PROGRAM TCSPBL C C ================================================================== C ================================================================== C ==== TCSPBL -- CERTIFY COMPLEX SPARSE BLAS ==== C ================================================================== C ================================================================== C C TCSPBL IS THE CERTIFICATION PROGRAM FOR THE COMPLEX SPARSE BLAS. C THE APPROACH USED TO CERTIFY THE SPARSE BLAS IS AS FOLLOWS: C C 1. READ IN USER SPECIFIED INPUT ON OUTPUT UNIT, THRESHOLD VALUE C FOR TEST RATIO, AND THE SPECIFICATIONS FOR NZ, AND A. C 2. VERIFY THE CORRECTNESS OF THE USER SPECIFIED INPUT AND C ECHO TO THE OUTPUT UNIT. C 3. FOR EACH SUBPROGRAM IN THE COMPLEX SPARSE BLAS C PERFORM ALL THE USER SPECIFIED TESTS AND PRINT A PASS/FAIL C MESSAGE. TESTS WHICH FAIL GENERATE ADDITIONAL OUTPUT. C C SPARSE BLAS SUBPROGRAMS WHICH ARE CERTIFIED BY THIS PROGRAM ARE C C CAXPYI CDOTUI CGTHRZ C CDOTCI CGTHR CSCTR C C THIS PROGRAM REQUIRES AN INPUT FILE ASSIGNED TO UNIT NIN C (CURRENTLY SET TO 5 BY A PARAMETER STATEMENT). THE DATA ON C THIS INPUT FILE CONTROLS THE OUTPUT UNIT, THE THRESHOLD VALUE C FOR THE NUMERICAL TESTING, AND THE SPECIFICATIONS FOR THE C TEST VALUES FOR THE LENGTH OF THE SPARSE VECTORS AND THE SCALARS C USED BY THE VARIOUS SUBPROGRAMS. AN EXAMPLE OF THE INPUT FILE C FOLLOWS C C LINE 1 'CBLATS.SUMM' NAME OF OUTPUT FILE C LINE 2 6 UNIT NUMBER OF OUTPUT FILE C LINE 3 100 MAX. NO. OF PRINTED ERROR MESSAGES C LINE 4 5.0 THRESHOLD VALUE OF TEST RATIO C LINE 5 16 NUMBER OF VALUES OF NZ C LINE 6 -1 0 1 2 5 9 31 32 33 63 64 65 127 128 129 257 C VALUES OF NZ C LINE 7 3 NUMBER OF VALUES OF A FOR -AXPYI C LINE 8 (0.0,0.0) (1.0,0.0) (0.7,0.3) C VALUES OF A C C C THIS INPUT FILE IS READ USING FORTRAN-77 STANDARD LIST DIRECTED C INPUT. SINGLE QUOTES ARE REQUIRED AROUND THE NAME OF THE OUTPUT C FILE ON LINE 1. THE NUMBERS ON LINES 6 AND 8 CAN BE C DELIMITED BY BLANKS OR COMMAS. C C THIS PROGRAM WAS WRITTEN BY ROGER G. GRIMES, BOEING C COMPUTER SERVICES, BELLEVUE, WA. DURING APRIL, 1987. C C ================================================================== C C ------------------------------------ C ... PROBLEM SPECIFICATION PARAMETERS C ------------------------------------ C C NIN INPUT UNIT C NZMAX MAXIMUM VALUE OF ANY SINGLE NZ C NNZMAX MAXIMUM NUMBER OF VALUES OF NZ C NAMAX MAXIMUM NUMBER OF VALUES OF A (-AXPYI C SCALAR) C INTEGER NIN, NZMAX, NNZMAX, NAMAX C PARAMETER ( NIN = 5, NZMAX = 320, 1 NNZMAX = 24, NAMAX = 7 ) C C ================================================================== C C ----------------------- C ... COMPUTED PARAMETERS C ----------------------- C INTEGER NZMAX2 C PARAMETER ( NZMAX2 = 2 * NZMAX ) C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C CHARACTER*32 NAMOUT C INTEGER ERRCNT, ERRMAX, I, NOUT, NUMA, 1 NUMNZ C INTEGER INDX (NZMAX2), INDXT (NZMAX2), 1 LIST (NZMAX2), NZVALU(NNZMAX) C REAL EPSILN, EPSSAV, THRESH C COMPLEX X (NZMAX2), Y (NZMAX2), 1 XTRUE (NZMAX2), YTRUE (NZMAX2), 2 XSAVE (NZMAX2), YSAVE (NZMAX2), 3 AVALUE(NAMAX) C C -------------------- C ... SUBPROGRAMS USED C -------------------- C REAL SDIFF C EXTERNAL TCXPYI, TCDTCI, TCDTUI, TCGTHR, TCGTHZ, 1 TCSCTR, SDIFF C C ================================================================== C ERRCNT = 0 C C ------------------------------------------------ C ... READ IN USER SPECIFIED INPUT FOR OUTPUT UNIT C ------------------------------------------------ C READ ( NIN, * ) NAMOUT READ ( NIN, * ) NOUT C C -------------------- C ... OPEN OUTPUT UNIT C -------------------- C OPEN ( UNIT = NOUT, FILE = NAMOUT, STATUS = 'NEW' ) C C ------------------------------ C ... READ IN REMAINDER OF INPUT C ------------------------------ C READ ( NIN, * ) ERRMAX READ ( NIN, * ) THRESH READ ( NIN, * ) NUMNZ C IF ( NUMNZ .GT. NNZMAX ) THEN ERRCNT = 1 WRITE ( NOUT, 1100 ) NUMNZ, NNZMAX GO TO 900 END IF C READ ( NIN, * ) ( NZVALU(I), I = 1, NUMNZ ) C READ ( NIN, * ) NUMA