/participant
                 identity. We identified five stages of community
                 innovation, analyzing sociotechnical affordances of the
                 online participation architecture that enable
                 peripheral participants to internalize the meanings of
                 community practice and to develop a social identity
                 within the FOSS community. Our contribution to theory
                 is provided by the substantive explanation of the
                 cognitive and social translations that enable
                 legitimate peripheral participation in online
                 communities, mediated by sociotechnical access channels
                 and mechanisms that afford two contrasting forms of
                 opportunities for action: those resulting from
                 interactions between a goal-oriented actor and the
                 technology platform features or channels of
                 participation, and those associated with the social
                 structures, roles, and relationships underpinning
                 community interactions. Neither of these is sufficient
                 without the other. Our contribution to practice is
                 provided by an explanation of how four distinct
                 categories of affordance provide these cognitive and
                 social apprenticeship benefits, allowing participation
                 architecture designers to cater to all forms of
                 peripheral user participation. We conclude that the
                 technical affordances of a typical FOSS community
                 participation architecture are insufficient to mediate
                 peripheral participation by nontechnical users.
                 Meaningful participation is mediated by interactions
                 between boundary spanners who play knowledge-brokering
                 and organizational bridging roles. The combination of
                 technical and social affordances enables peripheral
                 participants to acquire an interior view of community
                 practices and social culture and in turn to introduce
                 new ideas, new values, and new rationales to produce a
                 generative dance of innovation that percolates through
                 the community.",
  acknowledgement = ack-nhfb,
  articleno =    "14",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Tahmasbi:2018:SCA,
  author =       "Nargess Tahmasbi and Elham Rastegari",
  title =        "A Socio-Contextual Approach in Automated Detection of
                 Public Cyberbullying on {Twitter}",
  journal =      j-TSC,
  volume =       "1",
  number =       "4",
  pages =        "15:1--15:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3290838",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3290838",
  abstract =     "Cyberbullying is a major cyber issue that is common
                 among adolescents. Recent reports show that more than
                 one out of five students in the United States is a
                 victim of cyberbullying. Majority of cyberbullying
                 incidents occur on public social media platforms such
                 as Twitter. Automated cyberbullying detection methods
                 can help prevent cyberbullying before the harm is done
                 on the victim. In this study, we analyze two corpora of
                 cyberbullying tweets from similar incidents to
                 construct and validate an automated detection model.
                 Our method emphasizes the two claims that are supported
                 by our results. First, despite other approaches that
                 assume that cyberbullying instances use vulgar or
                 profane words, we show that they do not necessarily
                 contain negative words. Second, we highlight the
                 importance of context and the characteristics of actors
                 involved and their position in the network structure in
                 detecting cyberbullying rather than only considering
                 the textual content in our analysis.",
  acknowledgement = ack-nhfb,
  articleno =    "15",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Bay:2018:SME,
  author =       "Morten Bay",
  title =        "Social Media Ethics: a {Rawlsian} Approach to
                 Hypertargeting and Psychometrics in Political and
                 Commercial Campaigns",
  journal =      j-TSC,
  volume =       "1",
  number =       "4",
  pages =        "16:1--16:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3281450",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3281450",
  abstract =     "Targeted social media advertising based on
                 psychometric user profiling has emerged as an effective
                 way of reaching individuals who are predisposed to
                 accept and be persuaded by the advertising message.
                 This article argues that in the case of political
                 advertising, this may present a democratic and ethical
                 challenge. Hypertargeting methods such as psychometrics
                 can ``crowd out'' political communication with opposing
                 views due to individual attention and time limitations,
                 creating inequities in the access to information
                 essential for voting decisions. The use of
                 psychometrics also appears to have been used to spread
                 both information and misinformation through social
                 media in recent elections in the U.S. and Europe. This
                 article is an applied ethics study of these methods in
                 the context of democratic processes and compared to
                 purely commercial situations. The ethical approach is
                 based on the theoretical, contractarian work of John
                 Rawls, which serves as a lens through which the author
                 examines whether the rights of individuals, as Rawls
                 attributes them, are violated by this practice. The
                 article concludes that within a Rawlsian framework, use
                 of psychometrics in commercial advertising on social
                 media platforms, though not immune to criticism, is not
                 necessarily unethical. In a democracy, however, the
                 individual cannot abandon the consumption of political
                 information, and since using psychometrics in political
                 campaigning makes access to such information unequal,
                 it violates Rawlsian ethics and should be regulated.",
  acknowledgement = ack-nhfb,
  articleno =    "16",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Kou:2018:USR,
  author =       "Yubo Kou and Colin M. Gray and Austin L. Toombs and
                 Robin S. Adams",
  title =        "Understanding Social Roles in an Online Community of
                 Volatile Practice: A Study of User Experience
                 Practitioners on {Reddit}",
  journal =      j-TSC,
  volume =       "1",
  number =       "4",
  pages =        "17:1--17:??",
  month =        dec,
  year =         "2018",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3283827",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3283827",
  abstract =     "Community of practice (CoP) is a primary framework in
                 social computing research that addresses learning and
                 organizing specific practices in online communities.
                 However, the classic CoP theory does not provide a
                 detailed account for how practices change or evolve.
                 Against the backdrop of a rapidly changing occupational
                 landscape, it is crucial to understand how people
                 participate in online communities focused on practices
                 that have a volatile nature, as well as how social
                 computing tools can best support them. In this article,
                 we examine user experience (UX) design as a volatile
                 practice that has no coherent body of knowledge and
                 lacks a concrete path for newcomers to become a UX
                 professional. Our study site is the
                 ``/r/userexperience'' subreddit, an online UX community
                 where practitioners socialize and learn. Using a
                 mixed-methods approach, we identified five distinct
                 social roles in relation to knowledge production and
                 dissemination in the online community of volatile
                 practice. We demonstrate that knowledge production is
                 highly distributed, involving the participation and
                 sensemaking of community members of varied levels of
                 experience. We discuss how online platforms support
                 online community of volatile practice and how our
                 findings contribute to the CoP literature.",
  acknowledgement = ack-nhfb,
  articleno =    "17",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Saldivar:2019:OIM,
  author =       "Jorge Saldivar and Florian Daniel and Luca Cernuzzi
                 and Fabio Casati",
  title =        "Online Idea Management for Civic Engagement: A Study
                 on the Benefits of Integration with Social Networking",
  journal =      j-TSC,
  volume =       "2",
  number =       "1",
  pages =        "1:1--1:??",
  month =        feb,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3284982",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3284982",
  abstract =     "Idea Management (IM) has increasingly been adopted in
                 the civic domain as a tool to engage the citizenry in
                 processes oriented toward innovating plans, policies,
                 and services. While Idea Management Systems (IMSs), the
                 software systems that instrument IM, definitely help
                 manage this practice, they require citizens to be
                 committed to a separate virtual space for which they
                 need to register, they must learn how to operate it,
                 and they must return to it frequently. This article
