A Framework for Automatic Construction of
Abstract Promela Models

Maria-del-Mar Gallardo and Pedro Merino
{gallardo,pedro}@lcc.uma.es

Dpto. de Lenguajes y Ciencias de la Computacion
University of Malaga, 29071 Malaga, Spain

Abstract. One of the current trends in model checking for the verifica-
tion of concurrent systems is to reduce the state space produced by the
model, and one of the more promising ways to achieve this objective is to
support some kind of automatic construction of more abstract models.
This paper presents a proposal in this direction. The main contribution
of the paper is the definition of a semantics framework which allows us
to relate different models of the system, each one with a particular ab-
straction level. Automatic source-to-source transformation is supported
by this formal basis. The method is applied to Promela models.

1 Introduction

Formal verification is a powerful method to ensure confidence regarding the cor-
rectness of many complex and critical systems [5, 8]. This technique is currently
supported by many commercial and non-commercial tools such as SPIN [11,12].
However, verification is only possible and fruitful if useful formal models of these
systems are available. A useful model is an abstract representation of the real
system, with exactly the details necessary to ensure that satisfaction of inter-
esting properties in the model implies satisfaction in the real system. Excessive
model detail may produce the well-known state explosion problem, which could
prevent its analysis with current tools. Whereas research in recent years has
mainly focussed on algorithms to improve automatic verification, mainly based
on model checking [3,15], it is now necessary to conduct research into methods
for the automatic construction of useful abstract models (as defended by Amir
Pnueli in the 4th SPIN worksho p).

One technique recently exploited to obtain more abstract models is abstract
interpretation [2], which allows us to employ the new models in order to ana-
lyze specific properties using less time or memory [4, 6]. Abstract interpretation
(A.L) is an automatic analysis technique to statically deduce dynamic program
properties, which is based on the idea of approximation. Every program data is
approximated, by means of the so-called abstraction function «, by a higher level
description (abstract denotation) which represents the data property of interest.
Analysis is carried out by executing programs with the abstract data instead
of the actual data. To do this, it is necessary to redefine the meaning of the

program instructions so that they can be applied to abstract data. In both [4, 6],
transition systems are used to construct models and the abstraction is oriented
to the verification of universal safety temporal properties, i.e., properties that
hold in all states along e very possible execution path. Both works also extend
their proposal to existential properties. In [4], properties are expressed with CTL
formulas, while in [6] the modal p-calculus is used.

This paper reports work in progress towards the construction of an environ-
ment for automatic verification based on transforming Promela models using
abstract interpretation as a formal basis. The main components of the environ-
ment are shown in Figure 1. The key concept is that given a model M, the
user must supply an abstraction function « to transform this model into a new
abstract model M;*. The function can be provided from a library, and it can be
refined for this particular model using the property to be analyzed. The prop-
erties must also be transformed when the model is transformed. Our aim is to
keep all the formal descriptions (models and properties) as related as possible
to the results, by using a specific management tool.

We present a semantics framework to support the transformations mentioned
above based on A.I. This analysis technique basically defines a relation between
two semantic levels, the concrete and the abstract one. Given a language L and
Sem : L — (Det, <) a semantics of L which associates each program M € L
with a denotation d belonging to the poset (Det, <), the objective of A.L is to
automatically construct an abstract program M™* in which the program charac-
teristics to be analyzed are preserved while the rest of the program characteristics
are abstracted. The meaning of the new program M™* is given by an abstract
semantics Sem* : L — (Det*, <*). Correctness of the analysis is proved by
means of the abstraction function « : (Det, <) — (Det*, <*) and the concretiza-
tion function ~ : (Det*, <*) — (Det, <) which relate these two semantic levels.
((Det, <), (Det*, <*), a,y) usually forms a Galois connection and the correctness
is fo rmalized using any of the two following equivalent expressions:

a(Sem(M)) <* Sem*(M™) (1)
Sem(M) < y(Sem™(M™)). (2)

< and <* represent the precision given by the two respective semantics, i.e.,
dj <* d3 indicates that the semantics value dj is more precise than dj, or from
another point of view, that d approximates d;. Following this, a(d) <* d* means
that d* is an abstract approximation of d, and d < ~(d*) indicates that v(d*) is
more general than d. Considering this, (1) and (2) represent that Sem*(M™*) is
a correct approximation of Sem(M).

Many program aspects of the concrete semantics construction are not affected
by the abstraction process, and therefore it is possible to define a semantics
parameterized by the language aspects which are influenced by the process of
abstraction. This idea was used in [13] for the A.I. of Prolog and more recently in
[7] who defined the generalized semantics of constraint logic languages. We follow
this idea to define a generalized semantics of a subset of Promela. This semantics
will allow us to define, in a common semantics framework, different levels of

abstraction from an initial model and to easily compare them for precision. The
key issue here is that all models, the abstract ones and the initial, are instances of
the same semantic framework. Compared to other related works, our proposal is
based on the automatic source-to-source transformation of Promela models, thus
allowing the use of SPIN for verification of both concrete and abstract models.
In [9] we presented previous resul ts on the use of A.L. for verifying abstract
properties of programs.