C IF ( NUMA .GT. NAMAX ) THEN ERRCNT = 1 WRITE ( NOUT, 1110 ) NUMA, NAMAX GO TO 900 END IF C READ ( NIN, * ) ( AVALUE(I), I = 1, NUMA ) C C ------------------------------ C ... PRINT USER SPECIFIED INPUT C ------------------------------ C WRITE ( NOUT, 1000 ) NAMOUT, NOUT, ERRMAX, THRESH WRITE ( NOUT, 1010 ) NUMNZ WRITE ( NOUT, 1020 ) ( NZVALU(I), I = 1, NUMNZ ) WRITE ( NOUT, 1030 ) NUMA WRITE ( NOUT, 1040 ) ( AVALUE(I), I = 1, NUMA ) C C ------------------------------- C ... VERIFY USER SPECIFIED INPUT C ------------------------------- C IF ( THRESH .LE. 0.0E0 ) THEN WRITE ( NOUT, 1130 ) THRESH THRESH = 10.0E0 END IF C IF ( NUMNZ .LE. 0 ) THEN WRITE ( NOUT, 1140 ) NUMNZ ERRCNT = 1 END IF C DO 100 I = 1, NUMNZ IF ( NZVALU(I) .GT. NZMAX ) THEN WRITE ( NOUT, 1150 ) I, NZVALU(I), NZMAX NZVALU(I) = NZMAX END IF 100 CONTINUE C IF ( ERRCNT .NE. 0 ) GO TO 900 C C --------------------------- C ... COMPUTE MACHINE EPSILON C --------------------------- C EPSILN = 1.0E0 EPSSAV = 1.0E0 C 200 IF ( SDIFF ( 1.0E0 + EPSILN, 1.0E0 ) .EQ. 0.0E0 ) GO TO 210 C EPSSAV = EPSILN EPSILN = EPSILN * .5E0 GO TO 200 C 210 EPSILN = EPSSAV C C ================================================================== C C -------------------------------- C ... TEST THE COMPLEX SPARSE BLAS C -------------------------------- C C ------------------ C ... CERTIFY CAXPYI C ------------------ C CALL TCXPYI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMA, AVALUE , 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, LIST, ERRCNT, ERRMAX ) C C ------------------ C ... CERTIFY CDOTCI C ------------------ C CALL TCDTCI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, ERRCNT, ERRMAX ) C C ------------------ C ... CERTIFY CDOTUI C ------------------ C CALL TCDTUI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY CGTHR C ----------------- C CALL TCGTHR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ------------------ C ... CERTIFY CGTHRZ C ------------------ C CALL TCGTHZ ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY CSCTR C ----------------- C CALL TCSCTR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C C ------------------------------------- C ... PRINT GLOBAL PASS OR FAIL MESSAGE C ------------------------------------- C 900 IF ( ERRCNT .EQ. 0 ) THEN WRITE ( NOUT, 2000 ) ELSE WRITE ( NOUT, 2100 ) ERRCNT END IF C C -------------------------------------------------------- C ... END OF CERTIFICATION PROGRAM FOR COMPLEX SPARSE BLAS C -------------------------------------------------------- C STOP C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT( '1' /// 1 5X, 'START OF CERTIFICATION PROGRAM FOR THE COMPLEX ', 2 'SPARSE BLAS' 3 /5X, '-----------------------------------------------', 4 '-----------' 5 //5X, 'NAME OF OUTPUT UNIT = ', A 6 /5X, 'NUMBER OF OUTPUT UNIT = ', I10 7 /5X, 'MAX. NO. OF PRINTED ERROR MESSAGES = ', I10 8 /5X, 'THRESHOLD VALUE OF TEST RATIO = ', F10.1 ) C 1010 FORMAT ( /5X, 'NUMBER OF VALUES OF NZ = ', I10 ) C 1020 FORMAT ( /5X, 'VALUES OF NZ = ', 10I5 ) C 1030 FORMAT ( /5X, 'NUMBER OF VALUES OF A = ', I10 ) C 1040 FORMAT ( /5X, 'VALUES OF A = ', 1 3 ( 2X, '(', 1PE13.4, ',', 1PE13.4, ')' ) ) C 1100 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF TEST CASES FOR THE ', 1 'NUMBER OF NONZEROES EXCEEDS PROGRAM LIMIT.' 2 /5X, 'NUMBER SPECIFIED = ', I10, 2X, 'PROGRAM LIMIT =', 3 I10 ) C 1110 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF TEST CASES FOR THE ', 1 'SCALAR A EXCEEDS PROGRAM LIMIT.' 