                 presents an approach that integrates IMS with today's
                 most popular digital spaces of participation, the
                 social networking sites, thus enabling citizens to
                 engage in IM processes using ordinary tools and without
                 having to step outside their daily habits. Our goal is
                 to reach out and pull into IM those large and
                 demographically diverse sectors of the society that are
                 already present and participating in social networking
                 sites. Through a real case study of IM in the public
                 sector that mixed both qualitative and quantitative
                 data collection methods, our proposal demonstrates a
                 promising approach to reduce the barriers of
                 participation. We conclude with an analysis of the
                 strengths and limitations of our proposal.",
  acknowledgement = ack-nhfb,
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Ruiz-Correa:2019:MCC,
  author =       "Salvador Ruiz-Correa and Itzia Ruiz-Correa and Carlo
                 Olmos-Carrillo and Fatima Alba Rend{\'o}n-Huerta and
                 Beatriz Ramirez-Salazar and Laurent Son Nguyen and
                 Daniel Gatica-Perez",
  title =        "Mi Casa es su Casa? {Examining} {Airbnb} Hospitality
                 Exchange Practices in a Developing Economy",
  journal =      j-TSC,
  volume =       "2",
  number =       "1",
  pages =        "2:1--2:??",
  month =        feb,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3299817",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3299817",
  abstract =     "We present a study involving twenty in-depth,
                 semi-structured interviews, a street survey, and online
                 data to understand Airbnb hospitality exchange
                 practices in the context of a developing country. As
                 case studies, we investigate Airbnb practices of both
                 hosts and guests in two tourist venues in Mexico ---
                 the eighth most visited country worldwide. The analysis
                 of the data revealed that Airbnb practices in Mexico
                 have some similarities but also important differences
                 with those previously reported in the literature. We
                 found (1) that money is the main motivation for hosts
                 to participate in Airbnb and that the earned money
                 contributes significantly to the overall income of
                 hosts; (2) that traditions that permeate the Mexican
                 culture motivate hosts to engage in more personal
                 hospitality experiences; (3) that Airbnb host practices
                 lead to the creation of informal jobs that support the
                 local community; and (4) that Airbnb local guests
                 suggest that the lack of contextual information (i.e.,
                 the characteristics of the neighborhood where the
                 accommodation is located) is a problem when renting in
                 Mexico owing to safety issues.",
  acknowledgement = ack-nhfb,
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Difallah:2019:DAF,
  author =       "Djellel Difallah and Alessandro Checco and Gianluca
                 Demartini and Philippe Cudr{\'e}-Mauroux",
  title =        "Deadline-Aware Fair Scheduling for Multi-Tenant
                 Crowd-Powered Systems",
  journal =      j-TSC,
  volume =       "2",
  number =       "1",
  pages =        "3:1--3:??",
  month =        feb,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3301003",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3301003",
  abstract =     "Crowdsourcing has become an integral part of many
                 systems and services that deliver high-quality results
                 for complex tasks such as data linkage, schema
                 matching, and content annotation. A standard function
                 of such crowd-powered systems is to publish a batch of
                 tasks on a crowdsourcing platform automatically and to
                 collect the results once the workers complete them.
                 Currently, these systems provide limited guarantees
                 over the execution time, which is problematic for many
                 applications. Timely completion may even be impossible
                 to guarantee due to factors specific to the
                 crowdsourcing platform, such as the availability of
                 workers and concurrent tasks. In our previous work, we
                 presented the architecture of a crowd-powered system
                 that reshapes the interaction mechanism with the crowd.
                 Specifically, we studied a push-crowdsourcing model
                 whereby the workers receive tasks instead of selecting
                 them from a portal. Based on this interaction model, we
                 employed scheduling techniques similar to those found
                 in distributed computing infrastructures to automate
                 the task assignment process. In this work, we first
                 devise a generic scheduling strategy that supports both
                 fairness and deadline-awareness. Second, to complement
                 the proof-of-concept experiments previously performed
                 with the crowd, we present an extensive set of
                 simulations meant to analyze the properties of the
                 proposed scheduling algorithms in an environment with
                 thousands of workers and tasks. Our experimental
                 results show that, by accounting for human factors,
                 micro-task scheduling can achieve fairness for
                 best-effort batches and boosts production batches.",
  acknowledgement = ack-nhfb,
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Santos:2019:AAQ,
  author =       "Tiago Santos and Simon Walk and Roman Kern and Markus
                 Strohmaier and Denis Helic",
  title =        "Activity Archetypes in Question-and-Answer ({Q\&A})
                 {Websites} --- A Study of 50 {Stack Exchange}
                 Instances",
  journal =      j-TSC,
  volume =       "2",
  number =       "1",
  pages =        "4:1--4:??",
  month =        feb,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3301612",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3301612",
  abstract =     "Millions of users on the Internet discuss a variety of
                 topics on Question-and-Answer (Q\&A) instances.
                 However, not all instances and topics receive the same
                 amount of attention, as some thrive and achieve
                 self-sustaining levels of activity, while others fail
                 to attract users and either never grow beyond being a
                 small niche community or become inactive. Hence, it is
                 imperative to not only better understand but also to
                 distill deciding factors and rules that define and
                 govern sustainable Q\&A instances. We aim to empower
                 community managers with quantitative methods for them
                 to better understand, control, and foster their
                 communities, and thus contribute to making the Web a
                 more efficient place to exchange information. To that
                 end, we extract, model, and cluster a user
                 activity-based time series from 50 randomly selected
                 Q\&A instances from the Stack Exchange network to
                 characterize user behavior. We find four distinct types
                 of user activity temporal patterns, which vary
                 primarily according to the users' activity frequency.
                 Finally, by breaking down total activity in our 50 Q\&A
                 instances by the previously identified user activity
                 profiles, we classify those 50 Q\&A instances into
                 three different activity profiles. Our parsimonious
                 categorization of Q\&A instances aligns with the stage
                 of development and maturity of the underlying
                 communities, and can potentially help operators of such
                 instances: We not only quantitatively assess progress
                 of Q\&A instances, but we also derive practical
                 implications for optimizing Q\&A community building
                 efforts, as we, e.g., recommend which user types to
                 focus on at different developmental stages of a Q\&A
                 community.",
  acknowledgement = ack-nhfb,
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Cho:2019:UBF,
  author =       "Jin-Hee Cho and Scott Rager and John O'Donovan and
                 Sibel Adali and Benjamin D. Horne",
  title =        "Uncertainty-based False Information Propagation in
                 Social Networks",
  journal =      j-TSC,
  volume =       "2",
  number =       "2",
  pages =        "5:1--5:??",
  month =        oct,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3311091",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3311091",
  abstract =     "Many network scientists have investigated the problem
                 of mitigating or removing false information propagated
                 in social networks. False information falls into two
                 broad categories: disinformation and misinformation.
                 Disinformation represents false information that is
                 knowingly shared and distributed with malicious intent.
                 Misinformation in contrast is false information shared
                 unwittingly, without any malicious intent. Many
                 existing methods to mitigate or remove false
                 information in networks concentrate on methods to find
                 a set of seeding nodes (or agents) based on their
                 network characteristics (e.g., centrality features) to
                 treat. The aim of these methods is to disseminate
                 correct information in the most efficient way. However,
                 little work has focused on the role of uncertainty as a
                 factor in the formulation of agents' opinions.
