PROGRAM TSSPBL C C C ================================================================== C ================================================================== C ==== TSSPBL -- CERTIFY REAL SPARSE BLAS ==== C ================================================================== C ================================================================== C C TSSPBL IS THE CERTIFICATION PROGRAM FOR THE REAL SPARSE BLAS. C THE APPROACH USED TO CERTIFY THE SPARSE BLAS IS AS FOLLOWS: C C 1. READ IN USER SPECIFIED INPUT ON OUTPUT UNIT, THRESHOLD VALUE C FOR TEST RATIO, AND THE SPECIFICATIONS FOR NZ, A, C AND S. C 2. VERIFY THE CORRECTNESS OF THE USER SPECIFIED INPUT AND C ECHO TO THE OUTPUT UNIT. C 3. FOR EACH SUBPROGRAM IN THE REAL SPARSE BLAS C PERFORM ALL THE USER SPECIFIED TESTS AND PRINT A PASS/FAIL C MESSAGE. TESTS WHICH FAIL GENERATE ADDITIONAL OUTPUT. C C SPARSE BLAS SUBPROGRAMS WHICH ARE CERTIFIED BY THIS PROGRAM ARE C C SAXPYI SGTHR SROTI C SDOTI SGTHRZ SSCTR C C THIS PROGRAM REQUIRES AN INPUT FILE ASSIGNED TO UNIT NIN C (CURRENTLY SET TO 5 BY A PARAMETER STATEMENT). THE DATA ON C THIS INPUT FILE CONTROLS THE OUTPUT UNIT, THE THRESHOLD VALUE C FOR THE NUMERICAL TESTING, AND THE SPECIFICATIONS FOR THE C TEST VALUES FOR THE LENGTH OF THE SPARSE VECTORS AND THE SCALARS C USED BY THE VARIOUS SUBPROGRAMS. AN EXAMPLE OF THE INPUT FILE C FOLLOWS C C LINE 1 'SBLATS.SUMM' NAME OF OUTPUT FILE C LINE 2 6 UNIT NUMBER OF OUTPUT FILE C LINE 3 100 MAX. NO. OF PRINTED ERROR MESSAGES C LINE 4 5.0 THRESHOLD VALUE OF TEST RATIO C LINE 5 16 NUMBER OF VALUES OF NZ C LINE 6 -1 0 1 2 5 9 31 32 33 63 64 65 127 128 129 257 C VALUES OF NZ C LINE 7 3 NUMBER OF VALUES OF A FOR -AXPYI C LINE 8 0.0 1.0 0.7 VALUES OF A C LINE 9 4 NUMBER OF VALUES OF C,S FOR -ROTI C LINE 10 1. 0. -.6 .8 VALUES OF C C LINE 11 0. 1 .8 -.6 VALUES OF S C C C THIS INPUT FILE IS READ USING FORTRAN-77 STANDARD LIST DIRECTED C INPUT. SINGLE QUOTES ARE REQUIRED AROUND THE NAME OF THE OUTPUT C FILE ON LINE 1. THE NUMBERS ON LINES 6, 8, 10, AND 11 CAN BE C DELIMITED BY BLANKS OR COMMAS. C C THIS PROGRAM WAS WRITTEN BY ROGER G. GRIMES, BOEING C COMPUTER SERVICES, BELLEVUE, WA. DURING APRIL, 1987. C C ================================================================== C C ------------------------------------ C ... PROBLEM SPECIFICATION PARAMETERS C ------------------------------------ C C NIN INPUT UNIT C NZMAX MAXIMUM VALUE OF ANY SINGLE NZ C NNZMAX MAXIMUM NUMBER OF VALUES OF NZ C NAMAX MAXIMUM NUMBER OF VALUES OF A (-AXPYI C SCALAR) C NGMAX MAXIMUM NUMBER OF VALUES OF C AND S C (-ROTI SCALARS FOR GIVENS ROTATION) C C ================================================================== C INTEGER NIN, NZMAX, NNZMAX, NAMAX, NGMAX C PARAMETER ( NIN = 5, NZMAX = 320, 1 NNZMAX = 24, NAMAX = 7, NGMAX = 7 ) C C ----------------------- C ... COMPUTED PARAMETERS C ----------------------- C INTEGER NZMAX2 C PARAMETER ( NZMAX2 = 2 * NZMAX ) C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C CHARACTER*32 NAMOUT C INTEGER ERRCNT, ERRMAX, I, NOUT, NUMA, 1 NUMG, NUMNZ C INTEGER INDX (NZMAX2), INDXT (NZMAX2), 1 LIST (NZMAX2), NZVALU(NNZMAX) C REAL EPSILN, EPSSAV, THRESH C REAL X (NZMAX2), Y (NZMAX2), 1 XTRUE (NZMAX2), YTRUE (NZMAX2), 2 XSAVE (NZMAX2), YSAVE (NZMAX2), 3 AVALUE(NAMAX), CVALUE(NGMAX), 4 SVALUE(NGMAX) C C -------------------- C ... SUBPROGRAMS USED C -------------------- C REAL SDIFF C EXTERNAL TSXPYI, TSDOTI, TSGTHR, TSGTHZ, TSROTI, 1 TSSCTR, SDIFF C C ================================================================== C ERRCNT = 0 C C ------------------------------------------------ C ... READ IN USER SPECIFIED INPUT FOR OUTPUT UNIT C ------------------------------------------------ C READ ( NIN, * ) NAMOUT READ ( NIN, * ) NOUT C C -------------------- C ... OPEN OUTPUT UNIT C -------------------- C OPEN ( UNIT = NOUT, FILE = NAMOUT, STATUS = 'NEW' ) C C ------------------------------ C ... READ IN REMAINDER OF INPUT C ------------------------------ C READ ( NIN, * ) ERRMAX READ ( NIN, * ) THRESH READ ( NIN, * ) NUMNZ C IF ( NUMNZ .GT. NNZMAX ) THEN ERRCNT = 1 WRITE ( NOUT, 1100 ) NUMNZ, NNZMAX GO TO 900 END IF C READ ( NIN, * ) ( NZVALU(I), I = 1, NUMNZ ) C READ ( NIN, * ) NUMA C IF ( NUMA .GT. NAMAX ) THEN ERRCNT = 1 WRITE ( NOUT, 1110 ) NUMA, NAMAX GO TO 900 END IF C READ ( NIN, * ) ( AVALUE(I), I = 1, NUMA ) C READ ( NIN, * ) NUMG C IF ( NUMG .GT. NGMAX ) THEN ERRCNT = 1 WRITE ( NOUT, 1120 ) NUMG, NGMAX GO TO 900 END IF C READ ( NIN, * ) ( CVALUE(I), I = 1, NUMG ) READ ( NIN, * ) ( SVALUE(I), I = 1, NUMG ) C C ------------------------------ C ... PRINT USER SPECIFIED INPUT C ------------------------------ C WRITE ( NOUT, 1000 ) NAMOUT, NOUT, ERRMAX, THRESH WRITE ( NOUT, 1010 ) NUMNZ WRITE ( NOUT, 1020 ) ( NZVALU(I), I = 1, NUMNZ ) WRITE ( NOUT, 1030 ) NUMA WRITE ( NOUT, 1040 ) ( AVALUE(I), I = 1, NUMA ) WRITE ( NOUT, 1050 ) NUMG WRITE ( NOUT, 1060 ) ( CVALUE(I), I = 1, NUMG ) WRITE ( NOUT, 1070 ) ( SVALUE(I), I = 1, NUMG ) C C ------------------------------- C ... VERIFY USER SPECIFIED INPUT C ------------------------------- C IF ( THRESH .LE. 0.0E0 ) THEN WRITE ( NOUT, 1130 ) THRESH THRESH = 10.0E0 END IF C IF ( NUMNZ .LE. 0 ) THEN WRITE ( NOUT, 1140 ) NUMNZ ERRCNT = 1 END IF C DO 100 I = 1, NUMNZ IF ( NZVALU(I) .GT. NZMAX ) THEN WRITE ( NOUT, 1150 ) I, NZVALU(I), NZMAX NZVALU(I) = NZMAX END IF 100 CONTINUE C IF ( ERRCNT .NE. 0 ) GO TO 900 C C --------------------------- C ... COMPUTE MACHINE EPSILON C --------------------------- C EPSILN = 1.0E0 EPSSAV = 1.0E0 C 200 IF ( SDIFF ( 1.0E0 + EPSILN, 1.0E0 ) .EQ. 0.0E0 ) GO TO 210 C EPSSAV = EPSILN EPSILN = EPSILN * .5E0 GO TO 200 C 210 EPSILN = EPSSAV C C ================================================================== C C ----------------------------- C ... TEST THE REAL SPARSE BLAS C ----------------------------- C C ------------------ C ... CERTIFY SAXPYI C ------------------ C CALL TSXPYI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMA, AVALUE, 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, LIST, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY SDOTI C ----------------- C CALL TSDOTI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY SGTHR C ----------------- C CALL TSGTHR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ------------------ C ... CERTIFY SGTHRZ C ------------------ C CALL TSGTHZ ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY SROTI C ----------------- C CALL TSROTI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMG, CVALUE, SVALUE, 2 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 3 INDX, INDXT, LIST, ERRCNT, ERRMAX ) C C ----------------- C ... CERTIFY SSCTR C ----------------- C CALL TSSCTR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, YTRUE, 2 INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C C ------------------------------------- C ... PRINT GLOBAL PASS OR FAIL MESSAGE C ------------------------------------- C 900 IF ( ERRCNT .EQ. 0 ) THEN WRITE ( NOUT, 2000 ) ELSE WRITE ( NOUT, 2100 ) ERRCNT END IF C C ----------------------------------------- C ... END OF CERTIFICATION PROGRAM FOR REAL C SPARSE BLAS C ----------------------------------------- C STOP C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT( '1' /// 1 5X, 'START OF CERTIFICATION PROGRAM FOR THE REAL ', 2 'SPARSE BLAS' 3 /5X, '--------------------------------------------', 4 '-----------' 5 //5X, 'NAME OF OUTPUT UNIT = ', A 6 /5X, 'NUMBER OF OUTPUT UNIT = ', I10 7 /5X, 'MAX. NO. OF PRINTED ERROR MESSAGES = ', I10 8 /5X, 'THRESHOLD VALUE OF TEST RATIO = ', F10.1 ) C 1010 FORMAT ( /5X, 'NUMBER OF VALUES OF NZ = ', I10 ) C 1020 FORMAT ( /5X, 'VALUES OF NZ = ', 10I5 ) C 1030 FORMAT ( /5X, 'NUMBER OF VALUES OF A = ', I10 ) C 1040 FORMAT ( /5X, 'VALUES OF A = ', 1P, 5E13.4 ) C 1050 FORMAT ( /5X, 'NUMBER OF VALUES OF C AND S = ', I10 ) C 1060 FORMAT ( /5X, 'VALUES OF C = ', 1P, 5E13.4 ) C 1070 FORMAT ( /5X, 'VALUES OF S = ', 1P, 5E13.4 ) C 1100 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF TEST CASES FOR THE ', 1 'NUMBER OF NONZEROES EXCEEDS PROGRAM LIMIT.' 2 /5X, 'NUMBER SPECIFIED = ', I10, 2X, 'PROGRAM LIMIT =', 3 I10 ) C 1110 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF TEST CASES FOR THE ', 1 'SCALAR A EXCEEDS PROGRAM LIMIT.' 2 /5X, 'NUMBER SPECIFIED = ', I10, 2X, 'PROGRAM LIMIT =', 3 I10 ) C 1120 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF TEST CASES FOR THE ', 1 'SCALARS C AND S EXCEEDS PROGRAM LIMIT.' 2 /5X, 'NUMBER SPECIFIED = ', I10, 2X, 'PROGRAM LIMIT =', 3 I10 ) C 1130 FORMAT ( /5X, 'USER SPECIFIED VALUE FOR THRESHOLD IS ', 1PE15.5, 1 ' WHICH IS NONPOSITIVE. IT HAS BEEN RESET TO 10.') C 1140 FORMAT ( /5X, 'USER SPECIFIED NUMBER OF VALUES OF NZ IS ', I5, 1 ' WHICH IS NONPOSITIVE. NO TESTING WILL OCCUR.' ) C 1150 FORMAT ( /5X, 'THE ', I3, '-TH USER SPECIFIED VALUE OF NZ IS ', 1 I8, ' IS LARGER THAN THE MAXIMUM ALLOWABLE ', 2 'VALUE OF NZ. IT HAS BEEN RESET TO ', I5 ) C 2000 FORMAT ( /5X, 'REAL SPARSE BLAS HAVE PASSED ALL TESTS.' ) C 2100 FORMAT ( /5X, 'REAL SPARSE BLAS HAVE FAILED ', I10, 1 ' TESTS. SEE ABOVE PRINTED ERROR MESSAGES.' ) C C ================================================================== C END SUBROUTINE TSXPYI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMA, AVALUE, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, LIST, ERRCNT, 4 ERRMAX ) C C ================================================================== C ================================================================== C ==== TSXPYI -- CERTIFY SAXPYI ==== C ================================================================== C ================================================================== C C SUBROUTINE