[+

user
Static analvel

Spin)
Siraulation
{pir)

Ivhnagement tool

Fig. 1. Overview of an environment for verifying by transformation

The organization of the paper is as follows. Section 2 describes the gener-
alized semantics of Promela and Section 3 explains the transformation method
proposed and presents some correctness results. Section 4 contains an example
which illustrates how to combine our method with the SPIN tool. In Section 5,
we present conclusions and future work.

2 Promela generalized semantics

The objective of this section is to define the generalized semantics of a significant
subset of the Promela language. As explained above, the generalized semantics
describes the operational behavior of a program making explicit the domain-
dependent model characteristics which are influenced by the abstraction as data
and instructions. We first define the subset of Promela considered in the paper.
We do not try to precisely explain the syntax or the meaning of each Promela
instruction. Instead, some knowledge of the language is assumed.

Every model M € Promela is a sequence of processes M = Pi||...||P, which
run in parallel. Let Inst be the set of basic instructions from which the processes
are constructed. Inst includes the assignment instruction =, the Boolean and
arithmetic operators, the i f and goto instructions, and the instructions for send-
ing (receiving) messages to (from) channels represented by the sets Input and

Output, respectively. Let us define Label as a set of labels and Decl as the
declarative part of the model. Using these definitions, every process is described
as: P = Decl; {Label : Tran}
where

Tran = {(Input|Output|null); Inst},

null being the empty instruction.

We intentionally omit the instruction run that creates the processes from the
main program in order to make the description clearer. Also, we assume that
init is one of the model’s processes.

Every label is intended to represent an internal process state defined by the
programmer. In each one of these logical states, the process will carry out a tran-
sition which will usually begin reading or sending a message through a channel
and will follow this with a sequence of arbitrary instructions. The transition
may end with a goto instruction which will provoke the process into jumping to
another logical state. The example in Figure 4 follows the syntax defined above.
We now present the generalized semantics of Promela, introducing the definition
gradually in order to be clear.

1. Let State be the set of tuples which represent the internal state of the model,
that is, every tuple, which is written as (g,l1,...,ln,C1, -+ Cmy @1y« in)
contains the value of global variables of the model, local variables for each
process, the messages stored in the model channels, and the instruction just
executed by every process P; (j =1,...,n). g and [; are also tuples, each one
representing the actual value of a global or local variable at a point during
the execution.

2. Let Sequence be the set of finite or infinite sequences of states.

3. Let Insty and Inst; be the set of instructions of all the model processes
and P, respectively.

4. Let Initial : Promela — State be the function which, given a model, returns
its initial state, i.e., that in which its variables have been initialized, all
channels are empty and each just-executed process instruction is a special
one which precedes the first instruction in every process.

5. Let next_inst; : Inst; — Inst; be the function which given a process P; and
an instruction i of P; returns the instruction which follows 7 in the code of
P;. If i is the last instruction of P; then next_inst;(i) = end.

6. Let just_exe; : State — Inst; be the just-executed function which, given a
process and a state, returns the last instruction of the process executed, i.e.,
Just_exe;((g,li, .. ln,sC1y ooy Cmyiny ooy igy e yin)) = 4.

7. Given eval : BoolExp x State — {false,true}, eval(exp,s) returns the
evaluation of the Boolean expression exp in the state s.

8. Let exec; : Inst; x State — { false, true} be the executable function defined
as

— exec;(i,s) = eval(i, s), if i is a Boolean expression.

— exec;j(i,s) = false, if ¢ implies reading from an empty channel, reading
a specified message from the channel which does not match with the first
channel message, or writing on a full channel.

— execj(i,s) = false, if ¢ is a non-deterministic instruction such as if ::
erpi— > d15... i expy— > i fi and execj(expr,s) = false, for all
1<r<k.

— exec;(i, s) = true, otherwise.

In short, exec;(i,s) returns true if the instruction ¢ of process P; does not
suspend in the state s and returns false, otherwise.
9. Let next; : Inst; x State — p(Inst;) U {delay, end} be the function which
given a process instruction returns the next instruction to be executed, i. e.,
— next;(i,s) = delay, if exec;(next_inst;(i),s) = false,
— next;(i,s) = end, if next_inst;(i) = end.

— next;(i,s) = {expr1,...,expys}, if next_inst;(i) is a non-deterministic
instruction such as if :: expi— > 41;... it expr— > i fi and some
instructions expr1, . . ., exprs exist such that exec;(€xpym,, s) = true (1 <
m < s).

— next;(i,s) = next_inst;(i), otherwise.