                 Uncertainty-aware agents can form different opinions
                 and eventual beliefs about true or false information
                 resulting in different patterns of information
                 diffusion in networks. In this work, we leverage an
                 opinion model, called Subjective Logic (SL), which
                 explicitly deals with a level of uncertainty in an
                 opinion where the opinion is defined as a combination
                 of belief, disbelief, and uncertainty, and the level of
                 uncertainty is easily interpreted as a person's
                 confidence in the given belief or disbelief. However,
                 SL considers the dimension of uncertainty only derived
                 from a lack of information (i.e., ignorance), not from
                 other causes, such as conflicting evidence. In the era
                 of Big Data, where we are flooded with information,
                 conflicting information can increase uncertainty (or
                 ambiguity) and have a greater effect on opinions than a
                 lack of information (or ignorance). To enhance the
                 capability of SL to deal with ambiguity as well as
                 ignorance, we propose an SL-based opinion model that
                 includes a level of uncertainty derived from both
                 causes. By developing a variant of the
                 Susceptible-Infected-Recovered epidemic model that can
                 change an agent's status based on the state of their
                 opinions, we capture the evolution of agents' opinions
                 over time. We present an analysis and discussion of
                 critical changes in network outcomes under varying
                 values of key design parameters, including the
                 frequency ratio of true or false information
                 propagation, centrality metrics used for selecting
                 seeding false informers and true informers, an opinion
                 decay factor, the degree of agents' prior belief, and
                 the percentage of true informers. We validated our
                 proposed opinion model using both the synthetic network
                 environments and realistic network environments
                 considering a real network topology, user behaviors,
                 and the quality of news articles. The proposed agent's
                 opinion model and corresponding strategies to deal with
                 false information can be applicable to combat the
                 spread of fake news in various social media platforms
                 (e.g., Facebook).",
  acknowledgement = ack-nhfb,
  articleno =    "5",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Feyisetan:2019:BMI,
  author =       "Oluwaseyi Feyisetan and Elena Simperl",
  title =        "Beyond Monetary Incentives: Experiments in Paid
                 Microtask Contests",
  journal =      j-TSC,
  volume =       "2",
  number =       "2",
  pages =        "6:1--6:??",
  month =        oct,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3321700",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3321700",
  abstract =     "In this article, we aim to gain a better understanding
                 into how paid microtask crowdsourcing could leverage
                 its appeal and scaling power by using contests to boost
                 crowd performance and engagement. We introduce our
                 microtask-based annotation platform Wordsmith, which
                 features incentives such as points, leaderboards, and
                 badges on top of financial remuneration. Our analysis
                 focuses on a particular type of incentive, contests, as
                 a means to apply crowdsourcing in near-real-time
                 scenarios, in which requesters need labels quickly. We
                 model crowdsourcing contests as a continuous-time
                 Markov chain with the objective to maximise the output
                 of the crowd workers, while varying a parameter that
                 determines whether a worker is eligible for a reward
                 based on their present rank on the leaderboard. We
                 conduct empirical experiments in which crowd workers
                 recruited from CrowdFlower carry out annotation
                 microtasks on Wordsmith-in our case, to identify named
                 entities in a stream of Twitter posts. In the
                 experimental conditions, we test different reward
                 spreads and record the total number of annotations
                 received. We compare the results against a control
                 condition in which the same annotation task was
                 completed on CrowdFlower without a time or contest
                 constraint. The experiments show that rewarding only
                 the best contributors in a live contest could be a
                 viable model to deliver results faster, though quality
                 might suffer for particular types of annotation tasks.
                 Increasing the reward spread leads to more work being
                 completed, especially by the top contestants. Overall,
                 the experiments shed light on possible design
                 improvements of paid microtasks platforms to boost task
                 performance and speed and make the overall experience
                 more fair and interesting for crowd workers.",
  acknowledgement = ack-nhfb,
  articleno =    "6",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Wu:2019:DNP,
  author =       "Qunfang Wu and Yisi Sang and Yun Huang",
  title =        "Danmaku: A New Paradigm of Social Interaction via
                 Online Videos",
  journal =      j-TSC,
  volume =       "2",
  number =       "2",
  pages =        "7:1--7:??",
  month =        oct,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3329485",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3329485",
  abstract =     "Danmaku is a new commentary design for online videos.
                 Unlike traditional forums where comments are displayed
                 asynchronously below a video screen in order of when
                 the comments are posted, danmaku comments are overlaid
                 on the screen and displayed along with the video. This
                 new design creates a pseudo-synchronous effect by
                 displaying asynchronous comments with certain video
                 segments in a synchronous fashion, and the links
                 between danmaku comments and the video segments are
                 defined by users. Danmaku is gaining popularity;
                 however, little is known, compared to the traditional
                 forum design, regarding how effective the new danmaku
                 design is in promoting social interactions among online
                 users. In this work, we collected 38,399 danmaku
                 comments and 16,414 forum comments posted in 2017 on 30
                 popular videos on Bilibili.com. We compared user
                 participation from different perspectives, e.g., number
                 of comments, sentiment of the comments, language
                 patterns, and ways of knowledge sharing. Our results
                 showed that compared to the traditional linear design,
                 the danmaku design significantly promoted user
                 participation, i.e., there were more users and more
                 comments in danmaku. Additionally, active users posted
                 more positive comments, though they were anonymous;
                 more linguistic memes were used in danmaku, suggesting
                 that it was used to facilitate community-building. In
                 addition to its effectiveness in promoting social
                 interactions, our results also show that danmaku and
                 forum designs play complementary roles in knowledge
                 sharing, where danmaku comments involved more explicit
                 (know-what) knowledge sharing, and forum comments
                 exhibited more tacit (know-how) knowledge sharing. Our
                 findings contribute to the development of social
                 presence theory and have design implications for better
                 social interaction via online videos.",
  acknowledgement = ack-nhfb,
  articleno =    "7",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Posch:2019:MMC,
  author =       "Lisa Posch and Arnim Bleier and Clemens M. Lechner and
                 Daniel Danner and Fabian Fl{\"o}ck and Markus
                 Strohmaier",
  title =        "Measuring Motivations of Crowdworkers: The
                 Multidimensional Crowdworker Motivation Scale",
  journal =      j-TSC,
  volume =       "2",
  number =       "2",
  pages =        "8:1--8:??",
  month =        oct,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3335081",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:52 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3335081",
  abstract =     "Crowd employment is a new form of short-term and
                 flexible employment that has emerged during the past
                 decade. To understand this new form of employment, it
                 is crucial to illuminate the underlying motivations of
                 the workforce involved in it. This article introduces
                 the Multidimensional Crowdworker Motivation Scale
                 (MCMS), a scale for measuring the motivation of
                 crowdworkers on microtask platforms. The MCMS is
                 theoretically grounded in self-determination theory and
                 tailored specifically to the context of paid
                 crowdsourced microlabor. The scale measures the
                 motivation of crowdworkers along six motivational
                 dimensions, ranging from amotivation to intrinsic
                 motivation. We validated the MCMS on data collected in
                 ten countries and three income groups. Factor analyses
                 demonstrated that the MCMS's six dimensions showed good
                 model fit, validity, and reliability. Furthermore, our
                 measurement invariance tests showed that motivations
                 measured with the MCMS are comparable across countries
                 and income groups, and we present a first cross-country
                 comparison of crowdworker motivations. This work
                 constitutes an important first step toward
                 understanding the motivations of the international
                 crowd workforce.",
  acknowledgement = ack-nhfb,
  articleno =    "8",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Mourad:2019:PGE,
  author =       "Ahmed Mourad and Falk Scholer and Walid Magdy and Mark
                 Sanderson",
  title =        "A Practical Guide for the Effective Evaluation of
                 {Twitter} User Geolocation",
  journal =      j-TSC,
  volume =       "2",
  number =       "3",
  pages =        "9:1--9:23",
  month =        dec,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3352572",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3352572",
  abstract =     "Geolocating Twitter users-the task of identifying
                 their home locations-serves a wide range of community
                 and business applications such as managing natural
                 crises, journalism, and public health. Many approaches
                 have been proposed for automatically \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "9",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Tausczik:2019:IGS,
  author =       "Yla Tausczik and Xiaoyun Huang",
  title =        "The Impact of Group Size on the Discovery of Hidden
                 Profiles in Online Discussion Groups",
  journal =      j-TSC,
  volume =       "2",
  number =       "3",
  pages =        "10:1--10:??",
  month =        nov,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3359758",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:53 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3359758",
  abstract =     "Online discussions help individuals to gather
                 knowledge and make important decisions in diverse areas
                 from health and finance to computing and data science.
