C------------------------------------------------------------------
C FORTRAN 77 program to test DAW
C
C  Method:
C
C     Accuracy test compare function values against a local
C     Taylor's series expansion.  Derivatives are generated
C     from the recurrence relation.
C
C  Data required
C
C     None
C
C  Subprograms required from this package
C
C     MACHAR - An environmental inquiry program providing
C         information on the floating-point arithmetic
C         system.  Note that the call to MACHAR can
C         be deleted provided the following five
C         parameters are assigned the values indicated
C
C              IBETA  - the radix of the floating-point system
C              IT     - the number of base-IBETA digits in the
C                       significant of a floating-point number
C              XMIN   - the smallest positive floating-point number
C              XMAX   - the largest floating-point number
C
C     REN(K) - a function subprogram returning random real
C              numbers uniformly distributed over (0,1)
C
C
C  Intrinsic functions required are:
C
C         ABS, DBLE, LOG, MAX, REAL, SQRT
C
C  Reference: "The use of Taylor series to test accuracy of
C              function programs", W. J. Cody and L. Stoltz,
C              submitted for publication.
C
C  Latest modification: May 30, 1989
C
C  Author: W. J. Cody
C          Mathematics and Computer Science Division
C          Argonne National Laboratory
C          Argonne, IL 60439
C
C------------------------------------------------------------------
      INTEGER I,IBETA,IEXP,II,IOUT,IRND,IT,J,JT,K1,
     1    K2,K3,MACHEP,MAXEXP,MINEXP,N,NDUM,NEGEP,NGRD
CS    REAL  
CD    DOUBLE PRECISION  
     1    A,AIT,ALBETA,B,BETA,CONV,DAW,DEL,DELTA,EPS,EPSNEG,
     2    FORTEN,HALF,ONE,P,REN,R6,R7,SIXTEN,TWO,T1,W,X,
     3    XBIG,XKAY,XL,XMAX,XMIN,XN,X1,X99,Y,Z,ZERO,ZZ
      DIMENSION P(0:14)
C------------------------------------------------------------------
CS    DATA ZERO,HALF,ONE,TWO/0.0E0,0.5E0,1.0E0,2.0E0/, 
CS   1   FORTEN,SIXTEN,X99,DELTA/14.0E0,1.6E1,-999.0E0,6.25E-2/
CD    DATA ZERO,HALF,ONE,TWO/0.0D0,0.5D0,1.0D0,2.0D0/,
CD   1   FORTEN,SIXTEN,X99,DELTA/14.0D0,1.6D1,-999.0D0,6.25D-2/
      DATA IOUT/6/
C------------------------------------------------------------------
C  Define statement functions for conversions
C------------------------------------------------------------------
CS    CONV(NDUM) = REAL(NDUM)
CD    CONV(NDUM) = DBLE(NDUM)
C------------------------------------------------------------------
C  Determine machine parameters and set constants
C------------------------------------------------------------------
      CALL MACHAR(IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,
     1            MAXEXP,EPS,EPSNEG,XMIN,XMAX)
      BETA = CONV(IBETA)
      AIT = CONV(IT)
      ALBETA = LOG(BETA)
      A = DELTA
      B = ONE
      JT = 0
C-----------------------------------------------------------------
C  Random argument accuracy tests based on local Taylor expansion.