10. Let S : (Insty U...UInst,) x State — State be a semantics function which
gives meaning to each Promela instruction. S(é, ((g, 1, ..., 1, ..., ln, ¢, 41, . . .,
ijyeeesin)) = 8" = (gl U, i, oo d,) means that exe-
cuting the instruction 7 belonging to a given process P;, when the model is
in the state s, produces the evolution of the model towards the state s’. S
is a generic function, that is, it is unspecified; we only substitute i; by 4 in
the state to indicate that ¢ is the last instruction executed in the process
P;. The high level behavior of the model is not dependent on this function
and this is why we do not define it. In [14], the meaning of every Promela
instruction can be found.

11. Let Trans : State — p(State) U {end, deadlock} be the transition function
which, given a model state s, returns the set of next states to which it can
evolve from s. Trans is defined as:

- T'I"G/HS(S) = Uj:l..‘n(Uie(nemtj(just,exeq(s),s)ﬁlnstj){S(i7 8)})7

if j € {1,...,n} exists such that next;(just_exec;(s), s) ¢ {delay, end}
— Trans(s) = end, if Vj = 1,...,n, next;(just_exec;(s),s) = end, and
— Trans(s) = deadlock, otherwise.

Next, we define the generalized semantics Gen : Promela — p(Sequence)
using the function Trans.

Gen(M) ={sg — 81 — ... = s — ... € Sequence/Initial(M) = sy,

Vi > 0.(Trans(sj—1) & {deadlock,end},s; € Trans(s;—1))}U

{s0 = $1 — ... — s /2€ Sequences/Initial(M) = sy,

Trans(sy) € {deadlock,end},¥0 < j < k.(Trans(s;_1) ¢ {deadlock, end},
sj € Trans(s;—1))}

Gen associates each Promela model M with the set of all possible state
sequences that M can display in different model executions. This semantics is
useful for our purposes due to each sequence corresponding to a possible model
execution that we must analyze when we are carrying out model checking. In

addition, since the meaning of the model operations is unspecified, it is possible
to change this without modifying the operational behavior of the model. As the
operational behavior of a given model M € Promela, represented by Gen (M),
depends on the functions eval and S, we denote it with Gen(M, eval, S), eval
and S being the parameters of the generalized semantics.

3 Abstract generalized semantics

In this section, we explain how to obtain an abstract model from an original
model. The meaning of the abstract model is given by the generalized semantics
defined above to which we have added two conditions to guarantee correctness.
To do the abstraction, we assume the existence of an abstraction function which
transforms actual data and operations into abstract ones. An automatic source-
to-source transformation will result in an abstract model. The object model of
the transformation will be obtained from the correct implementation of the ab-
stract instructions produced by the data abstraction. The benefit of this method
is that the abstract model obtained is a Promela model which can be analyzed
by the SPIN tool.

We first explain the initial step to obtain abstract models given the concrete
ones, then present the abstract semantics (generalized semantics + correctness
conditions), prove some correctness results, and finally present how to obtain
correct abstract models in Promela.

3.1 Automatic transformation from concrete models to abstract

models
Next, we use the following definitions. As before, let M = Py||...||P, be a
Promela model involving the concurrent execution of n processes.
— Let us suppose that M contains s global and local variables v, ..., v, each
one ranging over a (non-empty) set of values D;. Let D be Dy X ... x Dj.
— Let us suppose that M contains m channels ci,...,cn, and let C; be the

domain of all possible values that c¢; may store. Let C' be C1 x ... x Cp,.
— Finally, let Inst be Inst; x ... x Inst,, Inst; being the set of instructions
which form P;.

From these definitions, we have State = D x C' x Inst. Let a = ag X « :
D x C — D* x C* be an abstraction function which transforms each concrete
state into an abstracted one. Note that temporarily the instructions are not
being taken into account. We assume that (D*,<}) and (C*, <) are posets,
where the partial order represents the relative precision of the approximation of
every abstract data, as is classic in abstract interpretation. Sometimes, we will
use ag and «,. over simple variables and channels instead of tuples. We allow
this abuse of notation for clarity in the exposition.

From a4 and a., we define an approximation of the instructions. «;,s; denotes
the function which transforms every concrete instruction into an abstract one,

by renaming the original instruction and changing data and messages by the
corresponding abstract ones using a. Let Inst* be Inst] x ... x Inst}, each
Inst; being the set of abstract instructions of the process P;. Finally, let M* be
the abstract model obtained by substituting each instruction i of P; by cnst (7).

a = ag X a, and ;s define an abstraction of the model states, denoted by
as, in the following way:

as((g, 1, ¢,01, .-, in)) = (@a((g,1)), ac(c), Qinst (1), - - -y Qinst (in))

Given two abstract states s7 = (g7,1], ¢}, inst]) and s5 = (g5,15, 5, inst}),
we say that s§ <* s (s7 is more precise than s3) iff the following conditions
hold: (1) (g1, 1}) <} (95,13), (2) ¢ <k cb and (3) Inst] = Insts.