2 /5X, 'NUMBER SPECIFIED = ', I10, 2X, 'PROGRAM LIMIT =', 3 I10 ) C 1130 FORMAT ( /5X, 'USER SPECIFIED VALUE FOR THRESHOLD IS ', 1PE15.5, 1 ' WHICH IS NONPOSITIVE. IT HAS BEEN RESET TO 10.') C 1140 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF VALUES OF NZ IS ', I5, 1 ' WHICH IS NONPOSITIVE. NO TESTING WILL OCCUR.' ) C 1150 FORMAT ( /5X, 'THE ', I3, '-TH USER SPECIFIED VALUE OF NZ IS ', 1 I8, ' IS LARGER THAN THE MAXIMUM ALLOWABLE ', 2 'VALUE OF NZ. IT HAS BEEN RESET TO ', I5 ) C 2000 FORMAT ( /5X, 'COMPLEX SPARSE BLAS HAVE PASSED ALL TESTS.' ) C 2100 FORMAT ( /5X, 'COMPLEX SPARSE BLAS HAVE FAILED ', I10, 1 ' TESTS. SEE ABOVE PRINTED ERROR MESSAGES.' ) C C ================================================================== C END SUBROUTINE TCXPYI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMA, AVALUE, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, LIST, ERRCNT, 4 ERRMAX ) C C ================================================================== C ================================================================== C ==== TCXPYI -- CERTIFY CAXPYI ==== C ================================================================== C ================================================================== C C SUBROUTINE TCXPYI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CAXPYI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, NUMA, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*), 1 LIST (*) C REAL EPSILN, THRESH C COMPLEX AVALUE (*), 1 X (*), XSAVE (*), XTRUE (*), 2 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C COMPLEX A, ATRUE, CLOBBR C INTEGER COUNT, I, ICLOBR, J, KA, 1 KINDX, KNZ, N, NZ, NZTRUE C REAL ERR, S, T C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C EXTERNAL ICOPY, CCOPY, IINIT, CINIT, GNINDX, 1 IVSAME, CVSAME, CAXPYI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 700 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ----------------------- C ... FOR EACH VALUE OF A C ----------------------- C DO 600 KA = 1, NUMA C ATRUE = AVALUE(KA) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C CALL IINIT ( N, -1, LIST, 1 ) C DO 150 I = 1, NZTRUE LIST (INDXT(I)) = I 150 CONTINUE C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL CCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL CINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C A = ATRUE NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE YTRUE (INDXT(I)) = YTRUE (INDXT(I)) + 1 ATRUE * XTRUE(I) 300 CONTINUE C C --------------- C ... CALL CAXPYI C --------------- C CALL CAXPYI ( NZ, A, X, INDX, Y ) C C ----------------------------------------- C ... TEST ARGUMENTS OF CAXPYI THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, ATRUE, KINDX, 1 NZ END IF END IF C IF ( A .NE. ATRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, ATRUE, KINDX, 1 A END IF END IF C IF ( .NOT. CVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, ATRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, ATRUE, KINDX END IF END IF C C --------------------------- C ... TEST OUTPUT FROM CAXPYI C --------------------------- C DO 400 J = 1, N IF ( LIST(J) .EQ. -1 ) THEN IF ( Y(J) .NE. YTRUE(J) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, ATRUE, 1 KINDX, J, 2 Y(J), YTRUE(J) END IF END IF C ELSE C S = ABS ( Y(J) - YTRUE(J) ) T = ABS ( ATRUE) * ABS ( XTRUE (LIST(J))) + 1 ABS ( YTRUE(J)) ERR = S / ( EPSILN * T ) IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1500 ) NZTRUE, ATRUE, 1 KINDX, J, Y(J), 2 YTRUE(J), ERR END IF END IF C END IF C 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C 700 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCXPYI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CAXPYI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 3 /5X, 'ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CAXPYI ALTERED A FOR TEST WITH NZ = ', I5, 1 ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 3 /5X, 'ALTERED VALUE OF A = (', 1PE15.5, ',', 4 1PE15.5, ')' ) C 1200 FORMAT ( 5X, 'CAXPYI ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'CAXPYI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 ) C 1400 FORMAT ( 5X, 'CAXPYI OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 3 /5X, 'INCORRECT COMPONENT NO. ', I5, ' HAS VALUE = (', 4 1PE15.5, ',', 1PE15.5, 5 ') TRUE VALUE = (', 1PE15.5, ',', 1PE15.5, ')' ) C 1500 FORMAT ( 5X, 'CAXPYI OUTPUT ARRAY Y IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' A = (', 1PE15.5, ',', 1PE15.5, 2 ') AND THE INDX TYPE NO. ', I5 3 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = (', 4 1PE15.5, ',', 1PE15.5, ') TRUE VALUE = (', 5 1PE15.5, ',', 1PE15.5, ')' 6 /5X, 'ERROR = ', 1PE12.1 ) C 2700 FORMAT ( /5X, 'CAXPYI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CAXPYI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TCDTCI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TCDTCI -- CERTIFY CDOTCI ==== C ================================================================== C ================================================================== C C SUBROUTINE TCDTCI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CDOTCI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL EPSILN, THRESH C COMPLEX X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL ERR, S, T C COMPLEX CLOBBR, V, W C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C COMPLEX CDOTCI C EXTERNAL ICOPY, CCOPY, CINIT, GNINDX, 1 IVSAME, CVSAME, CDOTCI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL CCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL CINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C V = ( 0.0E0, 0.0E0 ) C DO 300 I = 1, NZTRUE V = V + CONJG ( XTRUE(I) ) * YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL CDOTCI C -------------- C W = CDOTCI ( NZ, X, INDX, Y ) C C ----------------------------------------- C ... TEST ARGUMENTS OF CDOTCI THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. CVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. CVSAME ( N, Y, YTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM CDOTCI C -------------------------- C S = ABS ( V - W ) C T = 0.0E0 DO 400 I = 1, NZTRUE T = T + ABS ( XTRUE(I) * YTRUE (INDXT(I)) ) 400 CONTINUE C IF ( T .EQ. 0.0E0 ) T = 1.0E0 C ERR = S / ( EPSILN * T ) C IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, KINDX, 1 W, V, ERR END IF END IF C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCDTCI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CDOTCI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CDOTCI ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'CDOTCI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'CDOTCI ALTERED ARRAY Y FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1400 FORMAT ( 5X, 'CDOTCI OUTPUT W IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'CDOTCI HAS VALUE = (', 1PE15.5, ',', 1PE15.5, 3 ') TRUE VALUE = (', 1PE15.5, ',', 1PE15.5, 4 ') ERROR = ', 1PE12.1 ) C 2700 FORMAT ( /5X, 'CDOTCI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CDOTCI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TCDTUI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TCDTUI -- CERTIFY CDOTUI ==== C ================================================================== C ================================================================== C C SUBROUTINE TCDTUI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CDOTUI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL EPSILN, THRESH C COMPLEX X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL ERR, S, T C COMPLEX CLOBBR, V, W C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C COMPLEX CDOTUI C EXTERNAL ICOPY, CCOPY, CINIT, GNINDX, 1 IVSAME, CVSAME, CDOTUI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL CCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL CINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C V = ( 0.0E0, 0.0E0 ) C DO 300 I = 1, NZTRUE V = V + XTRUE(I) * YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL CDOTUI C -------------- C W = CDOTUI ( NZ, X, INDX, Y ) C C ----------------------------------------- C ... TEST ARGUMENTS OF CDOTUI THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. CVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. CVSAME ( N, Y, YTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM CDOTUI C -------------------------- C S = ABS ( V - W ) C T = 0.0E0 DO 400 I = 1, NZTRUE T = T + ABS ( XTRUE(I) * YTRUE (INDXT(I)) ) 400 CONTINUE C IF ( T .EQ. 0.0E0 ) T = 1.0E0 C ERR = S / ( EPSILN * T ) C IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, KINDX, 1 W, V, ERR END IF END IF C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCDTUI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CDOTUI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CDOTUI ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'CDOTUI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'CDOTUI ALTERED ARRAY Y FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1400 FORMAT ( 5X, 'CDOTUI OUTPUT W IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'CDOTUI HAS VALUE = (', 1PE15.5, ',', 1PE15.5, 3 ') TRUE VALUE = (', 1PE15.5, ',', 1PE15.5, 4 ') ERROR = ', 1PE12.1 ) C 2700 FORMAT ( /5X, 'CDOTUI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CDOTUI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TCGTHR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TCGTHR -- CERTIFY CGTHR ==== C ================================================================== C ================================================================== C C SUBROUTINE TCGTHR IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CGTHR. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C COMPLEX X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, KINDX, 1 KNZ, N, NZ, NZTRUE C COMPLEX CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C EXTERNAL ICOPY, CCOPY, CINIT, GNINDX, 1 IVSAME, CVSAME, CGTHR C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C CALL CINIT ( N, CLOBBR, XTRUE, 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE XTRUE (I) = YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL CGTHR C -------------- C CALL CGTHR ( NZ, Y, X, INDX ) C C ---------------------------------------- C ... TEST ARGUMENTS OF CGTHR THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. CVSAME ( N, Y, YTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM CGTHR C -------------------------- C DO 400 I = 1, N IF ( X(I) .NE. XTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 X(I), XTRUE(I) END IF END IF 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCGTHR C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CGTHR ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CGTHR ALTERED ARRAY Y FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'CGTHR ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'CGTHR OUTPUT ARRAY X IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = (', 3 1PE15.5, ',', 1PE15.5, ') TRUE VALUE = (', 4 1PE15.5, ',', 1PE15.5, ')' ) C 2700 FORMAT ( /5X, 'CGTHR PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CGTHR FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TCGTHZ ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TCGTHZ -- CERTIFY CGTHRZ ==== C ================================================================== C ================================================================== C C SUBROUTINE TCGTHZ IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CGTHRZ. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C COMPLEX X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, KINDX, 1 KNZ, N, NZ, NZTRUE C COMPLEX CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C EXTERNAL ICOPY, CCOPY, CINIT, GNINDX, 1 IVSAME, CVSAME, CGTHRZ C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C CALL CINIT ( N, CLOBBR, XTRUE, 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE XTRUE (I) = YTRUE (INDXT(I)) YTRUE(INDXT(I)) = ( 0.0E0, 0.0E0 ) 300 CONTINUE C C --------------- C ... CALL CGTHRZ C --------------- C CALL CGTHRZ ( NZ, Y, X, INDX ) C C ----------------------------------------- C ... TEST ARGUMENTS OF CGTHRZ THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C C --------------------------- C ... TEST OUTPUT FROM CGTHRZ C --------------------------- C DO 400 I = 1, N C IF ( X(I) .NE. XTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX, I, 1 X(I), XTRUE(I) END IF END IF C IF ( Y(I) .NE. YTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 Y(I), YTRUE(I) END IF END IF C 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCGTHZ C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CGTHRZ ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CGTHRZ ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'CGTHRZ OUTPUT ARRAY X IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = (', 3 1PE15.5, ',', 1PE15.5, ') TRUE VALUE = (', 4 1PE15.5, ',', 1PE15.5, ')' ) C 1300 FORMAT ( 5X, 'CGTHRZ OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = (', 3 1PE15.5, ',', 1PE15.5, ') TRUE VALUE = (', 4 1PE15.5, ',', 1PE15.5, ')' ) C 2700 FORMAT ( /5X, 'CGTHRZ PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CGTHRZ FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TCSCTR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TCSCTR -- CERTIFY CSCTR ==== C ================================================================== C ================================================================== C C SUBROUTINE TCSCTR IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE CSCTR. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C COMPLEX X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KINDX, 1 KNZ, N, NZ, NZTRUE C COMPLEX CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, CVSAME C EXTERNAL ICOPY, CCOPY, CINIT, GNINDX, 1 IVSAME, CVSAME, CSCTR C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = ( -1.0E10, -1.0E10 ) ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = CMPLX ( COS ( .6*FLOAT(I) ), SIN ( .2*FLOAT(I) ) ) YSAVE(I) = CMPLX ( SIN ( .7*FLOAT(I) ), COS ( .9*FLOAT(I) ) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL CCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL CINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL CINIT ( N, CLOBBR, YTRUE, 1 ) C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL CCOPY ( N, YTRUE, 1, Y, 1 ) CALL CCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE YTRUE (INDXT(I)) = XTRUE (I) 300 CONTINUE C C -------------- C ... CALL CSCTR C -------------- C CALL CSCTR ( NZ, X, INDX, Y ) C C ---------------------------------------- C ... TEST ARGUMENTS OF CSCTR THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. CVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM CSCTR C -------------------------- C DO 400 I = 1, N IF ( Y(I) .NE. YTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 Y(I), YTRUE(I) END IF END IF 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TCSCTR C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'CSCTR ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'CSCTR ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'CSCTR ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'CSCTR OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = (', 3 1PE15.5, ',', 1PE15.5, ') TRUE VALUE = (', 4 1PE15.5, ',', 1PE15.5, ')' ) C 2700 FORMAT ( /5X, 'CSCTR PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'CSCTR FAILED', I10, ' TESTS.' ) C C ================================================================== C END REAL FUNCTION SDIFF ( X, Y ) C C ================================================================== C C SDIFF IS USED BY THE MAIN PROGRAM TO COMPARE 1.0 + EPSILN WITH C 1.0. ITS SOLE USE IS TO FOOL AN OPTIMIZING COMPILER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C REAL X, Y C C ================================================================== C SDIFF = X - Y C C ================================================================== C RETURN END LOGICAL FUNCTION CVSAME ( N, CX, CY ) C C ================================================================== C C LOGICAL FUNCTION CVSAME DETERMINES IF THE VECTORS CX AND CY C AGREE EXACTLY WITH EACH OTHER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C INTEGER I, N C COMPLEX CX (*), CY (*) C C ================================================================== C CVSAME = .TRUE. C DO 10 I = 