                 Online discussion groups exhibit unique group dynamics
                 not found in traditional small groups, such as
                 staggered participation and asynchronous communication,
                 and the effects of these features on knowledge sharing
                 is not well understood. In this article, we focus on
                 one such aspect: wide variation in group size. Using a
                 controlled experiment with a hidden profile task, we
                 evaluate online discussion groups' capacity to share
                 distributed knowledge when group size ranges from 4 to
                 32 participants. We found that individuals in
                 medium-sized discussions performed the best, and we
                 suggest that this represents a tradeoff in which larger
                 groups tend to share more facts, but have more
                 difficulty than smaller groups at resolving
                 misunderstandings.",
  acknowledgement = ack-nhfb,
  articleno =    "10",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Wright:2019:HMH,
  author =       "Darryl E. Wright and Lucy Fortson and Chris Lintott
                 and Michael Laraia and Mike Walmsley",
  title =        "Help Me to Help You: Machine Augmented Citizen
                 Science",
  journal =      j-TSC,
  volume =       "2",
  number =       "3",
  pages =        "11:1--11:??",
  month =        nov,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3362741",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Fri Dec 6 16:55:53 MST 2019",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/citation.cfm?id=3362741",
  abstract =     "The increasing size of datasets with which researchers
                 in a variety of domains are confronted has led to a
                 range of creative responses, including the deployment
                 of modern machine learning techniques and the advent of
                 large scale ``citizen science projects.'' However, the
                 ability of the latter to provide suitably large
                 training sets for the former is stretched as the size
                 of the problem (and competition for attention amongst
                 projects) grows. We explore the application of
                 unsupervised learning to leverage structure that exists
                 in an initially unlabelled dataset. We simulate
                 grouping similar points before presenting those groups
                 to volunteers to label. Citizen science labelling of
                 grouped data is more efficient, and the gathered labels
                 can be used to improve efficiency further for labelling
                 future data. To demonstrate these ideas, we perform
                 experiments using data from the Pan-STARRS Survey for
                 Transients (PSST) with volunteer labels gathered by the
                 Zooniverse project, Supernova Hunters and a simulated
                 project using the MNIST handwritten digit dataset. Our
                 results show that, in the best case, we might expect to
                 reduce the required volunteer effort by 87.0\% and
                 92.8\% for the two datasets, respectively. These
                 results illustrate a symbiotic relationship between
                 machine learning and citizen scientists where each
                 empowers the other with important implications for the
                 design of citizen science projects in the future.",
  acknowledgement = ack-nhfb,
  articleno =    "11",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Kotsios:2019:ACG,
  author =       "Andreas Kotsios and Matteo Magnani and Davide Vega and
                 Luca Rossi and Irina Shklovski",
  title =        "An Analysis of the Consequences of the {General Data
                 Protection Regulation} on Social Network Research",
  journal =      j-TSC,
  volume =       "2",
  number =       "3",
  pages =        "12:1--12:22",
  month =        dec,
  year =         "2019",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3365524",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3365524",
  abstract =     "This article examines the principles outlined in the
                 General Data Protection Regulation in the context of
                 social network data. We provide both a practical guide
                 to General Data Protection Regulation--compliant social
                 network data processing, covering \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "12",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Deng:2020:ISI,
  author =       "Xuefei (Nancy) Deng and Yoram M. Kalman",
  title =        "Introduction to the Special Issue on {HICSS 2019}",
  journal =      j-TSC,
  volume =       "2",
  number =       "4",
  pages =        "13:1--13:2",
  month =        jan,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3370666",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3370666",
  acknowledgement = ack-nhfb,
  articleno =    "13",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Forkan:2020:ITS,
  author =       "Abdur Rahim Mohammad Forkan and Philip Branch and Prem
                 Prakash Jayaraman and Andre Ferretto",
  title =        "An {Internet-of-Things} Solution to Assist Independent
                 Living and Social Connectedness in Elderly",
  journal =      j-TSC,
  volume =       "2",
  number =       "4",
  pages =        "14:1--14:24",
  month =        jan,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3363563",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3363563",
  abstract =     "Social isolation has been identified as a major risk
                 in elderly people living alone because of their
                 association with cognitive decline, depression, and
                 other mental health-related issues. Ambient Assisted
                 Living (AAL) is identified as a key technology
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "14",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Cifor:2020:GDD,
  author =       "Marika Cifor and Patricia Garcia",
  title =        "Gendered by Design: a Duoethnographic Study of
                 Personal Fitness Tracking Systems",
  journal =      j-TSC,
  volume =       "2",
  number =       "4",
  pages =        "15:1--15:22",
  month =        jan,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3364685",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3364685",
  abstract =     "Using fitness trackers to generate and collect
                 quantifiable data is a widespread practice aimed at
                 better understanding one's health and body. The
                 intentional design of fitness trackers as genderless or
                 universal is predicated on masculinist design
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "15",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Baucum:2020:TGG,
  author =       "Matthew Baucum and Jinshu Cui and Richard S. John",
  title =        "Temporal and Geospatial Gradients of Fear and Anger in
                 Social Media Responses to Terrorism",
  journal =      j-TSC,
  volume =       "2",
  number =       "4",
  pages =        "16:1--16:16",
  month =        jan,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3363565",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3363565",
  abstract =     "Research suggests that public fear and anger in wake
                 of a terror attack can each uniquely contribute to
                 policy attitudes and risk-avoidance behaviors. Given
                 the importance of these negative-valanced emotions,
                 there is value in studying how terror events \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "16",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Fleischmann:2020:LPM,
  author =       "A. Carolin Fleischmann and Jolanta Aritz and Peter
                 Cardon",
  title =        "Language Proficiency and Media Richness in Global
                 Virtual Teams: Impacts on Satisfaction, Inclusion, and
                 Task Accomplishment",
  journal =      j-TSC,
  volume =       "2",
  number =       "4",
  pages =        "17:1--17:18",
  month =        jan,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3363564",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:51 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3363564",
  abstract =     "Virtual teams that use integrated communication
                 platforms are ubiquitous in cross-border collaboration.
                 This study explores the use of communication media and
                 team outcomes-both social outcomes and task
                 accomplishment-in multilingual virtual teams.