Figure 2 illustrates the first part of the transformation method guided by an
abstraction presented above. Model M has only one process (init) and one global
variable ¢ ranging over the integer numbers. We consider the classic abstraction
a:int — {1, even, odd, evenodd} defined as a(2n) = even, and a(2n+1) = odd,
for all » > 0. L and evenodd are the bottom and top of the domain, respectively.
The partial order defined on this domain is V& € {L, even, odd, evenodd}.(L <
x < evenodd) .

#define even 0O

init { int i; #define odd 1
start: if #define evenodd 2
1 i=1+ 1; goto start; init { int i =% even;
:: goto end; start: if
fi :: i =k i +*% odd;goto start;
end:skip } :: goto end
fi;
end:skip }
Model M Model Mx*

Fig. 2. Concrete and abstract models

In the transformed model M*, the constants 0 and 1 have been substituted
by even and odd, respectively. In addition, the operation + and the instruc-
tion = have been replaced by +* and =*, though they are not yet defined. The
automatic transformation from M to M™* can be easily made, and only the defi-
nition of the abstract operations and instructions have been left out. In Section
3.4, we complete the transformation by substituting each abstract operator and
each abstract instruction by a Promela code, which is a correct approximation,
with respect to the semantics defined in the following section, of the respective
concrete operation and instruction.

3.2 Abstract semantics

Now we define the abstract semantics of a Promela model. Given a model M
whose semantics is given by Gen(M, eval, S) and an abstraction function « de-
fined as in Section 3.1, we construct the abstract model M* using « as exposed
above. The abstract generalized semantics Gen*(M*, eval*, S*) of M* is de-
fined as Gen. Next we use the superindex * to refer to the abstract states,
abstract sequences, and other elements of the generalized semantics of the ab-
stract model M*. We impose the following conditions on the meaning of the

abstract operations and instructions (eval* and S*), to assure the correctness of
the transformation M — M*:

1. Let us suppose that eval* : BoolExp* x State* — {false,true} verifies

the following correctness relation: Vs* € State*.(Vs € State.as(s) <k s* =
eval(exp, s) <; eval* (unst(exp), s*))).
The partial order used in the set { false, true} is false <j true, which in our
context means that if eval® returns false then the evaluation of st (exp)
in each concretization of the abstract state s* is false; otherwise eval® will
return true. Thus eval(exp, s) = false & eval* (inst(exp), as(s)) = false,
however eval*(exp*,s*) = false = eval(exp,s) = false, for all Boolean
expressions exp and states s such that a,s(exp) = exp* and a,(s) <% s*.

2. Let S* : (Instj U...U Inst}) x State® — State* be an abstract function
verifying the relation: Vs* € State*.(Vs € State.(a(s) <¥ s* = a(S(3,s)) <*
S*(inst (i),)))-

S* gives abstract and correct meaning to the instructions of the abstract
model M*. As before, S* is not specified, we have only declared its correct-
ness relation with .S.

3.3 Correctness

In this section, we prove a correctness result of the abstraction. We impose the
condition that every state in each concrete execution path corresponds to an
abstract state in an abstract execution path. This is a strong result as we need
the whole concrete computation to be simulated step-by-step by the abstraction.
Weaker correctness conditions can be defined by imposing the condition that
the approximation holds at some specified points of the concrete model (and
not in all states) in a similar way to the collecting semantics used in abstract
interpretation [2].

In the following, let us suppose that a = ag X a. : D x C — D* x C* is an
abstraction function of a concrete Promela model M = Pi||...||P,, in the same
conditions as the previous discussion, Gen(M, eval, S) and Gen*(M*, eval*, S*)
being the semantics of M and its transformation M*.

Given seq = s9 — 51 — ... — sp — ... € Sequence, we define aeq(seq) as
as(so) — as(s1) — ... — as(sk) — ... € Sequence*.

Given a channel ¢, let |¢| € N denote the number of messages stored by ¢ in
a particular state s. In addition, if |c| =n and 1 < j < n, ¢, represents the j-th
message.

Definition 1. Given seq*, seq*/ € Sequence®, then seq” <%, seq*l , iff for all
12>0, s7 <& s

.
Definition 2. An abstraction « preserves the length of the channels iff for each
channel ¢, |c| = |a.(c)|.

Lemma 1. If a is an abstraction which preserves the length of the channels,
then Vi € Inst.(Vs* € State*.(Vs € State.(as(s) <j s, execi(ainsi(i), s*) =
false = exec;(i, s) = false))).

Proof. Let us consider s € State and s* € State* such that as(s) < s*.

1. If 7 is a Boolean expression then, by hypothesis eval*(q;nst (i), s*) = false,
and since eval* verifies eval(i, s) <} eval*(qnst(i), s*), then we deduce that
eval(i, s) = false, that is, exec;(i,s) = false.