C-----------------------------------------------------------------
      DO 300 J = 1, 4
         N = 2000 
         XN = CONV(N)
         K1 = 0
         K2 = 0
         K3 = 0
         X1 = ZERO
         R6 = ZERO
         R7 = ZERO
         DEL = (B - A) / XN
         XL = A
         DO 200 I = 1, N
            X = DEL * REN(JT) + XL
C------------------------------------------------------------------
C  Purify arguments
C------------------------------------------------------------------
            Y = X - DELTA
            W = SIXTEN * Y
            T1 = W + Y
            Y = T1 - W
            X = Y + DELTA
C------------------------------------------------------------------
C  Use Taylor's Series Expansion
C------------------------------------------------------------------
            P(0) = DAW(Y)
            Z = Y + Y
            P(1) = ONE - Z * P(0)
            XKAY = TWO
            DO 100 II = 2, 14
               P(II) = -(Z*P(II-1)+XKAY*P(II-2))
               XKAY = XKAY + TWO
  100       CONTINUE
            ZZ = P(14)
            XKAY = FORTEN
            DO 110 II = 1, 14
               ZZ = ZZ*DELTA/XKAY + P(14-II)
               XKAY = XKAY - ONE
  110       CONTINUE
            Z = DAW(X)
C------------------------------------------------------------------
C  Accumulate Results
C------------------------------------------------------------------
            W = (Z - ZZ) / Z
            IF (W .GT. ZERO) THEN 
                  K1 = K1 + 1
               ELSE IF (W .LT. ZERO) THEN 
                  K3 = K3 + 1
            END IF
            W = ABS(W)
            IF (W .GT. R6) THEN
                  R6 = W
                  X1 = X
            END IF
            R7 = R7 + W * W
            XL = XL + DEL
  200    CONTINUE
C------------------------------------------------------------------
C  Gather and print statistics for test
C------------------------------------------------------------------
         K2 = N - K1 - K3
         R7 = SQRT(R7/XN)
         WRITE (IOUT,1000)
         WRITE (IOUT,1010) N,A,B
         WRITE (IOUT,1011) K1,K2,K3
         WRITE (IOUT,1020) IT,IBETA
         W = X99
         IF (R6 .NE. ZERO) W = LOG(R6)/ALBETA
         WRITE (IOUT,1021) R6,IBETA,W,X1
         W = MAX(AIT+W,ZERO)
         WRITE (IOUT,1022) IBETA,W
         W = X99
         IF (R7 .NE. ZERO) W = LOG(R7)/ALBETA
         WRITE (IOUT,1023) R7,IBETA,W
         W = MAX(AIT+W,ZERO)
         WRITE (IOUT,1022) IBETA,W
C------------------------------------------------------------------
C  Initialize for next test
C------------------------------------------------------------------
         A = B
         B = B + B
         IF (J .EQ. 1) B = B + HALF
  300 CONTINUE
C-----------------------------------------------------------------
C  Special tests.  First check values for negative arguments.
C-----------------------------------------------------------------
      WRITE (IOUT,1025)
      WRITE (IOUT,1030) IBETA
      DO 350 I = 1, 10
         X = REN(J)*(TWO+TWO)
         B = DAW(X)
         A = B + DAW(-X)
         IF (A*B .NE. ZERO) A = AIT + LOG(ABS(A/B))/ALBETA
         WRITE (IOUT,1031) X,A
         X = X + DEL
  350 CONTINUE
C-----------------------------------------------------------------
C  Next, test with special arguments
C-----------------------------------------------------------------
      WRITE (IOUT,1040)
      Z = XMIN
      ZZ = DAW(Z)
      WRITE (IOUT,1041) ZZ
C-----------------------------------------------------------------
C  Test of error return for arguments > xmax.  First, determine
C    xmax
C-----------------------------------------------------------------
      IF (HALF .LT. XMIN*XMAX ) THEN
            XBIG = HALF/XMIN
         ELSE
            XBIG = XMAX
      END IF
      WRITE (IOUT,1050)
      Z = XBIG*(ONE-DELTA*DELTA)
      WRITE (IOUT,1052) Z
      ZZ = DAW(Z)
      WRITE (IOUT,1062) ZZ
      Z = XBIG
      WRITE (IOUT,1053) Z
      ZZ = DAW(Z)
      WRITE (IOUT,1062) ZZ
      W = ONE + DELTA*DELTA
      IF (W .LT. XMAX/XBIG ) THEN
            Z = XBIG*W
            WRITE (IOUT,1053) Z
            ZZ = DAW(Z)
            WRITE (IOUT,1062) ZZ
      END IF
      WRITE (IOUT,1100)
      STOP
C-----------------------------------------------------------------
 1000 FORMAT('1Test of Dawson''s Integral vs Taylor expansion'//)
 1010 FORMAT(I7,' Random arguments were tested from the interval ',
     1    '(',F5.2,',',F5.2,')'//)
 1011 FORMAT('  F(X) was larger',I6,' times,'/
     1    10X,' agreed',I6,' times, and'/
     1    6X,'was smaller',I6,' times.'//)
 1020 FORMAT(' There are',I4,' base',I4,
     1    ' significant digits in a floating-point number'//)
 1021 FORMAT(' The maximum relative error of',E15.4,' = ',I4,' **',