TSXPYI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SAXPYI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, NUMA, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*), 1 LIST (*) C REAL EPSILN, THRESH C REAL AVALUE (*), 1 X (*), XSAVE (*), XTRUE (*), 2 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C REAL A, ATRUE, CLOBBR C INTEGER COUNT, I, ICLOBR, J, KA, 1 KINDX, KNZ, N, NZ, NZTRUE C REAL ERR, S, T C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, SVSAME C EXTERNAL ICOPY, SCOPY, IINIT, SINIT, GNINDX, 1 IVSAME, SVSAME, SAXPYI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6*FLOAT(I) ) YSAVE(I) = SIN ( .7*FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 700 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ----------------------- C ... FOR EACH VALUE OF A C ----------------------- C DO 600 KA = 1, NUMA C ATRUE = AVALUE(KA) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C CALL IINIT ( N, -1, LIST, 1 ) C DO 150 I = 1, NZTRUE LIST (INDXT(I)) = I 150 CONTINUE C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL SCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL SINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL SINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C A = ATRUE NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE YTRUE (INDXT(I)) = YTRUE (INDXT(I)) + 1 ATRUE * XTRUE(I) 300 CONTINUE C C --------------- C ... CALL SAXPYI C --------------- C CALL SAXPYI ( NZ, A, X, INDX, Y ) C C ----------------------------------------- C ... TEST ARGUMENTS OF SAXPYI THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, ATRUE, KINDX, 1 NZ END IF END IF C IF ( A .NE. ATRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, ATRUE, KINDX, 1 A END IF END IF C IF ( .NOT. SVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, ATRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, ATRUE, KINDX END IF END IF C C --------------------------- C ... TEST OUTPUT FROM SAXPYI C --------------------------- C DO 400 J = 1, N IF ( LIST(J) .EQ. -1 ) THEN IF ( Y(J) .NE. YTRUE(J) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, ATRUE, 1 KINDX, J, 2 Y(J), YTRUE(J) END IF END IF C ELSE C S = ABS ( Y(J) - YTRUE(J) ) T = ABS ( ATRUE) * ABS ( XTRUE (LIST(J))) + 1 ABS ( YSAVE(J)) ERR = S / ( EPSILN * T ) IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1500 ) NZTRUE, ATRUE, 1 KINDX, J, Y(J), 2 YTRUE(J), ERR END IF END IF C END IF C 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C 700 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSXPYI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SAXPYI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5, 3 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SAXPYI ALTERED A FOR TEST WITH NZ = ', I5, 1 ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5, 3 '. ALTERED VALUE OF A =', 1PE15.5 ) C 1200 FORMAT ( 5X, 'SAXPYI ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'SAXPYI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5 ) C 1400 FORMAT ( 5X, 'SAXPYI OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INCORRECT COMPONENT NO. ', I5, ' HAS VALUE =', 4 1PE15.5, 5 ' TRUE VALUE =', 1PE15.5 ) C 1500 FORMAT ( 5X, 'SAXPYI OUTPUT ARRAY Y IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' A =', 1PE15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE =', 4 1PE15.5, ' TRUE VALUE =', 5 1PE15.5, ' ERROR = ', 1PE12.1 ) C 2700 FORMAT ( /5X, 'SAXPYI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SAXPYI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TSDOTI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TSDOTI -- CERTIFY SDOTI ==== C ================================================================== C ================================================================== C C SUBROUTINE TSDOTI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SDOTI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL EPSILN, THRESH C REAL X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL ERR, S, T C REAL CLOBBR, V, W C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, SVSAME C REAL SDOTI C EXTERNAL ICOPY, SCOPY, SINIT, GNINDX, 1 IVSAME, SVSAME, SDOTI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6*FLOAT(I) ) YSAVE(I) = SIN ( .7*FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL SCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL SINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL SINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C V = 0.0E0 C DO 300 I = 1, NZTRUE V = V + XTRUE(I) * YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL SDOTI C -------------- C W = SDOTI ( NZ, X, INDX, Y ) C C ---------------------------------------- C ... TEST ARGUMENTS OF SDOTI THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. SVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. SVSAME ( N, Y, YTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM SDOTI C -------------------------- C S = ABS ( V - W ) C T = 0.0E0 DO 400 I = 1, NZTRUE T = T + ABS ( XTRUE(I) * YTRUE (INDXT(I)) ) 400 CONTINUE C IF ( T .EQ. 0.0E0 ) T = 1.0E0 C ERR = S / ( EPSILN * T ) C IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, KINDX, 1 W, V, ERR END IF END IF C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSDOTI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SDOTI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SDOTI ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'SDOTI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'SDOTI ALTERED ARRAY Y FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1400 FORMAT ( 5X, 'SDOTI OUTPUT W IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'SDOTI HAS VALUE =', 1PE15.5, 3 ' TRUE VALUE =', 1PE15.5, 4 ' ERROR = ', 1PE12.1 ) C 2700 FORMAT ( /5X, 'SDOTI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SDOTI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TSGTHR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TSGTHR -- CERTIFY SGTHR ==== C ================================================================== C ================================================================== C C SUBROUTINE TSGTHR IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SGTHR. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, SVSAME C EXTERNAL ICOPY, SCOPY, SINIT, GNINDX, 1 IVSAME, SVSAME, SGTHR C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6*FLOAT(I) ) YSAVE(I) = SIN ( .7*FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C CALL SINIT ( N, CLOBBR, XTRUE, 1 ) CALL SINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE XTRUE (I) = YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL SGTHR C -------------- C CALL SGTHR ( NZ, Y, X, INDX ) C C ---------------------------------------- C ... TEST ARGUMENTS OF SGTHR THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. SVSAME ( N, Y, YTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM SGTHR C -------------------------- C DO 400 I = 1, N IF ( X(I) .NE. XTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 X(I), XTRUE(I) END IF END IF 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSGTHR C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SGTHR ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SGTHR ALTERED ARRAY Y FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'SGTHR ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'SGTHR OUTPUT ARRAY X IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE =', 3 1PE15.5, ' TRUE VALUE = ', 1PE15.5 ) C 2700 FORMAT ( /5X, 'SGTHR PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SGTHR FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TSGTHZ ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TSGTHZ -- CERTIFY SGTHRZ ==== C ================================================================== C ================================================================== C C SUBROUTINE TSGTHZ IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SGTHRZ. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, SVSAME C EXTERNAL ICOPY, SCOPY, SINIT, GNINDX, 1 IVSAME, SVSAME, SGTHRZ C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6*FLOAT(I) ) YSAVE(I) = SIN ( .7*FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C CALL SINIT ( N, CLOBBR, XTRUE, 1 ) CALL SINIT ( N, CLOBBR, YTRUE, 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE XTRUE (I) = YTRUE (INDXT(I)) YTRUE(INDXT(I)) = 0.0E0 300 CONTINUE C C --------------- C ... CALL SGTHRZ C --------------- C CALL SGTHRZ ( NZ, Y, X, INDX ) C C ----------------------------------------- C ... TEST ARGUMENTS OF SGTHRZ THAT ARE NOT C SUPPOSED TO CHANGE. C ----------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C C --------------------------- C ... TEST OUTPUT FROM SGTHRZ C --------------------------- C DO 400 I = 1, N C IF ( X(I) .NE. XTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX, I, 1 X(I), XTRUE(I) END IF END IF C IF ( Y(I) .NE. YTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 Y(I), YTRUE(I) END IF END IF C 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSGTHZ C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SGTHRZ ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SGTHRZ ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'SGTHRZ OUTPUT ARRAY X IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE =', 3 1PE15.5, ' TRUE VALUE =', 1PE15.5 ) C 1300 FORMAT ( 5X, 'SGTHRZ OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE =', 3 1PE15.5, ' TRUE VALUE =', 1PE15.5 ) C 2700 FORMAT ( /5X, 'SGTHRZ PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SGTHRZ FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TSROTI ( NOUT, EPSILN, THRESH, NZMAX2, 1 NUMNZ, NZVALU, NUMG, CVALUE, SVALUE, 2 X, XSAVE, XTRUE, Y, YSAVE, 3 YTRUE , INDX, INDXT, LIST, ERRCNT, 4 ERRMAX ) C C ================================================================== C ================================================================== C ==== TSROTI -- CERTIFY SROTI ==== C ================================================================== C ================================================================== C C SUBROUTINE TSROTI IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SROTI. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, NUMG, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*), 1 LIST (*) C REAL EPSILN, THRESH C REAL CVALUE (*), SVALUE (*), 1 X (*), XSAVE (*), XTRUE (*), 2 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KG, 1 KINDX, KNZ, N, NZ, NZTRUE C REAL C, CLOBBR, CTRUE, ERR, S, 1 STRUE, V, W C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME C EXTERNAL SCOPY, SINIT, ICOPY, IINIT, GNINDX, 1 IVSAME, SROTI C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6E0 * FLOAT(I) ) YSAVE(I) = SIN ( .7E0 * FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 700 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ----------------------------- C ... FOR EACH VALUE OF C AND S C ----------------------------- C DO 600 KG = 1, NUMG C CTRUE = CVALUE(KG) STRUE = SVALUE(KG) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C CALL IINIT ( N, -1, LIST, 1 ) C DO 150 I = 1, NZTRUE LIST (INDXT(I)) = I 150 CONTINUE C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL SCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL SINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL SINIT ( N, CLOBBR, YTRUE , 1 ) C DO 200 I = 1, NZTRUE YTRUE (INDXT(I)) = YSAVE (INDXT(I)) 200 CONTINUE C C ------------------- C ... COPY TRUE INPUT C ------------------- C C = CTRUE S = STRUE NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE V = XTRUE(I) XTRUE(I) = CTRUE * V + 1 STRUE * YTRUE (INDXT(I)) YTRUE (INDXT(I)) = -STRUE * V + 1 CTRUE * YTRUE (INDXT(I)) 300 CONTINUE C C -------------- C ... CALL SROTI C -------------- C CALL SROTI ( NZ, X, INDX, Y, C, S ) C C ---------------------------------------- C ... TEST ARGUMENTS OF SROTI THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, CTRUE, STRUE, 1 KINDX, NZ END IF END IF C IF ( C .NE. CTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, CTRUE, STRUE, 1 KINDX, C, S END IF END IF C IF ( S .NE. STRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, CTRUE, STRUE, 1 KINDX, C, S END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, CTRUE, STRUE, 1 KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM SROTI C -------------------------- C DO 400 J = 1, N C IF ( LIST(J) .EQ. -1 ) THEN C IF ( X(J) .NE. XTRUE(J) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1400 ) NZTRUE, CTRUE, 1 STRUE, KINDX, J, 2 X(J), XTRUE(J) END IF END IF C IF ( Y(J) .NE. YTRUE(J) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1500 ) NZTRUE, CTRUE, 1 STRUE, KINDX, J, 2 Y(J), YTRUE(J) END IF END IF C ELSE C V = ABS ( X (LIST(J)) - XTRUE (LIST(J)) ) W = ABS ( CTRUE ) * ABS ( XSAVE (LIST(J)) ) + 1 ABS ( STRUE ) * ABS ( YSAVE(J) ) IF ( W .EQ. 0.0E0 ) W = 1.0E0 ERR = V / ( EPSILN * W ) IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1600 ) NZTRUE, CTRUE, 1 STRUE, KINDX, I, 2 X (LIST(J)), 3 XTRUE (LIST(J)), 4 ERR END IF END IF C V = ABS ( Y(J) - YTRUE(J) ) W = ABS ( STRUE ) * ABS ( XSAVE (LIST(J)) ) + 1 ABS ( CTRUE ) * ABS ( YSAVE(J) ) IF ( W .EQ. 0.0E0 ) W = 1.0E0 ERR = V / ( EPSILN * W ) IF ( ERR .GT. THRESH ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1700 ) NZTRUE, CTRUE, 1 STRUE, KINDX, J, 2 Y(J), YTRUE(J), 3 ERR END IF END IF C END IF C 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C 700 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSROTI C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SROTI ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' C, S = ', 1P, 2E15.5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SROTI ALTERED C FOR TEST WITH NZ = ', I5, 1 ' C, S = ', 1P, 2E15.5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'ALTERED VALUE OF C = ', 1PE15.5 ) C 1200 FORMAT ( 5X, 'SROTI ALTERED S FOR TEST WITH NZ = ', I5, 1 ' C, S = ', 1P, 2E15.5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'ALTERED VALUE OF S = ', 1PE15.5 ) C 1300 FORMAT ( 5X, 'SROTI ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' C, S = ', 1P, 2E15.5, ' AND THE INDX TYPE NO. ', 2 I5 ) C 1400 FORMAT ( 5X, 'SROTI OUTPUT ARRAY X IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' C, S = ', 1P, 2E15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INCORRECT COMPONENT NO. ', I5, ' HAS VALUE = ', 4 1PE15.5, ' TRUE VALUE = ', 1PE15.5 ) C 1500 FORMAT ( 5X, 'SROTI OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' C, S = ', 1P, 2E15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INCORRECT