2. If i = ¢?msg then we consider two cases:

(a) 7 imposes no condition over the message read. In this case, as « preserves
the length of the channels |c| = [ac(c)], and as exec](ainsi(i), s*) =
false, we have |c¢| = |a.(c)| =0, and hence exec;(i,s) = false.

(b) 4 imposes some matching condition over the message read from c. The
case |c| = 0 has been proved in (a). Therefore, let us assume that |¢| >
0. As exec)(ainst(i),s*) = false, the first abstract message of a.(c),
ac(c)1, does not verify this condition, which really is the Boolean test
ac(c)1 ==* ag(msg). Thus, by 1, as eval*(a.(c)1 ==* aq(msg), s*) =
false, we deduce that eval(cy == msg, s) = false or equivalently that
exec;(i,s) = false.

3. If i = clmsg as before, if o preserves the length of the channels then
exec;(ainst(i), s*) = false = exec;(i,s) = false.

4. No other instruction suspends in the concrete model or in the abstract one.

The instruction i f is analyzed using cases 1, 2 and 3. !

In the rest of the section, we always assume that « preserves the length of
the channels.

Lemma 2. If s1,s2 € State and s} € State* verify that s2 € Trans(s1) and
as(s1) <% st then an abstract state s5 € State* exists such that s € Trans*(sy)
and ag(s2) <¥ s3.

Proof. sy € Trans(s) implies that j € {1,...,n} and i € Inst; exist such
sy = S(i,s1). This means that exvec;(i,s1) = true, and applying Lemma 1
we have that exec;‘-(ozmst(i),s}‘) = true. So, we can choose the instruction
Qinst (1) € Inst} to evolve from si to S*(ainst(i), s7). Let s5 be S*(ainst(4), s7)-
By definition, sj € Trans*(s}), and also by the correctness condition (point 2)
we have a(S(4, 1)) < S*(inst(4), s7), that is, a(ss) <k si.

Lemma 3. Vs € State.(Vs* € State*.(as(s) <% s*,Trans(s) = end =
Trans*(s*) = end)).

Proof. If a(s) <! s* then the process counters of both states (s and s*) are
pointing to the same concrete or abstract instructions. So, Trans(s) = end
means that all the counters in s are pointing to the end of each model process
and the same for s*.

Theorem 1. Let Gen(M, eval, S) and Gen*(M*, eval*, S*) be the semantics of

the models M and M* wverifying the conditions presented in Section 3.2, then

for each deadlock-free sequence seq € Gen(M,eval,S), an abstract deadlock-free

sequence seq* € Gen*(M*, eval*, S*) exists, such that aseq(seq) <., seq*.

! We assume that there is not rendezvous in the model M. It is possible to include it
but this would unnecessarily complicate the presentation.

Proof. Let seq be sg — s1 — s2 — ... € Gen(M, eval, S), using Lemma 2 we
build seq* as follows:

1. Let s§ be as(sp) the initial state of every execution path of M*.

2. Let s7 be the abstract state given by Lemma 2 using s§ € State*, and sg,
s1 € State. s} € State* verifies that s} € Trans*(sy) and a(s1) <* s7.

3. Applying Lemma 2, we successively obtain the abstract states s3, s, etc.

4. By Lemma 3, if seq is a finite sequence, we have that seq* is also finite.

Definition 3. Given two Promela models M, M* € Promela, then we say that
M* a-approzimates M, and we denote it with M T, M*, if Gen(M,eval,S)
and Gen*(M*, eval*, S*) are related as explained in Section 3.2, and verify the
hypotesis of Theorem 1. In particular, o preserves the length of the channels and
M is deadlock-free.

The next propositions explain the relationship between the concrete and ab-
stract models when proving temporal properties. One property F' over one model
M is built with the usual temporal operators, Boolean connectives and propo-
sitions. Propositions are tests over data, channels or labels. For convenience, we
assume that all formulas are in negation normal form, that is, negations only ap-
pear in propositions. In the following, we call abstract properties to those which
are defined over abstract models (propositions evaluated over abstract states).
Given a concrete property F (or proposition P) over a model M, we can ob-
tain its abstract version, denoted by a;(F') (as(P)), by preserving the formula
structure (Boolean and temporal operators) and abstracting data.

Definition 4. Let us assume that M T, M*. Let P* be an abstract proposition,
G*, H* and F* abstract temporal formulas and seq = sg — s — ... —€
Gen(M,eval, S), then

1. s € State satisfies P* (s |= P*) iff an abstract state s* € State* exists such
as(s) <% s* and s* | P*.

2. seq = [|G* iff for each i >0, s; = G*.

3. seq = oG* iff i > 0 exists such that s; = G*.

4. seq = G*UH™* iff i > 0 ewists such that s; = H* and for all 0 < j <
1 — 1, Sj ': G*.

5. seq = G* NH* iff seq = G* and seq = H*.

6. seq = G*V H* iff seq = G* or seq = H*.

7. M | F* iff for all execution paths seq € Gen(M,eval, S), seq = F*.

Proposition 1. Let F* be a universal abstract property over M* (which must
hold on all execution paths). If M T, M* and M* = F* then M = F*.