     1    F7.2/4X,'occurred for X =',E13.6)
 1022 FORMAT(' The estimated loss of base',I4,
     1    ' significant digits is',F7.2//)
 1023 FORMAT(' The root mean square relative error was',E15.4,
     1    ' = ',I4,' **',F7.2)
 1025 FORMAT('1Special Tests'//)
 1030 FORMAT(7X,'Estimated loss of base',i3,' significant digits in'//
     1       8X'X',10X,'F(x)+F(-x)'/)
 1031 FORMAT(3XF7.3,F16.2)
 1040 FORMAT(//' Test of special arguments'//)
 1041 FORMAT('  F(XMIN) = ',E24.17/)
 1050 FORMAT(' Test of Error Returns'///)
 1052 FORMAT(' DAW will be called with the argument',E13.6,/
     1    ' This should not underflow'//)
 1053 FORMAT(' DAW will be called with the argument',E13.6,/
     1    ' This may underflow'//)
 1062 FORMAT(' DAW returned the value',E13.6///)
 1100 FORMAT(' This concludes the tests')
C---------- Last line of DAW test program ---------- 
      END
      SUBROUTINE MACHAR(IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,
     1                   MAXEXP,EPS,EPSNEG,XMIN,XMAX)
C----------------------------------------------------------------------
C  This Fortran 77 subroutine is intended to determine the parameters
C   of the floating-point arithmetic system specified below.  The
C   determination of the first three uses an extension of an algorithm
C   due to M. Malcolm, CACM 15 (1972), pp. 949-951, incorporating some,
C   but not all, of the improvements suggested by M. Gentleman and S.
C   Marovich, CACM 17 (1974), pp. 276-277.  An earlier version of this
C   program was published in the book Software Manual for the
C   Elementary Functions by W. J. Cody and W. Waite, Prentice-Hall,
C   Englewood Cliffs, NJ, 1980.
C
C  The program as given here must be modified before compiling.  If
C   a single (double) precision version is desired, change all
C   occurrences of CS (CD) in columns 1 and 2 to blanks.
C
C  Parameter values reported are as follows:
C
C       IBETA   - the radix for the floating-point representation
C       IT      - the number of base IBETA digits in the floating-point
C                 significand
C       IRND    - 0 if floating-point addition chops
C                 1 if floating-point addition rounds, but not in the
C                   IEEE style
C                 2 if floating-point addition rounds in the IEEE style
C                 3 if floating-point addition chops, and there is
C                   partial underflow
C                 4 if floating-point addition rounds, but not in the
C                   IEEE style, and there is partial underflow
C                 5 if floating-point addition rounds in the IEEE style,
C                   and there is partial underflow
C       NGRD    - the number of guard digits for multiplication with
C                 truncating arithmetic.  It is
C                 0 if floating-point arithmetic rounds, or if it
C                   truncates and only  IT  base  IBETA digits
C                   participate in the post-normalization shift of the
C                   floating-point significand in multiplication;
C                 1 if floating-point arithmetic truncates and more
C                   than  IT  base  IBETA  digits participate in the
C                   post-normalization shift of the floating-point
C                   significand in multiplication.
C       MACHEP  - the largest negative integer such that
C                 1.0+FLOAT(IBETA)**MACHEP .NE. 1.0, except that
C                 MACHEP is bounded below by  -(IT+3)
C       NEGEPS  - the largest negative integer such that
C                 1.0-FLOAT(IBETA)**NEGEPS .NE. 1.0, except that
C                 NEGEPS is bounded below by  -(IT+3)
C       IEXP    - the number of bits (decimal places if IBETA = 10)
C                 reserved for the representation of the exponent
C                 (including the bias or sign) of a floating-point
C                 number
C       MINEXP  - the largest in magnitude negative integer such that
C                 FLOAT(IBETA)**MINEXP is positive and normalized
C       MAXEXP  - the smallest positive power of  BETA  that overflows
C       EPS     - FLOAT(IBETA)**MACHEP.
C       EPSNEG  - FLOAT(IBETA)**NEGEPS.
C       XMIN    - the smallest non-vanishing normalized floating-point
C                 power of the radix, i.e.,  XMIN = FLOAT(IBETA)**MINEXP
C       XMAX    - the largest finite floating-point number.  In
C                 particular  XMAX = (1.0-EPSNEG)*FLOAT(IBETA)**MAXEXP
C                 Note - on some machines  XMAX  will be only the
C                 second, or perhaps third, largest number, being
C                 too small by 1 or 2 units in the last digit of
C                 the significand.