1, N IF ( CX(I) .NE. CY(I) ) THEN CVSAME = .FALSE. GO TO 20 ENDIF 10 CONTINUE C 20 RETURN END SUBROUTINE ICOPY ( N, X, INCX, Y, INCY ) C C ================================================================== C ================================================================== C ==== ICOPY -- COPY ONE INTEGER VECTOR TO ANOTHER ==== C ================================================================== C ================================================================== C C PURPOSE ... (VARIANT OF 'SCOPY') C COPY ONE INTEGER VECTOR TO ANOTHER. C STANDARD INCREMENT OF 1 SHOULD BE USED FOR FORWARD C COPY WITHIN SAME VECTOR. C C CREATED ... MAR. 12, 1985 C LAST MODIFIED ... APR. 19, 1985 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX, INCY C INTEGER X (*), Y (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, YADDR, I C C ================================================================== C IF ( INCX .EQ. 1 .AND. INCY .EQ. 1 ) THEN C C ----------------------------------- C ... UNIT INCREMENTS (STANDARD CASE) C ----------------------------------- C DO 100 I = 1, N Y (I) = X (I) 100 CONTINUE C ELSE C C ------------------------- C ... NON-UNIT INCREMENTS C (-1) USED FOR REVERSE C COPYING IN SAME ARRAY C ------------------------- C XADDR = 1 YADDR = 1 C IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C IF ( INCY .LT. 0 ) THEN YADDR = (-N+1)*INCY + 1 ENDIF C DO 200 I = 1, N Y (YADDR) = X (XADDR) XADDR = XADDR + INCX YADDR = YADDR + INCY 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE IINIT ( N, A, X, INCX ) C C ================================================================== C ================================================================== C ==== IINIT -- INITIALIZE INTEGER VECTOR TO CONSTANT ==== C ================================================================== C ================================================================== C C PURPOSE ... INITIALIZES INTEGER VECTOR TO A CONSTANT VALUE 'A' C C CREATED ... MAR. 8, 1985 C LAST MODIFIED ... APR. 19, 1985 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX C INTEGER A, X (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, I C C ================================================================== C IF ( INCX .EQ. 1 ) THEN C C ---------------------------------- C ... UNIT INCREMENT (STANDARD CASE) C ---------------------------------- C DO 100 I = 1, N X(I) = A 100 CONTINUE C ELSE C C ---------------------- C ... NON-UNIT INCREMENT C ---------------------- C XADDR = 1 IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C DO 200 I = 1, N X (XADDR) = A XADDR = XADDR + INCX 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE GNINDX ( NZ, N, ICLOBR, KINDX, INDX ) C C ================================================================== C ================================================================== C ==== GNINDX -- GENERATE INDEX ARRAY PATTERNS ==== C ================================================================== C ================================================================== C C GNINDX GENERATES VARIOUS PATTERNS FOR THE ARRAY INDX BASED C ON THE KEY KINDX. THE GENERATED INDX ARRAY HAS NZ SIGNIFICANT C COMPONENTS. THE REMAINING N-NZ COMPONENTS ARE SET TO C ICLOBR. C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NZ, N, ICLOBR, KINDX, INDX (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER I, L C C -------------------- C ... SUBPROGRAMS USED C -------------------- C EXTERNAL IINIT C C ================================================================== C IF ( N .LE. 0 ) RETURN C L = MAX ( N, N-NZ ) CALL IINIT ( L, ICLOBR, INDX, 1 ) C IF ( NZ .LE. 0 ) RETURN C KINDX = MAX ( KINDX, 1 ) KINDX = MIN ( KINDX, 5 ) C C ------------------- C ... BRANCH ON KINDX C ------------------- C GO TO ( 100, 200, 300, 400, 500 ), KINDX C C ----------------------------------- C ... ASCENDING ORDER - 1, 2, ..., NZ C ----------------------------------- C 100 DO 110 I = 1, NZ INDX(I) = I 110 CONTINUE GO TO 900 