Proof. By induction over the formula structure using Theorem 1 (see [10]).

This proposition proves that if the abstract model M* verifies an abstract
property F'*, the concrete model M also verifies F**. If the abstraction function
« and the abstract domain D* x C* define useful information for the user, this

result can be a powerful means for debugging the model. For instance, with the
typical abstraction « : int — {L,even,odd, evenodd} defined in Section 3.1, it
could be interesting to verify F* = [|(x == even), assuming that x is a global
variable of a model M. However, the user could also be interested in proving
a concrete formula F' (over the concrete domain) by proving ay(F) (or other
abstract version F* of F') over M*. Next, we discuss how to relate F** and F.

Definition 5. Given Pj, Py, Fy and F3 abstract propositions and formulas

1. Pf =* Py iff Vs € State.(s = P} = s E Py).
2. Ff =* Fy iff Vseq € Gen(M, eval, S). (seq = F; = seq = Fy).

Proposition 2. Given an abstract proposition P* and a state s € State, if
s |= P* then a concrete proposition P exists such that s |= P and ay(P) =* P*.

Proof. If s = P* then 3s* € State*.(as(s) <¥ s* and s* = P*). This means that
as(s) verifies a stronger version @Q* of P* (the data and the contents of channels
of a;(s) are more precise than the ones of s*). So, s verifies the proposition P
obtained by substituting the abstract values of @* in a(s) by the corresponding
concrete data in s. By construction, ay(P) = Q* and ay(P) =* P*.

Proposition 3. Given a model M and an abstract property F*, if M = F*
then M = V{F : ay(F) =* F*}.

Proof. By induction over the formula structure using Proposition 2 (see [10]).

This proposition gives us the relationship between the abstract formula proved
in the abstract model and the concrete formulas which hold in the concrete
model. This result is very useful when the set {F : a;(F) =* F*} has only
one element, this is, when there is only one concrete formula F', such that
af(F) =* F*. Under this condition, the user knows that F' holds in M. So,
when the objective of one abstraction is to prove a concrete formula F' over the
concrete model M, we must define the abstraction function « in such a way that
only one concretization of a;(F') exists. If this happens and the system proves
that M™* = a;(F'), Proposition 3 guarantees that M = F, as was expected by
the user. One example of this situation is shown in [4]. The user wants to prove
the formula F = [[(a = 42 — b = 42) over a model M (with only two global
variables ¢ and b) and chooses the abstraction function « : Int — {0,1} defined
as «a(42) = 0, a(i) = 1, if i # 42 to build the abstract model M*. With this
definition if af(F) = F* = [J(a = 0 — b = 0) and M* |= ay(F) we have that
M = F, as expected by the user.

In the previous discussions, we have assumed that the concrete model M
is deadlock-free. The next Proposition studies how to analyze deadlock in M.
For this purpose we need to impose some conditions which are presented in the
following definition.

Definition 6. Given an abstraction function o, we say that o verifies the exe-
cutability conditions iff exec;(i,s) = execi(ainsi(i),s*), for each pair of states
s* € State*, s € State, such that as(s) <¥ s*, and for each i € Inst;.

Proposition 4. Let M* be an abstraction of M obtained by means of the func-
tion a, verifying the conditions presented in Section 3.2. Let us assume that «
also verifies the executability conditions presented above. If Gen*(M*, eval*, S*)
has no execution sequence which deadlocks then Gen(M,eval, S) has no deadlock
either.

Proof. Given seq = s9 — ... — s — deadlock € Gen(M,eval,S) by The-

orem 1, we can construct an abstract sequence s; — ... — s; such that
V0 < i < k.(as(s;) <% sf). Let us consider the states s; and sj. By hypoth-
esis, Trans(sy) = deadlock, this is, Vj = 1,...,n, if i; = just_exec;(s) then

exvecj(next_inst;(i;), sx) = false, and by Definition 6 we have

(ewect (newt_inst}(cinst(i5), 53)) = false), that is, Trans*(sy,) = deadlock.

3.4 Model transformation based on abstract interpretation

Proposition 5. Let M = Py||...||P, be a Promela model and o = ag X ag :
D x C — D* x C* an abstraction function verifying the conditions of Section
3.1 (a preserves the length of the channels). Let Inst* be the set of abstract
instructions derived from «. Let M* be the model obtained by abstracting all
the constants and instructions of M. Let us suppose that for each instruction
i* € Inst* a Promela implementation exists verifying the correctness conditions
imposed in Section 8.2. Under these conditions, the model MI*, obtained by
atomically substituting each model instruction by its implementation, verifies
Theorem 1.