COMPONENT NO. ', I5, ' HAS VALUE = ', 4 1PE15.5, ' TRUE VALUE = ', 1PE15.5 ) C 1600 FORMAT ( 5X, 'SROTI OUTPUT ARRAY X IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' C, S = ', 1P, 2E15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = ', 4 1PE15.5, ' TRUE VALUE = ', 1PE15.5, ' ERROR = ', 5 1PE12.1 ) C 1700 FORMAT ( 5X, 'SROTI OUTPUT ARRAY Y IS INACCURATE FOR TEST WITH ', 1 'NZ = ', I5, ' C, S = ', 1P, 2E15.5, 2 ' AND THE INDX TYPE NO. ', I5 3 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE = ', 4 1PE15.5, ' TRUE VALUE = ', 1PE15.5, ' ERROR = ', 5 1PE12.1 ) C 2700 FORMAT ( /5X, 'SROTI PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SROTI FAILED', I10, ' TESTS.' ) C C ================================================================== C END SUBROUTINE TSSCTR ( NOUT, NZMAX2, NUMNZ, NZVALU, 1 X, XSAVE, XTRUE, Y, YSAVE, 2 YTRUE , INDX, INDXT, ERRCNT, ERRMAX ) C C ================================================================== C ================================================================== C ==== TSSCTR -- CERTIFY SSCTR ==== C ================================================================== C ================================================================== C C SUBROUTINE TSSCTR IS THE CERTIFICATION MODULE FOR THE SPARSE C BASIC LINEAR ALGEBRA SUBROUTINE MODULE SSCTR. C C WRITTEN BY ROGER G GRIMES C APRIL 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NOUT, NZMAX2, NUMNZ, ERRCNT, 1 ERRMAX C INTEGER NZVALU (*), INDX (*), INDXT (*) C REAL X (*), XSAVE (*), XTRUE (*), 1 Y (*), YSAVE (*), YTRUE (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER COUNT, I, ICLOBR, J, KINDX, 1 KNZ, N, NZ, NZTRUE C REAL CLOBBR C C -------------------- C ... SUBPROGRAMS USED C -------------------- C LOGICAL IVSAME, SVSAME C EXTERNAL ICOPY, SCOPY, SINIT, GNINDX, 1 IVSAME, SVSAME, SSCTR C C ================================================================== C C ------------------ C ... INITIALIZATION C ------------------ C COUNT = 0 C CLOBBR = -1.0E10 ICLOBR = -10000000 C C ------------------------------------ C ... GENERATE SOME VALUES FOR X AND Y C ------------------------------------ C DO 100 I = 1, NZMAX2 XSAVE(I) = COS ( .6*FLOAT(I) ) YSAVE(I) = SIN ( .7*FLOAT(I) ) 100 CONTINUE C C ------------------------ C ... FOR EACH VALUE OF NZ C ------------------------ C DO 600 KNZ = 1, NUMNZ C NZTRUE = NZVALU(KNZ) N = 2 * MAX ( NZTRUE, 1 ) C C ------------------------------- C ... FOR EACH KIND OF INDX ARRAY C ------------------------------- C DO 500 KINDX = 1, 5 C CALL GNINDX ( NZTRUE, N, ICLOBR, KINDX, INDXT ) C C ----------------------- C ... GENERATE INPUT DATA C ----------------------- C I = MIN ( N, N-NZTRUE ) J = N - I + 1 CALL SCOPY ( NZTRUE, XSAVE, 1, XTRUE, 1 ) CALL SINIT ( I, CLOBBR, XTRUE(J), 1 ) CALL SINIT ( N, CLOBBR, YTRUE, 1 ) C C ------------------- C ... COPY TRUE INPUT C ------------------- C NZ = NZTRUE C CALL SCOPY ( N, YTRUE, 1, Y, 1 ) CALL SCOPY ( N, XTRUE, 1, X, 1 ) CALL ICOPY ( N, INDXT, 1, INDX, 1 ) C C -------------------------- C ... COMPUTE IN-LINE RESULT C -------------------------- C DO 300 I = 1, NZTRUE YTRUE (INDXT(I)) = XTRUE (I) 300 CONTINUE C C -------------- C ... CALL SSCTR C -------------- C CALL SSCTR ( NZ, X, INDX, Y ) C C ---------------------------------------- C ... TEST ARGUMENTS OF SSCTR THAT ARE NOT C SUPPOSED TO CHANGE. C ---------------------------------------- C IF ( NZ .NE. NZTRUE ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1000 ) NZTRUE, KINDX, NZ END IF END IF C IF ( .NOT. SVSAME ( N, X, XTRUE ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1100 ) NZTRUE, KINDX END IF END IF C IF ( .NOT. IVSAME ( N, INDX, INDXT ) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1200 ) NZTRUE, KINDX END IF END IF C C -------------------------- C ... TEST OUTPUT FROM SSCTR C -------------------------- C DO 400 I = 1, N IF ( Y(I) .NE. YTRUE(I) ) THEN COUNT = COUNT + 1 IF ( COUNT .LE. ERRMAX ) THEN WRITE ( NOUT, 1300 ) NZTRUE, KINDX, I, 1 Y(I), YTRUE(I) END IF END IF 400 CONTINUE C 500 CONTINUE C 600 CONTINUE C C ================================================================== C C ------------------ C ... END OF TESTING C ------------------ C ERRCNT = ERRCNT + COUNT IF ( COUNT .NE. 0 ) GO TO 800 C C ----------------------------------- C ... WRITE PASSED MESSAGE AND RETURN C ----------------------------------- C WRITE ( NOUT, 2700 ) GO TO 900 C C ----------------------------------- C ... WRITE FAILED MESSAGE AND RETURN C ----------------------------------- C 800 WRITE ( NOUT, 2800 ) COUNT C C ------------------------ C ... END OF MODULE TSSCTR C ------------------------ C 900 CONTINUE RETURN C C ================================================================== C C ----------- C ... FORMATS C ----------- C 1000 FORMAT ( 5X, 'SSCTR ALTERED NZ FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5, 2 '. ALTERED VALUE OF NZ = ', I5 ) C 1100 FORMAT ( 5X, 'SSCTR ALTERED ARRAY X FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1200 FORMAT ( 5X, 'SSCTR ALTERED ARRAY INDX FOR TEST WITH NZ = ', I5, 1 ' AND THE INDX TYPE NO. ', I5 ) C 1300 FORMAT ( 5X, 'SSCTR OUTPUT ARRAY Y IS INCORRECT FOR TEST WITH ', 1 'NZ = ', I5, ' AND THE INDX TYPE NO. ', I5 2 /5X, 'INACCURATE COMPONENT NO. ', I5, ' HAS VALUE =', 3 1PE15.5, ' TRUE VALUE =', 1PE15.5 ) C 2700 FORMAT ( /5X, 'SSCTR PASSED ALL TESTS.' ) C 2800 FORMAT ( /5X, 'SSCTR FAILED', I10, ' TESTS.' ) C C ================================================================== C END REAL FUNCTION SDIFF ( X, Y ) C C ================================================================== C C SDIFF IS USED BY THE MAIN PROGRAM TO COMPARE 1.0 + EPSILN WITH C 1.0. ITS SOLE USE IS TO FOOL AN OPTIMIZING COMPILER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C REAL X, Y C C ================================================================== C SDIFF = X - Y C C ================================================================== C RETURN END LOGICAL FUNCTION SVSAME ( N, SX, SY ) C C ================================================================== C C LOGICAL FUNCTION SVSAME DETERMINES IF THE VECTORS SX AND SY C AGREE EXACTLY WITH EACH OTHER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C INTEGER I, N C REAL SX (*), SY (*) C C ================================================================== C SVSAME = .TRUE. C DO 10 I = 1, N IF ( SX(I) .NE. SY(I) ) THEN SVSAME = .FALSE. GO TO 20 ENDIF 10 CONTINUE C 20 RETURN END SUBROUTINE ICOPY ( N, X, INCX, Y, INCY ) C C ================================================================== C ================================================================== C ==== ICOPY -- COPY ONE INTEGER VECTOR TO ANOTHER ==== C ================================================================== C ================================================================== C C PURPOSE ... (VARIANT OF 'SCOPY') C COPY ONE INTEGER VECTOR TO ANOTHER. C STANDARD INCREMENT OF 1 SHOULD BE USED FOR FORWARD C COPY WITHIN SAME VECTOR. C C CREATED ... MAR. 12, 1985 C LAST MODIFIED ... APR. 19, 1985 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX, INCY C INTEGER X (*), Y (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, YADDR, I C C ================================================================== C IF ( INCX .EQ. 1 .AND. INCY .EQ. 1 ) THEN C C ----------------------------------- C ... UNIT INCREMENTS (STANDARD CASE) C ----------------------------------- C DO 100 I = 1, N Y (I) = X (I) 100 CONTINUE C ELSE C C ------------------------- C ... NON-UNIT INCREMENTS C (-1) USED FOR REVERSE C COPYING IN SAME ARRAY C ------------------------- C XADDR = 1 YADDR = 1 C IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C IF ( INCY .LT. 0 ) THEN YADDR = (-N+1)*INCY + 1 ENDIF C DO 200 I = 1, N Y (YADDR) = X (XADDR) XADDR = XADDR + INCX YADDR = YADDR + INCY 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE IINIT ( N, A, X, INCX ) C C ================================================================== C ================================================================== C ==== IINIT -- INITIALIZE INTEGER VECTOR TO CONSTANT ==== C ================================================================== C ================================================================== C C PURPOSE ... INITIALIZES INTEGER VECTOR TO A CONSTANT VALUE 'A' C C CREATED ... MAR. 8, 1985 C LAST MODIFIED ... APR. 19, 1985 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX C INTEGER A, X (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, I C C ================================================================== C IF ( INCX .EQ. 1 ) THEN C C ---------------------------------- C ... UNIT INCREMENT (STANDARD CASE) C ---------------------------------- C DO 100 I = 1, N X(I) = A 100 CONTINUE C ELSE C C ---------------------- C ... NON-UNIT INCREMENT C ---------------------- C XADDR = 1 IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C DO 200 I = 1, N X (XADDR) = A XADDR = XADDR + INCX 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE GNINDX ( NZ, N, ICLOBR, KINDX, INDX ) C C ================================================================== C ================================================================== C ==== GNINDX -- GENERATE INDEX ARRAY PATTERNS ==== C ================================================================== C ================================================================== C C GNINDX GENERATES VARIOUS PATTERNS FOR THE ARRAY INDX BASED C ON THE KEY KINDX. THE GENERATED INDX ARRAY HAS NZ SIGNIFICANT C COMPONENTS. THE REMAINING N-NZ COMPONENTS ARE SET TO C ICLOBR. C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER NZ, N, ICLOBR, KINDX, INDX (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER I, L C C -------------------- C ... SUBPROGRAMS USED C -------------------- C EXTERNAL IINIT C C ================================================================== C IF ( N .LE. 0 ) RETURN C L = MAX ( N, N-NZ ) CALL IINIT ( L, ICLOBR, INDX, 1 ) C IF ( NZ .LE. 0 ) RETURN C KINDX = MAX ( KINDX, 1 ) KINDX = MIN ( KINDX, 5 ) C C ------------------- C ... BRANCH ON KINDX C ------------------- C GO TO ( 100, 200, 300, 400, 500 ), KINDX C C ----------------------------------- C ... ASCENDING ORDER - 1, 2, ..., NZ C ----------------------------------- C 100 DO 110 I = 1, NZ INDX(I) = I 110 CONTINUE GO TO 900 C C ------------------------------------------ C ... ASCENDING ORDER - N-NZ+1, N-NZ, ..., N C ------------------------------------------ C 200 L = N - NZ DO 210 I = 1, NZ INDX(I) = L + I 210 CONTINUE GO TO 900 C C --------------------------------------- C ... DESCENDING ORDER - NZ, NZ-1, ..., 1 C --------------------------------------- C 300 L = NZ DO 310 I = 1, NZ INDX(I) = L L = L -1 310 CONTINUE GO TO 900 C C ------------------------------------------ C ... DESCENDING ORDER - N, N-1, ..., N-NZ+1 C ------------------------------------------ C 400 L = N DO 410 I = 1, NZ INDX(I) = L L = L - 1 410 CONTINUE GO TO 900 C C -------------------------------------------------------- C ... ALTERNATING ORDER WITH EVEN NUMBERS IN REVERSE ORDER C -------------------------------------------------------- C 500 DO 510 I = 1, NZ, 2 INDX(I) = I 510 CONTINUE C L = N DO 520 I = 2, NZ, 2 INDX(I) = L L = L - 2 520 CONTINUE GO TO 900 C C ================================================================== C 900 RETURN END LOGICAL FUNCTION IVSAME ( N, IX, IY ) C C ================================================================== C C LOGICAL FUNCTION IVSAME DETERMINES IF THE VECTORS IX AND IY C AGREE EXACTLY WITH EACH OTHER. C C ================================================================== C C ------------------------ C ... VARIABLE DECLARATION C ------------------------ C INTEGER I, N, IX (*), IY (*) C C ================================================================== C IVSAME = .TRUE. C IF ( N .LE. 0 ) RETURN C DO 10 I = 1, N IF ( IX(I) .NE. IY(I) ) THEN IVSAME = .FALSE. GO TO 20 ENDIF 10 CONTINUE C 20 RETURN C END SUBROUTINE SCOPY ( N, X, INCX, Y, INCY ) C C ================================================================== C ================================================================== C ==== SCOPY -- COPY ONE REAL VECTOR TO ANOTHER ==== C ================================================================== C ================================================================== C C PURPOSE ... STANDARD BLAS C COPY ONE REAL VECTOR TO ANOTHER. C STANDARD INCREMENT OF 1 SHOULD BE USED FOR FORWARD C COPY WITHIN SAME VECTOR. C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX, INCY C REAL X (*), Y (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, YADDR, I C C ================================================================== C IF ( INCX .EQ. 1 .AND. INCY .EQ. 1 ) THEN C C ----------------------------------- C ... UNIT INCREMENTS (STANDARD CASE) C ----------------------------------- C DO 100 I = 1, N Y (I) = X (I) 100 CONTINUE C ELSE C C ------------------------- C ... NON-UNIT INCREMENTS C (-1) USED FOR REVERSE C COPYING IN SAME ARRAY C ------------------------- C XADDR = 1 YADDR = 1 C IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C IF ( INCY .LT. 0 ) THEN YADDR = (-N+1)*INCY + 1 ENDIF C DO 200 I = 1, N Y (YADDR) = X (XADDR) XADDR = XADDR + INCX YADDR = YADDR + INCY 200 CONTINUE C ENDIF C RETURN C END SUBROUTINE SINIT ( N, A, X, INCX ) C C ================================================================== C ================================================================== C ==== SINIT -- INITIALIZE REAL VECTOR TO CONSTANT ==== C ================================================================== C ================================================================== C C PURPOSE ... INITIALIZES REAL VECTOR TO A CONSTANT VALUE 'A' C C CREATED ... APR. 14, 1987 C C ================================================================== C C ------------- C ... ARGUMENTS C ------------- C INTEGER N, INCX C REAL A, X (*) C C ------------------- C ... LOCAL VARIABLES C ------------------- C INTEGER XADDR, I C C ================================================================== C IF ( INCX .EQ. 1 ) THEN C C ---------------------------------- C ... UNIT INCREMENT (STANDARD CASE) C ---------------------------------- C DO 100 I = 1, N X(I) = A 100 CONTINUE C ELSE C C ---------------------- C ... NON-UNIT INCREMENT C ---------------------- C XADDR = 1 IF ( INCX .LT. 0 ) THEN XADDR = (-N+1)*INCX + 1 ENDIF C DO 200 I = 1, N X (XADDR) = A XADDR = XADDR + INCX 200 CONTINUE C ENDIF C RETURN C END