C C ------------------------------------------ C ... ASCENDING ORDER - N-NZ+1, N-NZ, ..., N C ------------------------------------------ C 200 L = N - NZ DO 210 I = 1, NZ INDX(I) = L + I 210 CONTINUE GO TO 900 C C --------------------------------------- C ... DESCENDING ORDER - NZ, NZ-1, ..., 1 C --------------------------------------- C 300 L = NZ DO 310 I = 1, NZ INDX(I) = L L = L -1 310 CONTINUE GO TO 900 C C ------------------------------------------ C ... DESCENDING ORDER - N, N-1, ..., N-NZ+1 C ------------------------------------------ C 400 L = N DO 410 I = 1, NZ INDX(I) = L L = L - 1 410 CONTINUE GO TO 900 C C -------------------------------------------------------- C ... ALTERNATING ORDER WITH EVEN NUMBERS IN REVERSE ORDER C -------------------------------------------------------- C 500 DO 510 I = 1, NZ, 2 INDX(I) = I 510 CONTINUE C L = N DO 520 I = 2, NZ, 2 INDX(I) = L L = L - 2 520 CONTINUE GO TO 900 C C ================================================================== C 900 RETURN END LOGICAL FUNCTION IVSAME ( N, IX, IY ) C C ================================================================== C C LOGICAL FUNCTION IVSAME DETERMINES IF THE VECTORS IX AND IY C AGREE EXACTLY WITH EACH OTHER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C INTEGER I, N, IX (*), IY (*) C C ================================================================== C IVSAME = .TRUE. C IF ( N .LE. 0 ) RETURN C DO 10 I = 1, N IF ( IX(I) .NE. IY(I) ) THEN IVSAME = .FALSE. GO TO 20 ENDIF 10 CONTINUE C 20 RETURN C END SUBROUTINE CCOPY ( N, X, INCX, Y, INCY ) C C ================================================================== C ================================================================== C ==== CCOPY -- COPY ONE COMPLEX VECTOR TO ANOTHER ==== C ================================================================== C ================================================================== C C PURPOSE ... STANDARD BLAS C COPY ONE COMPLEX VECTOR TO ANOTHER. C STANDARD INCREMENT OF 1 SHOULD BE USED FOR FORWARD C COPY WITHIN SAME VECTOR. C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX, INCY C COMPLEX X (*), Y (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, YADDR, I C C ================================================================== C IF ( INCX .EQ. 1 .AND. INCY .EQ. 1 ) THEN C C ----------------------------------- C ... UNIT INCREMENTS (STANDARD CASE) C ----------------------------------- C DO 100 I = 1, N Y (I) = X (I) 100 CONTINUE C ELSE C C ------------------------- C ... NON-UNIT INCREMENTS C (-1) USED FOR REVERSE C COPYING IN SAME ARRAY C ------------------------- C XADDR = 1 YADDR = 1 C IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C IF ( INCY .LT. 0 ) THEN YADDR = (-N+1)*INCY + 1 ENDIF C DO 200 I = 1, N Y (YADDR) = X (XADDR) XADDR = XADDR + INCX YADDR = YADDR + INCY 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE CINIT ( N, A, X, INCX ) C C ================================================================== C ================================================================== C ==== CINIT -- INITIALIZE COMPLEX VECTOR TO CONSTANT ==== C ================================================================== C ================================================================== C C PURPOSE ... INITIALIZES COMPLEX VECTOR TO A CONSTANT VALUE 'A' C C CREATED ... APR. 14, 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX C COMPLEX A, X (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, I C C ================================================================== C IF ( INCX .EQ. 1 ) THEN C C ---------------------------------- C ... UNIT INCREMENT (STANDARD CASE) C ---------------------------------- C DO 100 I = 1, N X(I) = A 100 CONTINUE C ELSE C C ---------------------- C ... NON-UNIT INCREMENT C ---------------------- C XADDR = 1 IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C DO 200 I = 1, N X (XADDR) = A XADDR = XADDR + INCX 200 CONTINUE C ENDIF C RETURN C END