Ezample in Figure 2 (continuing): The model obtained by substituting +*
and =* by its implementation is:

#define even 0O
#define odd 1
#define evenodd 2
init { byte i = even;
start: if
:: d_step { if
::1 == evenodd -> i=evenodd
::i==even -> i=odd
::1i==odd -> i=even
fi };goto start;
: goto end;
fi;
end:skip;
} Model MI*

4 Example

We illustrate the concepts presented above by verifying the version of the ABP
protocol given in Figures 3 and 4. This version of the protocol enables the trans-
mission of data from process A to process B over an unreliable channel. The
error-free behavior of the protocol consists in A sending data message with a
control bit equal to 1 and receiving a reply message also with bit 1 (states S1

and S2 in A). In this error-free scenario, B waits for data messages with bit 1 and
replies with the same bit (states s2 and S1 in B). Other states in A and B are
used to recover the transmission from an error in the channel. Figure 3 shows
the state machines for every process in the protocol (extracted from SPIN docu-
mentation). Our version for this protocol also contains the process € to model an
unreliable channel between A and B. This process controls the maximum number
of errors in the line in order to preserve the correct behavior of the protocol.

In order to ensure the correctness of the protocol, the user can use SPIN to
analyze at least the two following properties.

Invalid end states. The intended behavior of process A is to send data mes-
sages infinitely often, so there are no end labels in the model to specify legal end
states in process A or B, and every deadlock should be reported as an invalid end
state.

Temporal property. As suggested in SPIN documentation, the designer of the
protocol would like to know if it has the following property: ”In all computations,
every message sent by A is received error-free at least once and accepted at most
once by B.” Following the idea of Holzmann’s assertion, this property can be
written with the temporal formula

F = []1 (B_accept -> B_accept_ok)
where the informal meaning of the propositions B_accept is that process B will
immediately accept the data received in mr, and B_accept_ok means that the
expected value in mr follows the value stored in lmr.

71 Tal
70 7al

lal Q}Sz}

71 lal

Process A Process B

Fig. 3. State machines for the ABP protocol

The state-space of the model in Figure 4 (with 4 data to be sent) has 955
states. This space state can be obviously explored with current computers in
order to ensure the desired correctness requirements. But let us assume that
we do not have enough memory in the computer. Then, the use of abstractions
could simplify our work.

As explained in the previous section, the construction of a (more) abstract
model for a given model must be driven by the property to be verified. If we
examine the meaning of the propositions in F, we see that the evaluation of

B_accept does not depend directly on data values. So we choose an abstraction
function that makes easier the evaluation B_accept_ok. The model M1* is an
abstraction of M1 replacing the real data value in the message with only two
abstract values: even and odd. This means that the global variables mt, mr and
lmr and the variable m in process ¢ will range over {L ,even, odd, evenodd }.
The abstract model Promela M1* is obtained by transforming the assignment
sentence and the sum operations in processes A and B (in a similar way that in
Section 3.4).

#define MAX 4
byte mt, mr, lmr;

proctype A(chan in, out) proctype B(chan in, out)
{ byte vr; { byte ar;
Si: mt = (mt+1)%MAX; goto S2;
out!mt,1; S1: lmr = mr;
goto S2; out!1;
S2: in?vr; goto S2;
if S2: in?mr,ar;
(vr == 1) -> goto S1 if
(vr == 0) -> goto S3 :: (ar == 1) -> goto S1
(vr == error) -> goto S5 it (ar 0) -> goto S3
fi; :: (ar == error)-> goto S5
S3: out!mt,1; fi;
goto S4; S3: out!l;
S4: in?vr; goto S2;
if S4: in?mr,ar;
:: goto S1 if
(vr == error)-> goto S5 11 goto S1
fi; :: (ar == error)-> goto S5
S5: out!mt,0; fi;
goto S4 S5: out!0;
} goto S4
}

proctype C(chan a2c, c2b, b2c, c2a)
{ byte m, v,errors_a = 0, errors_b = 0;
S1:if
:: a2¢ ? m,v —> if
:: atomic{errors_b=0; c2b ! m, v }-> goto S1
:: errors_b < 1 -> atomic{errors_b++; c2b ! m, error }-> goto S1
fi
it b2c 7 v > if
:: atomic{errors_a=0; c2a ! v}-> goto S1
:: errors_a < 1 -> atomic{errors_a++; c2a ! error }-> goto S1
fi
fi }
init { chan b2c = [2] of {byte}, c2a = [2] of {bytel},

a2c = [2] of {byte, byte}, c2b = [2] of { byte, byte };
atomic {run A(c2a, a2c);run C(a2c, c2b, b2c, c2a); run B(c2b, b2c) } }

Fig. 4. Promela model of ABP (M1)

This abstraction verifies the hypothesis of Proposition 4, because we do not
abstract any sentence that can suspend in M1, and the abstraction preserves the
length of the channels. So we can employ M 1* to verify the absence of deadlock
in the model M1. This property is proved by inspecting 232 states in M1*.

