*DECK CSPSL SUBROUTINE CSPSL (AP, N, KPVT, B) C***BEGIN PROLOGUE CSPSL C***PURPOSE Solve a complex symmetric system using the factors obtained C from CSPFA. C***LIBRARY SLATEC (LINPACK) C***CATEGORY D2C1 C***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C) C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC C***AUTHOR Bunch, J., (UCSD) C***DESCRIPTION C C CSISL solves the complex symmetric system C A * X = B C using the factors computed by CSPFA. C C On Entry C C AP COMPLEX(N*(N+1)/2) C the output from CSPFA. C C N INTEGER C the order of the matrix A . C C KVPT INTEGER(N) C the pivot vector from CSPFA. C C B COMPLEX(N) C the right hand side vector. C C On Return C C B the solution vector X . C C Error Condition C C A division by zero may occur if CSPCO has set RCOND .EQ. 0.0 C or CSPFA has set INFO .NE. 0 . C C To compute INVERSE(A) * C where C is a matrix C with P columns C CALL CSPFA(AP,N,KVPT,INFO) C IF (INFO .NE. 0) GO TO ... C DO 10 J = 1, P C CALL CSPSL(AP,N,KVPT,C(1,J)) C 10 CONTINUE C C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. C Stewart, LINPACK Users' Guide, SIAM, 1979. C***ROUTINES CALLED CAXPY, CDOTU C***REVISION HISTORY (YYMMDD) C 780814 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890831 Modified array declarations. (WRB) C 891107 Corrected category and modified routine equivalence C list. (WRB) C 891107 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900326 Removed duplicate information from DESCRIPTION section. C (WRB) C 920501 Reformatted the REFERENCES section. (WRB) C***END PROLOGUE CSPSL INTEGER N,KPVT(*) COMPLEX AP(*),B(*) C COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,TEMP INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP C C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND C D INVERSE TO B. C C***FIRST EXECUTABLE STATEMENT CSPSL K = N IK = (N*(N - 1))/2 10 IF (K .EQ. 0) GO TO 80 KK = IK + K IF (KPVT(K) .LT. 0) GO TO 40 C C 1 X 1 PIVOT BLOCK. C IF (K .EQ. 1) GO TO 30 KP = KPVT(K) IF (KP .EQ. K) GO TO 20 C C INTERCHANGE. C TEMP = B(K) B(K) = B(KP) B(KP) = TEMP 20 CONTINUE C C APPLY THE TRANSFORMATION. C CALL CAXPY(K-1,B(K),AP(IK+1),1,B(1),1) 30 CONTINUE C C APPLY D INVERSE. C B(K) = B(K)/AP(KK) K = K - 1 IK = IK - K GO TO 70 40 CONTINUE C C 2 X 2 PIVOT BLOCK. C IKM1 = IK - (K - 1) IF (K .EQ. 2) GO TO 60 KP = ABS(KPVT(K)) IF (KP .EQ. K - 1) GO TO 50 C C INTERCHANGE. C TEMP = B(K-1) B(K-1) = B(KP) B(KP) = TEMP 50 CONTINUE C C APPLY THE TRANSFORMATION. C CALL CAXPY(K-2,B(K),AP(IK+1),1,B(1),1) CALL CAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1) 60 CONTINUE C C APPLY D INVERSE. C KM1K = IK + K - 1 KK = IK + K AK = AP(KK)/AP(KM1K) KM1KM1 = IKM1 + K - 1 AKM1 = AP(KM1KM1)/AP(KM1K) BK = B(K)/AP(KM1K) BKM1 = B(K-1)/AP(KM1K) DENOM = AK*AKM1 - 1.0E0 B(K) = (AKM1*BK - BKM1)/DENOM B(K-1) = (AK*BKM1 - BK)/DENOM K = K - 2 IK = IK - (K + 1) - K 70 CONTINUE GO TO 10 80 CONTINUE C C LOOP FORWARD APPLYING THE TRANSFORMATIONS. C K = 1 IK = 0 90 IF (K .GT. N) GO TO 160 IF (KPVT(K) .LT. 0) GO TO 120 C C 1 X 1 PIVOT BLOCK. C IF (K .EQ. 1) GO TO 110 C C APPLY THE TRANSFORMATION. C B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1) KP = KPVT(K) IF (KP .EQ. K) GO TO 100 C C INTERCHANGE. C TEMP = B(K) B(K) = B(KP) B(KP) = TEMP 100 CONTINUE 110 CONTINUE IK = IK + K K = K + 1 GO TO 150 120 CONTINUE C C 2 X 2 PIVOT BLOCK. C IF (K .EQ. 1) GO TO 140 C C APPLY THE TRANSFORMATION. C B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1) IKP1 = IK + K B(K+1) = B(K+1) + CDOTU(K-1,AP(IKP1+1),1,B(1),1) KP = ABS(KPVT(K)) IF (KP .EQ. K) GO TO 130 C C INTERCHANGE. C TEMP = B(K) B(K) = B(KP) B(KP) = TEMP 130 CONTINUE 140 CONTINUE IK = IK + K + K + 1 K = K + 2 150 CONTINUE GO TO 90 160 CONTINUE RETURN END