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "17",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Luther:2020:ISI,
  author =       "Kurt Luther and Andrea Kavanaugh and Jacob
                 Thebault-Spieker and Judd Antin",
  title =        "Introduction to the Special Issue on Negotiating Truth
                 and Trust in Socio-Technical Systems",
  journal =      j-TSC,
  volume =       "3",
  number =       "1",
  pages =        "1:1--1:1",
  month =        feb,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3378677",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:52 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3378677",
  acknowledgement = ack-nhfb,
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Gach:2020:ETP,
  author =       "Katie Z. Gach and Jed R. Brubaker",
  title =        "Experiences of Trust in Postmortem Profile
                 Management",
  journal =      j-TSC,
  volume =       "3",
  number =       "1",
  pages =        "2:1--2:26",
  month =        feb,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3365525",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:52 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3365525",
  abstract =     "In the landscape of online social networking sites,
                 many platforms are reaching a scale and longevity that
                 require designers to address the postmortem data
                 interactions that follow people's deaths. To evaluate
                 the experiences and challenges people face \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Jones:2020:MMA,
  author =       "Helen S. Jones and Wendy Moncur",
  title =        "A Mixed-Methods Approach to Understanding Funder Trust
                 and Due Diligence Processes in Online Crowdfunding
                 Investment",
  journal =      j-TSC,
  volume =       "3",
  number =       "1",
  pages =        "3:1--3:29",
  month =        feb,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3373148",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:52 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3373148",
  abstract =     "We report on two studies undertaken to establish the
                 factors that affect funders' trust and likelihood to
                 invest in crowdfunding campaigns online. Findings from
                 an initial small-scale qualitative study are reported
                 and subsequently triangulated in a \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Porter:2020:VNC,
  author =       "Emily Porter and P. M. Krafft and Brian Keegan",
  title =        "Visual Narratives and Collective Memory across
                 Peer-Produced Accounts of Contested Sociopolitical
                 Events",
  journal =      j-TSC,
  volume =       "3",
  number =       "1",
  pages =        "4:1--4:20",
  month =        feb,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3373147",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:52 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3373147",
  abstract =     "Studying cultural variation in recollections of
                 sociopolitical events is crucial for achieving diverse
                 understandings of such events. To date, most studies in
                 this area have focused on analyzing variation in texts
                 describing events. Here, we analyze \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Arazy:2020:ERP,
  author =       "Ofer Arazy and Aron Lindberg and Shakked Lev and
                 Kexian Wu and Alex Yarovoy",
  title =        "Emergent Routines in Peer-Production: Examining the
                 Temporal Evolution of {Wikipedia}'s Work Sequences",
  journal =      j-TSC,
  volume =       "3",
  number =       "1",
  pages =        "5:1--5:24",
  month =        feb,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3366711",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Tue Apr 7 07:39:52 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3366711",
  abstract =     "Current theories struggle to explain how participants
                 in peer-production self-organize to produce
                 high-quality knowledge in the absence of formal
                 coordination mechanisms. The literature traditionally
                 holds that norms, policies, and roles make \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "5",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Kobs:2020:ECO,
  author =       "Konstantin Kobs and Albin Zehe and Armin Bernstetter
                 and Julian Chibane and Jan Pfister and Julian Tritscher
                 and Andreas Hotho",
  title =        "Emote-Controlled: Obtaining Implicit Viewer Feedback
                 Through Emote-Based Sentiment Analysis on Comments of
                 Popular {Twitch.tv} Channels",
  journal =      j-TSC,
  volume =       "3",
  number =       "2",
  pages =        "7:1--7:34",
  month =        apr,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3365523",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Mon Apr 20 09:08:34 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3365523",
  abstract =     "In recent years, streaming platforms for video games
                 have seen increasingly large interest, as so-called
                 esports have developed into a lucrative branch of
                 business. Like for other sports, watching esports has
                 become a new kind of entertainment medium, \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "7",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Feng:2020:NER,
  author =       "Yunhe Feng and Zheng Lu and Wenjun Zhou and Zhibo Wang
                 and Qing Cao",
  title =        "New Emoji Requests from {Twitter} Users: When, Where,
                 Why, and What We Can Do About Them",
  journal =      j-TSC,
  volume =       "3",
  number =       "2",
  pages =        "8:1--8:25",
  month =        apr,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3370750",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Mon Apr 20 09:08:34 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3370750",
  abstract =     "As emojis become prevalent in personal communications,
                 people are always looking for new, interesting emojis
                 to express emotions, show attitudes, or simply
                 visualize texts. In this study, we collected more than
                 30 million tweets mentioning the word \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "8",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Kim:2020:NMO,
  author =       "Joongyum Kim and Taesik Gong and Bogoan Kim and
                 Jaeyeon Park and Woojeong Kim and Evey Huang and
                 Kyungsik Han and Juho Kim and Jeonggil Ko and Sung-Ju
                 Lee",
  title =        "No More One Liners: Bringing Context into Emoji
                 Recommendations",
  journal =      j-TSC,
  volume =       "3",
  number =       "2",
  pages =        "9:1--9:25",
  month =        apr,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3373146",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Mon Apr 20 09:08:34 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3373146",
  abstract =     "As emojis are increasingly used in everyday online
                 communication such as messaging, email, and social
                 networks, various techniques have attempted to improve
                 the user experience in communicating emotions and
                 information through emojis. Emoji \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "9",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Robertson:2020:EST,
  author =       "Alexander Robertson and Walid Magdy and Sharon
                 Goldwater",
  title =        "Emoji Skin Tone Modifiers: Analyzing Variation in
                 Usage on Social Media",
  journal =      j-TSC,
  volume =       "3",
  number =       "2",
  pages =        "11:1--11:25",
  month =        apr,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3377479",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Mon Apr 20 09:08:34 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3377479",
  abstract =     "Emoji are widely used in computer-mediated
                 communication to express concepts and emotions. Skin
                 tone modifiers were added in 2015 with the hope of
                 better representing user diversity, and, indeed, recent
                 work has shown that these modifiers are especially
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "11",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Alismail:2020:EUP,
  author =       "Sarah Alismail and Hengwei Zhang",
  title =        "Exploring and Understanding Participants' Perceptions
                 of Facial Emoji {Likert} Scales in Online Surveys: a
                 Qualitative Study",
  journal =      j-TSC,
  volume =       "3",
  number =       "2",
  pages =        "12:1--12:12",
  month =        apr,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3382505",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Mon Apr 20 09:08:34 MDT 2020",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/abs/10.1145/3382505",
  abstract =     "The present study aims to explore participants'
                 experiences in interacting with a facial emoji Likert
                 scale in online surveys to understand their
                 perceptions, interpretations, and opinions of emojis in
                 online surveys. A qualitative research approach has
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "12",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Marin:2020:MTC,
  author =       "Ericsson Marin and Ruocheng Guo and Paulo Shakarian",
  title =        "Measuring Time-Constrained Influence to Predict
                 Adoption in Online Social Networks",
  journal =      j-TSC,
  volume =       "3",
  number =       "3",
  pages =        "13:1--13:26",
  month =        aug,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3372785",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:27:49 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3372785",
  abstract =     "Recently, there has been strong interest in measuring
                 influence in online social networks. Different measures
                 have been proposed to predict when individuals will
                 adopt a new behavior, given the influence produced by
                 their friends. In this article, we \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "13",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Wood:2020:CTU,
  author =       "Ian D. Wood and John Glover and Paul Buitelaar",
  title =        "Community Topic Usage in Online Social Media",
  journal =      j-TSC,
  volume =       "3",
  number =       "3",
  pages =        "14:1--14:21",
  month =        aug,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3377870",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:27:49 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3377870",
  abstract =     "Humans have a natural tendency to form social groups,
                 and individual behaviours are thought to be strongly
                 influenced by a salient sense of belonging to one or
                 more such groups. It can be expected, therefore, that
                 there will be behaviours that are \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "14",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Al-Ramahi:2020:MUG,
  author =       "Mohammad Al-Ramahi and Cherie Noteboom",
  title =        "Mining User-generated Content of Mobile Patient
                 Portal: Dimensions of User Experience",
  journal =      j-TSC,
  volume =       "3",
  number =       "3",
  pages =        "15:1--15:24",
  month =        aug,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3394831",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:27:49 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3394831",
  abstract =     "Patient portals are positioned as a central component
                 of patient engagement through the potential to change
                 the physician-patient relationship and enable chronic
                 disease self-management. The incorporation of patient
                 portals provides the promise to \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "15",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Lyu:2020:FFO,
  author =       "Tianshu Lyu and Lidong Bing and Zhao Zhang and Yan
                 Zhang",
  title =        "{FOX}: Fast Overlapping Community Detection Algorithm
                 in Big Weighted Networks",
  journal =      j-TSC,
  volume =       "3",
  number =       "3",
  pages =        "16:1--16:23",
  month =        aug,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3404970",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:27:49 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3404970",
  abstract =     "Community detection is a hot topic for researchers in
                 the fields of graph theory, social networks, and
                 biological networks. Generally speaking, a community
                 refers to a group of densely linked nodes in the
                 network. Nodes usually have more than one \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "16",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Talukder:2020:SFA,
  author =       "Sajedul Talukder and Bogdan Carbunar",
  title =        "A Study of Friend Abuse Perception in {Facebook}",
  journal =      j-TSC,
  volume =       "3",
  number =       "4",
  pages =        "17:1--17:34",
  month =        oct,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3408040",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:32:14 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3408040",
  abstract =     "Social networks like Facebook provide functionality
                 that can expose users to abuse perpetrated by their
                 contacts. For instance, Facebook users can often access
                 sensitive profile information and timeline posts of
                 their friends and also post abuse on the \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "17",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Franzmann:2020:HMA,
  author =       "Daniel Franzmann and Arvid Eichner and Roland
                 Holten",
  title =        "How Mobile App Design Overhauls Can Be Disastrous in
                 Terms of User Perception: The Case of Snapchat",
  journal =      j-TSC,
  volume =       "3",
  number =       "4",
  pages =        "18:1--18:21",
  month =        oct,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3409585",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:32:14 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3409585",
  abstract =     "Smartphone apps are regularly updated and enhanced.