C
C  Latest modification: May 30, 1989
C
C  Author: W. J. Cody
C          Mathematics and Computer Science Division
C          Argonne National Laboratory
C          Argonne, IL 60439
C
C----------------------------------------------------------------------
      INTEGER I,IBETA,IEXP,IRND,IT,ITEMP,IZ,J,K,MACHEP,MAXEXP,
     1        MINEXP,MX,NEGEP,NGRD,NXRES
CS    REAL
CD    DOUBLE PRECISION
     1   A,B,BETA,BETAIN,BETAH,CONV,EPS,EPSNEG,ONE,T,TEMP,TEMPA,
     2   TEMP1,TWO,XMAX,XMIN,Y,Z,ZERO
C----------------------------------------------------------------------
CS    CONV(I) = REAL(I)
CD    CONV(I) = DBLE(I)
      ONE = CONV(1)
      TWO = ONE + ONE
      ZERO = ONE - ONE
C----------------------------------------------------------------------
C  Determine IBETA, BETA ala Malcolm.
C----------------------------------------------------------------------
      A = ONE
   10 A = A + A
         TEMP = A+ONE
         TEMP1 = TEMP-A
         IF (TEMP1-ONE .EQ. ZERO) GO TO 10
      B = ONE
   20 B = B + B
         TEMP = A+B
         ITEMP = INT(TEMP-A)
         IF (ITEMP .EQ. 0) GO TO 20
      IBETA = ITEMP
      BETA = CONV(IBETA)
C----------------------------------------------------------------------
C  Determine IT, IRND.
C----------------------------------------------------------------------
      IT = 0
      B = ONE
  100 IT = IT + 1
         B = B * BETA
         TEMP = B+ONE
         TEMP1 = TEMP-B
         IF (TEMP1-ONE .EQ. ZERO) GO TO 100
      IRND = 0
      BETAH = BETA / TWO
      TEMP = A+BETAH
      IF (TEMP-A .NE. ZERO) IRND = 1
      TEMPA = A + BETA
      TEMP = TEMPA+BETAH
      IF ((IRND .EQ. 0) .AND. (TEMP-TEMPA .NE. ZERO)) IRND = 2
C----------------------------------------------------------------------
C  Determine NEGEP, EPSNEG.
C----------------------------------------------------------------------
      NEGEP = IT + 3
      BETAIN = ONE / BETA
      A = ONE
      DO 200 I = 1, NEGEP
         A = A * BETAIN
  200 CONTINUE
      B = A
  210 TEMP = ONE-A
         IF (TEMP-ONE .NE. ZERO) GO TO 220
         A = A * BETA
         NEGEP = NEGEP - 1
      GO TO 210
  220 NEGEP = -NEGEP
      EPSNEG = A
C----------------------------------------------------------------------
C  Determine MACHEP, EPS.
C----------------------------------------------------------------------
      MACHEP = -IT - 3
      A = B
  300 TEMP = ONE+A
         IF (TEMP-ONE .NE. ZERO) GO TO 320
         A = A * BETA
         MACHEP = MACHEP + 1
      GO TO 300
  320 EPS = A
C----------------------------------------------------------------------
C  Determine NGRD.
C----------------------------------------------------------------------
      NGRD = 0
      TEMP = ONE+EPS
      IF ((IRND .EQ. 0) .AND. (TEMP*ONE-ONE .NE. ZERO)) NGRD = 1
C----------------------------------------------------------------------
C  Determine IEXP, MINEXP, XMIN.
C
C  Loop to determine largest I and K = 2**I such that
C         (1/BETA) ** (2**(I))
C  does not underflow.
C  Exit from loop is signaled by an underflow.
C----------------------------------------------------------------------
      I = 0
      K = 1
      Z = BETAIN
      T = ONE + EPS
      NXRES = 0
  400 Y = Z
         Z = Y * Y
C----------------------------------------------------------------------
C  Check for underflow here.
C----------------------------------------------------------------------
         A = Z * ONE
         TEMP = Z * T
         IF ((A+A .EQ. ZERO) .OR. (ABS(Z) .GE. Y)) GO TO 410
         TEMP1 = TEMP * BETAIN
         IF (TEMP1*BETA .EQ. Z) GO TO 410
         I = I + 1
         K = K + K
      GO TO 400
  410 IF (IBETA .EQ. 10) GO TO 420
      IEXP = I + 1
      MX = K + K
      GO TO 450
C----------------------------------------------------------------------
C  This segment is for decimal machines only.