The verification of M1 requires 448 states. The abstract propositions in F'* are
defined as: #define B_accept B[3]@S1 and #define B_accept_ok mr != lmr

We can easily prove that M1 C, M1* , and by Proposition 1, if M1* = F*
then M1 = F*. So we only have to prove M1 = F*. Fortunately, SPIN checks
that F* is valid in all computations of M1* exploring only 106 states.

If we want to verify a concrete formula with a similar meaning over M1, such
as

F’ = [1 ((B[3]@eS1 -> mr == (lmr +1) % MAX)

MAX being the real number of different data messages, then we have to explore
448 states in M1. So we have saved memory using the abstract model.

M Mi* | M2 M2*
State space 448 231 931 207
Mo Mo Ma Mo
Deadlock 7
Explored States 448 232 952 207
Valid F 7 Tes Yes Mo [Mao
Exzplored States 448 106 281 149

Table 1. Verification results

Table 1 shows all these results with M1 and M1*. The table also shows the
verification of the models M2 and M2*. The model M2 is similar to the original
in the SPIN documentation (any number of errors), but with an intermediate
process to model the channel. M2* is obtained with the same abstraction as
M1*. Results for M2 and M2* show that violation of F* over M2* does not
provide a definitive result about its violation over M2. But deadlock can be
directly analyzed in the abstract model.

5 Conclusions and further work

We have presented a generalized semantics of Promela which is suitable for
justifying the use of abstract interpretation to automatically transform Promela
models into more abstract versions. The transformed (abstracted) models can
be employed to reduce the state space for the verification using SPIN. The
same framework can be used to define the semantics of the original (concrete)
Promela model as well as the new (abstracted) models, therefore, it allows us
to relate different abstractions of the same system. The way of using abstract
interpretation enables the verification of universal temporal properties of the
original system by verifying a more abstract version, as in other related works.
We also are working on the use of program specialization (partial evaluation) in
order to prove existential properties, i.e., properties that hold along one execution
path.

We are currently working on tools to integrate the abstract interpretation
technique into XSPIN. Our aim is to put this technique into everyday use by

constructing a user-friendly environment that provides a library of standard ab-
straction functions.

Acknowledgement. We would like to thanks the anonymous referees for their
useful comments and suggestions on this and earlier versions of the paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

Barlett A., Scantlebury R.A., Wilkinson P.T.: A note on reliable full-duplex trans-
mission over half-duplex lines. Communications of the ACM, 12 (5)(1969) 260-265
Cousot P., Cousot R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. Conference
Record of the 4th ACM Symposium on Principles of Programming Languages
(1977)

Clarke E.M., Emerson E. A., Sistla A.P.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. on Pro-
gramming Languages and Systems, 8 (2), (1986) 244263

Clarke E.M., Grumberg O., Long D.E.: Model Checking and Abstraction. ACM
Transaction on Languages and Systems, 16(5) (1994) 1512-1542

Clarke E.M., Wing J.M.: Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys, ACM 50TH Anniversary Issue Workshop on Strategic
Directions in Computing Research, 28(4) (1996)626-643

Dams D., Gerth R., Grumberg O.: Abstract Interpretation of Reactive Systems.
ACM Transactions on Programming Languages and Systems, 19(2) March (1997)
253-291

Giacobazzi R., Debray S.K., Levi G.: A Generalized Semantics for Constraint Logic
Programs. Proceedings of the International Conference on Fifth Generation Com-
puter Systems (1992) 581-591

Gunter C., Mitchell J.: Strategic Directions in Software Engineering and Program-
ming Languages. ACM Workshop on Strategic Directions in Computing Research,
ACM Computing Surveys, 28(4)(1996) 727-737

Gallardo M.M., Merino P., Troya J.M.: Relating Abstract Interpretation with Logic
Program Verification. Proceedings of the International Workshop on Verification,
Model Cheking and Abstract Interpretation, Port Jefferson, USA, (1997)
Gallardo M.M., Merino P.: A Formal basis to Improve the Automatic Verification
of Concurrent Systems. Technical Report LCC IT 99/10. Dpto. de Lenguajes y
Ciencias de la Computacion. University of Malaga.(1999)

Holzmann G.J.: Design and Validation of Computer Protocols. Prentice-Hall, New
Jersey (1991)

Holzmann G.J.: Designing Bug-Free Protocols with SPIN. Computer Communica-
tions, 20(2) (1997) 97-105

Jones, N.D., Sgndergaard, H.: A Semantics-based framework for the abstract inter-
pretation of Prolog. Abstract Interpretation of Declarative Languages. S. Abram-
sky and C. Hankin, Eds. Ellis Horwood, Chichester, U.K. (1987) 123-142
Natarajan V., Holzmann G.J.: Outline for an Operational Semantics of Promela.
The SPIN Verification Systems. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science. AMS Vol. 32 (1997) 133-152

Vardi M., Wolper P.: An Automata-Theoretic Approach to Automatic Program
Verification. Proc. of the Symp. on Logic in Computer Science, Cambridge (1986)