                 However, design overhauls-that change the whole look of
                 an app-are not expected to impact a user's behavior
                 and, more specifically, continuance intentions. We
                 reevaluate this claim based on the \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "18",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{SantosDeOliveira:2020:DPT,
  author =       "Lucas {Santos De Oliveira} and Pedro O. S. Vaz-de-Melo
                 and Marcelo S. Amaral and Jos{\'e} Ant{\^o}nio G. Pinho",
  title =        "Do Politicians Talk about Politics? {Assessing} Online
                 Communication Patterns of {Brazilian} Politicians",
  journal =      j-TSC,
  volume =       "3",
  number =       "4",
  pages =        "19:1--19:28",
  month =        oct,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3412326",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:32:14 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3412326",
  abstract =     "Politicians need to decide how to communicate with
                 their voters to build their reputations. This problem
                 is especially complicated during important political
                 events such as the elections when politicians must
                 decide whether to confront and share their \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "19",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Wisniewski:2020:HFU,
  author =       "Pamela Wisniewski and Karla Badillo-Urquiola and Zahra
                 Ashtorab and Jessica Vitak",
  title =        "Happiness and Fear: Using Emotions as a Lens to
                 Disentangle How Users Felt About the Launch of
                 {Facebook} Reactions",
  journal =      j-TSC,
  volume =       "3",
  number =       "4",
  pages =        "20:1--20:25",
  month =        oct,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3414825",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:32:14 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3414825",
  abstract =     "In February 2016, Facebook launched Reactions, an
                 interactive feature expanding the Like button to
                 include five additional emotional responses: Love,
                 Sadness, Anger, Wow, and Haha. In this article, we
                 examine users' feedback about this new feature and
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "20",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Yarovoy:2020:ACS,
  author =       "Alex Yarovoy and Yiftach Nagar and Einat Minkov and
                 Ofer Arazy",
  title =        "Assessing the Contribution of Subject-matter Experts
                 to {Wikipedia}",
  journal =      j-TSC,
  volume =       "3",
  number =       "4",
  pages =        "21:1--21:36",
  month =        oct,
  year =         "2020",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3416853",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Sat Mar 27 09:32:14 MDT 2021",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3416853",
  abstract =     "Attempts to explain the success of knowledge
                 co-production communities have focused on
                 organizational design, including structure, motivation,
                 roles, and coordination mechanisms. Meantime, the role
                 that subject-matter-experts play in these knowledge
                 production settings has largely been left in a
                 theoretical and empirical void; its existence has been
                 assumed, but we know little about its nature and scope,
                 as it is difficult to observe. In this article, we
                 start filling that void, using Wikipedia as the setting
                 for our empirical investigation. First, we carefully
                 crossed information from individual Wikipedia editor
                 pages with external sources such as Google Scholar to
                 reliably identify editors who are credentialed experts.
                 Matching these credentialed experts with their
                 Wikipedia editing patterns, we used this dataset to
                 train a machine learning classifier that we then
                 employed to identify additional expert editors and
                 assess the nature and the scope of their work across
                 Wikipedia. Our results suggest that the scope of expert
                 involvement is substantial, albeit with considerable
                 differences across topics. We estimate that
                 approximately 10\%--30\% of Wikipedia s contributors
                 have substantial subject-matter expertise in the topics
                 that they edit. We discuss implications for theory and
                 practice of peer-production.",
  acknowledgement = ack-nhfb,
  articleno =    "21",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Chamberlain:2021:NAT,
  author =       "Joshua M. Chamberlain and Francesca Spezzano and
                 Jaclyn J. Kettler and Bogdan Dit",
  title =        "A Network Analysis of {Twitter} Interactions by
                 Members of the {U.S. Congress}",
  journal =      j-TSC,
  volume =       "4",
  number =       "1",
  pages =        "1:1--1:22",
  month =        apr,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3439827",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:46 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3439827",
  abstract =     "Usage of Twitter by politicians has become more
                 prevalent in recent years, with a goal of influencing
                 the electorate and public perception. We collect,
                 explore, and analyze over 12 years of public Twitter
                 interactions of U.S. senators and \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Khasawneh:2021:IPS,
  author =       "Amro Khasawneh and Kapil Chalil Madathil and Heidi
                 Zinzow and Pamela Wisniewski and Amal Ponathil and
                 Hunter Rogers and Sruthy Agnisarman and Rebecca Roth
                 and Meera Narasimhan",
  title =        "An Investigation of the Portrayal of Social Media
                 Challenges on {YouTube} and {Twitter}",
  journal =      j-TSC,
  volume =       "4",
  number =       "1",
  pages =        "2:1--2:23",
  month =        apr,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3444961",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:46 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3444961",
  abstract =     "A social media phenomenon that has received limited
                 research attention is the advent and propagation of
                 viral online challenges. Several of these challenges
                 entail self-harming behavior, which, combined with
                 their viral nature, poses physical and \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Mirbabaie:2021:DCA,
  author =       "Milad Mirbabaie and Felix Br{\"u}nker and Magdalena
                 Wischnewski and Judith Meinert",
  title =        "The Development of Connective Action during Social
                 Movements on Social Media",
  journal =      j-TSC,
  volume =       "4",
  number =       "1",
  pages =        "3:1--3:21",
  month =        apr,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3446981",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:46 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3446981",
  abstract =     "In recent years, the development of information
                 communication technologies, such as social media, has
                 changed the way people communicate and engage in social
                 movements. While conventional movements were fought in
                 the streets, social media has enabled \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Holopainen:2021:SVR,
  author =       "Jani Holopainen and Osmo Mattila and Petri Parvinen
                 and Essi P{\"o}yry and Tuure Tuunanen",
  title =        "Sociability in Virtual Reality: Evaluations of Three
                 Iterative Application Versions along a Design Science
                 Research Process",
  journal =      j-TSC,
  volume =       "4",
  number =       "1",
  pages =        "4:1--4:21",
  month =        apr,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3450269",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:46 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3450269",
  abstract =     "This study investigates sociability in the context of
                 immersive Virtual Reality (VR). A Design Science
                 Research process was applied, and three iterative
                 development versions of a VR application were studied.