C----------------------------------------------------------------------
  420 IEXP = 2
      IZ = IBETA
  430 IF (K .LT. IZ) GO TO 440
         IZ = IZ * IBETA
         IEXP = IEXP + 1
      GO TO 430
  440 MX = IZ + IZ - 1
C----------------------------------------------------------------------
C  Loop to determine MINEXP, XMIN.
C  Exit from loop is signaled by an underflow.
C----------------------------------------------------------------------
  450 XMIN = Y
         Y = Y * BETAIN
C----------------------------------------------------------------------
C  Check for underflow here.
C----------------------------------------------------------------------
         A = Y * ONE
         TEMP = Y * T
         IF (((A+A) .EQ. ZERO) .OR. (ABS(Y) .GE. XMIN)) GO TO 460
         K = K + 1
         TEMP1 = TEMP * BETAIN
         IF ((TEMP1*BETA .NE. Y) .OR. (TEMP .EQ. Y)) THEN
               GO TO 450
            ELSE
               NXRES = 3
               XMIN = Y
         END IF
  460 MINEXP = -K
C----------------------------------------------------------------------
C  Determine MAXEXP, XMAX.
C----------------------------------------------------------------------
      IF ((MX .GT. K+K-3) .OR. (IBETA .EQ. 10)) GO TO 500
      MX = MX + MX
      IEXP = IEXP + 1
  500 MAXEXP = MX + MINEXP
C----------------------------------------------------------------------
C  Adjust IRND to reflect partial underflow.
C----------------------------------------------------------------------
      IRND = IRND + NXRES
C----------------------------------------------------------------------
C  Adjust for IEEE-style machines.
C----------------------------------------------------------------------
      IF (IRND .GE. 2) MAXEXP = MAXEXP - 2
C----------------------------------------------------------------------
C  Adjust for machines with implicit leading bit in binary
C  significand, and machines with radix point at extreme
C  right of significand.
C----------------------------------------------------------------------
      I = MAXEXP + MINEXP
      IF ((IBETA .EQ. 2) .AND. (I .EQ. 0)) MAXEXP = MAXEXP - 1
      IF (I .GT. 20) MAXEXP = MAXEXP - 1
      IF (A .NE. Y) MAXEXP = MAXEXP - 2
      XMAX = ONE - EPSNEG
      IF (XMAX*ONE .NE. XMAX) XMAX = ONE - BETA * EPSNEG
      XMAX = XMAX / (BETA * BETA * BETA * XMIN)
      I = MAXEXP + MINEXP + 3
      IF (I .LE. 0) GO TO 520
      DO 510 J = 1, I
          IF (IBETA .EQ. 2) XMAX = XMAX + XMAX
          IF (IBETA .NE. 2) XMAX = XMAX * BETA
  510 CONTINUE
  520 RETURN
C---------- Last line of MACHAR ----------
      END
      FUNCTION REN(K)
C---------------------------------------------------------------------
C  Random number generator - based on Algorithm 266 by Pike and
C   Hill (modified by Hansson), Communications of the ACM,
C   Vol. 8, No. 10, October 1965.
C
C  This subprogram is intended for use on computers with
C   fixed point wordlength of at least 29 bits.  It is
C   best if the floating-point significand has at most
C   29 bits.
C
C  Latest modification: May 30, 1989
C
C  Author: W. J. Cody
C          Mathematics and Computer Science Division
C          Argonne National Laboratory
C          Argonne, IL 60439
C
C---------------------------------------------------------------------
      INTEGER IY,J,K
CS    REAL             CONV,C1,C2,C3,ONE,REN
CD    DOUBLE PRECISION CONV,C1,C2,C3,ONE,REN
      DATA IY/100001/
CS    DATA ONE,C1,C2,C3/1.0E0,2796203.0E0,1.0E-6,1.0E-12/
CD    DATA ONE,C1,C2,C3/1.0D0,2796203.0D0,1.0D-6,1.0D-12/
C---------------------------------------------------------------------
C  Statement functions for conversion between integer and float
C---------------------------------------------------------------------
CS    CONV(J) = REAL(J)
CD    CONV(J) = DBLE(J)
C---------------------------------------------------------------------
      J = K
      IY = IY * 125
      IY = IY - (IY/2796203) * 2796203
      REN = CONV(IY) / C1 * (ONE + C2 + C3)
      RETURN
C---------- Last card of REN ----------
      END