/* Jacobi.f -- translated by f2c (version of 20 August 1993 13:15:44). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static real c_b2 = (float)1.; static integer c__1 = 1; static real c_b13 = (float)-1.; /* Subroutine */ int jacobi_(n, b, x, work, ldw, iter, resid, matvec, info) integer *n; real *b, *x, *work; integer *ldw, *iter; real *resid; /* Subroutine */ int (*matvec) (); integer *info; { /* System generated locals */ integer work_dim1, work_offset, i__1; /* Local variables */ static integer temp; extern /* Subroutine */ int matsplit_(); extern doublereal snrm2_(); static integer i, maxit; extern /* Subroutine */ int scopy_(), saxpy_(); static integer x1, mm; static real tol; /* -- Iterative template routine -- */ /* Univ. of Tennessee and Oak Ridge National Laboratory */ /* October 1, 1993 */ /* Details of this algorithm are described in "Templates for the */ /* Solution of Linear Systems: Building Blocks for Iterative */ /* Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra, */ /* Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications, */ /* 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps). */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* Purpose */ /* ======= */ /* JACOBI solves the linear system Ax = b using the Jacobi iterative */ /* method. The matrix splitting should be accomplished before calling */ /* this routine. The diagonal elements of the matrix must be passed into */ /* this routine in the first column of matrix WORK. */ /* Relative error measured: norm( X - X_1 ) / norm( X ). */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* On entry, the dimension of the matrix. */ /* Unchanged on exit. */ /* B (input) REAL array, dimension N */ /* On entry, right hand side vector B. */ /* Unchanged on exit. */ /* X (input/output) REAL array, dimension N. */ /* On input, the initial guess. This is commonly set to */ /* the zero vector. */ /* On exit, if INFO = 0, the iterated approximate solution. */ /* WORK (workspace) REAL array, dimension (LDW,3) */ /* Workspace for residual, direction vector, etc. */ /* LDW (input) INTEGER */ /* The leading dimension of the array WORK. LDW >= max(1,N). */ /* ITER (input/output) INTEGER */ /* On input, the maximum iterations to be performed. */ /* On output, actual number of iterations performed. */ /* RESID (input/output) REAL */ /* On input, the allowable convergence measure for */ /* norm( x - x_1 ) / norm( x ). */ /* On output, the final value of this measure. */ /* MATVEC (external subroutine) */ /* The user must provide a subroutine to perform the */ /* matrix-vector product */ /* y := alpha*A*x + beta*y, */ /* where alpha and beta are scalars, x and y are vectors, */ /* and A is a matrix. Vector x must remain unchanged. */ /* The solution is over-written on vector y. */ /* The call is: */ /* CALL MATVEC( ALPHA, X, BETA, Y ) */ /* The matrix is passed into the routine in a common block. */ /* INFO (output) INTEGER */ /* = 0: Successful exit. Iterated approximate solution returned. */ /* > 0: Convergence to tolerance not achieved. This will be */ /* set to the number of iterations performed. */ /* < 0: Illegal input parameter, or breakdown occurred */ /* during iteration. */ /* Illegal parameter: */ /* -1: matrix dimension N < 0 */ /* -2: LDW < N */ /* -3: Maximum number of iterations ITER <= 0. */ /* BLAS CALLS: SAXPY, SCOPY, SNRM2 */ /* ========================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Routines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ work_dim1 = *ldw; work_offset = work_dim1 + 1; work -= work_offset; --x; --b; /* Function Body */ *info = 0; /* Test the input parameters. */ if (*n < 0) { *info = -1; } else if (*ldw < max(1,*n)) { *info = -2; } else if (*iter <= 0) { *info = -3; } if (*info != 0) { return 0; } maxit = *iter; tol = *resid; /* Alias workspace columns. */ mm = 1; x1 = 2; temp = 3; *iter = 0; /* Form matrix splitting inv(M) and N. */ matsplit_(&c_b2, &b[1], &work[mm * work_dim1 + 1], ldw, "JACOBI", "SPLIT", 6L, 5L); L10: /* Perform Jacobi iteration */ ++(*iter); /* Save the current approximation to X in X1. */ scopy_(n, &x[1], &c__1, &work[x1 * work_dim1 + 1], &c__1); /* Apply iteration; result is updated approximation vector x. */ scopy_(n, &b[1], &c__1, &work[temp * work_dim1 + 1], &c__1); (*matvec)(&c_b2, &x[1], &c_b2, &work[temp * work_dim1 + 1]); i__1 = *n; for (i = 1; i <= i__1; ++i) { x[i] = work[i + mm * work_dim1] * work[i + temp * work_dim1]; /* L15: */ } /* Compute error and check for acceptable convergence. */ saxpy_(n, &c_b13, &x[1], &c__1, &work[x1 * work_dim1 + 1], &c__1); *resid = snrm2_(n, &work[x1 * work_dim1 + 1], &c__1) / snrm2_(n, &x[1], & c__1); if (*resid <= tol) { goto L30; } if (*iter == maxit) { goto L20; } goto L10; L20: /* Iteration fails */ *info = 1; goto L30; L30: /* Iteration successful. Reconstruct matrix A. */ matsplit_(&c_b2, &b[1], &work[mm * work_dim1 + 1], ldw, "JACOBI", "RECON\ STRUCT", 6L, 11L); return 0; /* End of JACOBI */ } /* jacobi_ */