                 Sociability around the technology was \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Purao:2021:DBS,
  author =       "Sandeep Purao and David M. Murungi and David Yates",
  title =        "Deliberative Breakdowns in the Social Representation
                 Process: Evidence from Reader Comments in Partisan News
                 Sites",
  journal =      j-TSC,
  volume =       "4",
  number =       "2",
  pages =        "5:1--5:35",
  month =        jun,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3450143",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:47 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3450143",
  abstract =     "This article examines breakdowns that occur when
                 readers at partisan news websites attempt to understand
                 a challenging news event. We conduct the work with the
                 2017 Alabama senate race as the empirical context
                 marked by the nomination of Republican Roy \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "5",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Jarvela:2021:AVR,
  author =       "Simo J{\"a}rvel{\"a} and Benjamin Cowley and Mikko
                 Salminen and Giulio Jacucci and Juho Hamari and Niklas
                 Ravaja",
  title =        "Augmented Virtual Reality Meditation: Shared Dyadic
                 Biofeedback Increases Social Presence Via Respiratory
                 Synchrony",
  journal =      j-TSC,
  volume =       "4",
  number =       "2",
  pages =        "6:1--6:19",
  month =        jun,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3449358",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:47 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3449358",
  abstract =     "In a novel experimental setting, we augmented a
                 variation of traditional compassion meditation with our
                 custom-built VR environment for multiple concurrent
                 users. The presence of another user's avatar in shared
                 virtual space supports social interactions \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "6",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Mcdonald:2021:ABS,
  author =       "David W. Mcdonald and Mark Zachry",
  title =        "On the Alignment Between Self-Declared Gender Identity
                 and Topical Content from {Wikipedia}",
  journal =      j-TSC,
  volume =       "4",
  number =       "2",
  pages =        "7:1--7:69",
  month =        jun,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3450753",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:47 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3450753",
  abstract =     "Wikipedia is an important information source for much
                 of the world. One well-established problem is that
                 editors of Wikipedia are overwhelmingly men. This
                 gender gap in participation has resulted in a concern
                 that the content suffers biases as a result \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "7",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Greitzer:2021:EIT,
  author =       "Frank L. Greitzer and Wanru Li and Kathryn B. Laskey
                 and James Lee and Justin Purl",
  title =        "Experimental Investigation of Technical and Human
                 Factors Related to Phishing Susceptibility",
  journal =      j-TSC,
  volume =       "4",
  number =       "2",
  pages =        "8:1--8:48",
  month =        jun,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3461672",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:47 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3461672",
  abstract =     "This article reports on a simulated phishing
                 experiment targeting 6,938 faculty and staff at George
                 Mason University. The three-week phishing campaign
                 employed three types of phishing exploits and examined
                 demographic, linked workstation/network \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "8",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Zhou:2021:BPT,
  author =       "Michelle X. Zhou and Huahai Yang and Gloria Mark and
                 Mengdie Hu and Jalal Mahumd and Aditya Pal",
  title =        "Building Personalized Trust: Discovering What Makes
                 One Trust and Act on {Facebook} Posts",
  journal =      j-TSC,
  volume =       "4",
  number =       "3",
  pages =        "9:1--9:28",
  month =        sep,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3468977",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:48 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3468977",
  abstract =     "What makes one trust or distrust a post on Facebook?
                 What makes one willing to take an action on the post,
                 such as sharing it with friends, following its advice,
                 or even making a donation for its cause? We hypothesize
                 that personal factors in addition to \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "9",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Papangelis:2021:LIT,
  author =       "Konstantinos Papangelis and Ioanna Lykourentzou and
                 Vassilis-Javed Khan and Alan Chamberlain and Ting Cao
                 and Michael Saker and Nicolas Lalone",
  title =        "Locating Identities in Time: an Examination of the
                 Formation and Impact of Temporality on Presentations of
                 the Self through Location-Based Social Networks",
  journal =      j-TSC,
  volume =       "4",
  number =       "3",
  pages =        "10:1--10:23",
  month =        sep,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3473043",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:48 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3473043",
  abstract =     "Studies of identity and location-based social networks
                 (LBSN) have tended to focus on the performative aspects
                 associated with marking one's location. Yet these
                 studies often present this practice as being an a
                 priori aspect of locative media. What is \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "10",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Balayn:2021:AIH,
  author =       "Agathe Balayn and Jie Yang and Zoltan Szlavik and
                 Alessandro Bozzon",
  title =        "Automatic Identification of Harmful, Aggressive,
                 Abusive, and Offensive Language on the {Web}: a Survey
                 of Technical Biases Informed by Psychology Literature",
  journal =      j-TSC,
  volume =       "4",
  number =       "3",
  pages =        "11:1--11:56",
  month =        sep,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3479158",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:48 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3479158",
  abstract =     "The automatic detection of conflictual languages
                 (harmful, aggressive, abusive, and offensive languages)
                 is essential to provide a healthy conversation
                 environment on the Web. To design and develop detection
                 systems that are capable of achieving \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "11",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Alvarez:2021:CCE,
  author =       "Katrina Paola B. Alvarez and Vivian Hsueh Hua Chen",
  title =        "Community and Capital: Experiences of Women Game
                 Streamers in {Southeast Asia}",
  journal =      j-TSC,
  volume =       "4",
  number =       "3",
  pages =        "12:1--12:22",
  month =        sep,
  year =         "2021",
  CODEN =        "????",
  DOI =          "https://doi.org/10.1145/3481888",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Wed Mar 2 06:25:48 MST 2022",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3481888",
  abstract =     "This study explores how women game live streamers in
                 Southeast Asia make sense of their experiences as
                 performers and gamers on streaming platforms dominated
                 by Western products and performers. We conducted 13
                 in-depth interviews guided by an interpretive
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "12",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Emes:2022:COM,
  author =       "Claire Stravato Emes and Arul Chib",
  title =        "Co-opted Marginality in a Controlled Media
                 Environment: The Influence of Social Media Affordances
                 on the Immigration Discourse",
  journal =      j-TSC,
  volume =       "5",
  number =       "1--4",
  pages =        "1:1--1:??",
  month =        dec,
  year =         "2022",
  DOI =          "https://doi.org/10.1145/3532103",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3532103",
  abstract =     "An emerging narrative on social media challenges the
                 premise that the repertoire against immigrants is
                 caused by xenophobia. We identify and propose the
                 \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Mejova:2022:MPA,
  author =       "Yelena Mejova and Jisun An and Gianmarco {De Francisci
                 Morales} and Haewoon Kwak",
  title =        "Modeling Political Activism around Gun Debate via
                 Social Media",
  journal =      j-TSC,
  volume =       "5",
  number =       "1--4",
  pages =        "2:1--2:??",
  month =        dec,
  year =         "2022",
  DOI =          "https://doi.org/10.1145/3532102",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3532102",
  abstract =     "The United States have some of the highest rates of
                 gun violence among developed countries. Yet, there is a
                 disagreement about the extent to which firearms
                 \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Abraham:2022:ABC,
  author =       "Jaclyn Abraham and Rebecca Roth and Heidi Zinzow and
                 Kapil Chalil Madathil and Pamela Wisniewski",
  title =        "Applying Behavioral Contagion Theory to Examining
                 Young Adults' Participation in Viral Social Media
                 Challenges",
  journal =      j-TSC,
  volume =       "5",
  number =       "1--4",
  pages =        "3:1--3:??",
  month =        dec,
  year =         "2022",
  DOI =          "https://doi.org/10.1145/3538383",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3538383",
  abstract =     "Viral social media challenges have erupted across
                 multiple social media platforms. While social media
                 users participate in prosocial challenges designed to
                 support \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Zheng:2022:UPW,
  author =       "Keyang Zheng and Ben Stein and Rosta Farzan",
  title =        "Use Ping Wisely: a Study of Team Communication and
                 Performance under Lean Affordance",
  journal =      j-TSC,
  volume =       "5",
  number =       "1--4",
  pages =        "4:1--4:??",
  month =        dec,
  year =         "2022",
  DOI =          "https://doi.org/10.1145/3557022",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3557022",
  abstract =     "Improving virtual team collaboration has been a
                 centerpiece of many computer mediated communication
                 research efforts. Team collaboration presents
                 \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{DeSanto:2023:HEO,
  author =       "Alessio {De Santo} and Arielle Moro and Bruno Kocher
                 and Adrian Holzer",
  title =        "Helping Each Other Quit Online: Understanding User
                 Engagement and Real-life Outcomes of the
                 {r/StopSmoking} Digital Smoking Cessation Community",
  journal =      j-TSC,
  volume =       "6",
  number =       "1--2",
  pages =        "1:1--1:??",
  month =        jun,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3564745",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3564745",
  abstract =     "Despite decades of prevention, tobacco addiction is
                 still a widespread health concern responsible for
                 around 8 million deaths per year. Existing digital
                 smoking \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "1",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Zhou:2023:STL,
  author =       "Kaitlyn Zhou and Tom Wilson and Kate Starbird and Emma
                 S. Spiro",
  title =        "Spotlight Tweets: a Lens for Exploring Attention
                 Dynamics within Online Sensemaking During Crisis
                 Events",
  journal =      j-TSC,
  volume =       "6",
  number =       "1--2",
  pages =        "2:1--2:??",
  month =        jun,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3577213",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3577213",
  abstract =     "In this article, we introduce the concept of a
                 spotlight social media post -a post that receives an
                 unexpected burst of attention-and explore how such
                 posts reveal \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "2",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Kordyaka:2023:ERB,
  author =       "Bastian Kordyaka and Solip Park and Jeanine Krath and
                 Samuli Laato",
  title =        "Exploring the Relationship Between Offline Cultural
                 Environments and Toxic Behavior Tendencies in
                 Multiplayer Online Games",
  journal =      j-TSC,
  volume =       "6",
  number =       "1--2",
  pages =        "3:1--3:??",
  month =        jun,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3580346",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3580346",
  abstract =     "In multiplayer online games, players from different
                 cultural backgrounds come together to cooperate and
                 compete in real time. Although these games are
                 \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "3",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Muralikumar:2023:HCE,
  author =       "Meena Devii Muralikumar and Yun Shan Yang and David W.
                 McDonald",
  title =        "A Human-centered Evaluation of a Toxicity Detection
                 {API}: Testing Transferability and Unpacking Latent
                 Attributes",
  journal =      j-TSC,
  volume =       "6",
  number =       "1--2",
  pages =        "4:1--4:??",
  month =        jun,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3582568",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  ISSN-L =       "2469-7818",
  bibdate =      "Fri Aug 25 12:37:49 MDT 2023",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3582568",
  abstract =     "Perspective is a publicly available, machine learning
                 API that can score text for toxicity. It is available
                 for use in online platforms and communities to limit
                 toxicity and \ldots{}",
  acknowledgement = ack-nhfb,
  ajournal =     "",
  articleno =    "4",
  fjournal =     "ACM Transactions on Social Computing (TSC)",
  journal-URL =  "https://dl.acm.org/loi/tsc",
}

@Article{Seneviratne:2023:ABB,
  author =       "Oshani Seneviratne and Kacy Adams and Deborah L.
                 McGuinness",
  title =        "Accountable Bench-to-Bedside Data-Sharing Mechanism
                 for Researchers",
  journal =      j-TSC,
  volume =       "6",
  number =       "3--4",
  pages =        "5:1--5:??",
  month =        dec,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3609486",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Tue Apr 30 10:53:28 MDT 2024",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3609486",
  abstract =     "We present a trustworthy mechanism for sharing,
                 reusing, and repurposing data to address the challenge
                 of the costly and time-consuming effort needed to bring
                 an innovative idea from the bench (basic research)
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "5",
  fjournal =     "ACM Transactions on Social Computing",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Ford:2023:CDM,
  author =       "Trenton W. Ford and Rachel Krohn and Tim Weninger",
  title =        "Competition Dynamics in the Meme Ecosystem",
  journal =      j-TSC,
  volume =       "6",
  number =       "3--4",
  pages =        "6:1--6:??",
  month =        dec,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3596213",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Tue Apr 30 10:53:28 MDT 2024",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3596213",
  abstract =     "Creating and sharing memes is a common modality of
                 online social interaction. Because of the prevalence of
                 memes, an abundance of research focuses on
                 understanding how memes are shared and \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "6",
  fjournal =     "ACM Transactions on Social Computing",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Lee:2023:OSD,
  author =       "Jooyoung Lee and Sarah Rajtmajer and Eesha
                 Srivatsavaya and Shomir Wilson",
  title =        "Online Self-Disclosure, Social Support, and User
                 Engagement During the {COVID-19} Pandemic",
  journal =      j-TSC,
  volume =       "6",
  number =       "3--4",
  pages =        "7:1--7:??",
  month =        dec,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3617654",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Tue Apr 30 10:53:28 MDT 2024",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3617654",
  abstract =     "We investigate relationships between online
                 self-disclosure and received social support and user
                 engagement during the COVID-19 crisis. We crawl a total
                 of 2,399 posts and 29,851 associated \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "7",
  fjournal =     "ACM Transactions on Social Computing",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}

@Article{Heltweg:2023:SAP,
  author =       "Philip Heltweg and Dirk Riehle",
  title =        "A Systematic Analysis of Problems in Open
                 Collaborative Data Engineering",
  journal =      j-TSC,
  volume =       "6",
  number =       "3--4",
  pages =        "8:1--8:??",
  month =        dec,
  year =         "2023",
  DOI =          "https://doi.org/10.1145/3629040",
  ISSN =         "2469-7818 (print), 2469-7826 (electronic)",
  bibdate =      "Tue Apr 30 10:53:28 MDT 2024",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/tsc.bib",
  URL =          "https://dl.acm.org/doi/10.1145/3629040",
  abstract =     "Collaborative workflows are common in open-source
                 software development. They reduce individual costs and
                 improve the quality of work results. Open data shares
                 many characteristics with open-source software,
                 \ldots{}",
  acknowledgement = ack-nhfb,
  articleno =    "8",
  fjournal =     "ACM Transactions on Social Computing",
  journal-URL =  "http://dl.acm.org/pub.cfm?id=J1546",
}