/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pcher2_( F_CHAR_T UPLO, int * N, float * ALPHA, float * X, int * IX, int * JX, int * DESCX, int * INCX, float * Y, int * IY, int * JY, int * DESCY, int * INCY, float * A, int * IA, int * JA, int * DESCA ) #else void pcher2_( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) /* * .. Scalar Arguments .. */ F_CHAR_T UPLO; int * IA, * INCX, * INCY, * IX, * IY, * JA, * JX, * JY, * N; float * ALPHA; /* * .. Array Arguments .. */ int * DESCA, * DESCX, * DESCY; float * A, * X, * Y; #endif { /* * Purpose * ======= * * PCHER2 performs the Hermitian rank 2 operation * * sub( A ) := alpha*sub( X )*conjg( sub( Y )' ) + * conjg( alpha )*sub( Y )*conjg( sub( X )' ) + sub( A ), * * where * * sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), * * sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, and, * * sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y, * Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y. * * Alpha is a scalar, sub( X ) and sub( Y ) are n element subvectors and * sub( A ) is an n by n Hermitian submatrix. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * UPLO (global input) CHARACTER*1 * On entry, UPLO specifies whether the local pieces of * the array A containing the upper or lower triangular part * of the Hermitian submatrix sub( A ) are to be referenced as * follows: * * UPLO = 'U' or 'u' Only the local pieces corresponding to * the upper triangular part of the * Hermitian submatrix sub( A ) are to be * referenced, * * UPLO = 'L' or 'l' Only the local pieces corresponding to * the lower triangular part of the * Hermitian submatrix sub( A ) are to be * referenced. * * N (global input) INTEGER * On entry, N specifies the order of the submatrix sub( A ). * N must be at least zero. * * ALPHA (global input) COMPLEX * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the arrays X * and Y corresponding to the entries of the subvectors sub( X ) * and sub( Y ) respectively need not be set on input. * * X (local input) COMPLEX array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * Y (local input) COMPLEX array * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+N-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+N-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Before entry, this array contains the local entries of the * matrix Y. * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * A (local input/local output) COMPLEX array * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+N-1 ). Before entry, this array contains * the local entries of the matrix A. * Before entry with UPLO = 'U' or 'u', this array contains * the local entries corresponding to the upper triangular part * of the Hermitian submatrix sub( A ), and the local entries * corresponding to the strictly lower triangular of sub( A ) * are not referenced. On exit, the upper triangular part of * sub( A ) is overwritten by the upper triangular part of the * updated submatrix. * Before entry with UPLO = 'L' or 'l', this array contains * the local entries corresponding to the lower triangular part * of the Hermitian submatrix sub( A ), and the local entries * corresponding to the strictly upper triangular of sub( A ) * are not referenced. On exit, the lower triangular part of * sub( A ) is overwritten by the lower triangular part of the * updated submatrix. * Note that the imaginary parts of the local entries corres- * ponding to the diagonal elements of sub( A ) need not be * set, they are assumed to be zero, and on exit they are set * to zero. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char UploA; int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb, Amp, Amp0, Anb, Anq, Anq0, Arow, XCfr, XCld, XRfr, XRld, Xi, Xj, YCfr, YCld, YRfr, YRld, Yi, Yj, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb, npcol, nprow, size, upper; cmplx Calpha; PBTYP_T * type; /* * .. Local Arrays .. */ int Ad [DLEN_], Ad0 [DLEN_], XCd0[DLEN_], XRd0[DLEN_], Xd[DLEN_], YCd0[DLEN_], YRd0[DLEN_], Yd [DLEN_]; char * Aptr = NULL, * XC = NULL, * XR = NULL, * YC = NULL, * YR = NULL; /* .. * .. Executable Statements .. * */ upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER ); PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad ); PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) ) { if( ( !upper ) && ( UploA != CLOWER ) ) { PB_Cwarn( ctxt, __LINE__, "PCHER2", "Illegal UPLO = %c\n", UploA ); info = -1; } PB_Cchkvec( ctxt, "PCHER2", "X", *N, 2, Xi, Xj, Xd, *INCX, 7, &info ); PB_Cchkvec( ctxt, "PCHER2", "Y", *N, 2, Yi, Yj, Yd, *INCY, 12, &info ); PB_Cchkmat( ctxt, "PCHER2", "A", *N, 2, *N, 2, Ai, Aj, Ad, 17, &info ); } if( info ) { PB_Cabort( ctxt, "PCHER2", info ); return; } #endif /* * Quick return if possible */ if( ( *N == 0 ) || ( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) ) return; /* * Retrieve process grid information */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Get type structure */ type = PB_Cctypeset(); /* * Compute descriptor Ad0 for sub( A ) */ PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj, &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 ); /* * Replicate sub( X ) in process rows (XR) and process columns (XC) spanned by * sub( A ) */ if( *INCX == Xd[M_] ) { PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, ROW, &XR, XRd0, &XRfr ); PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, XR, 0, 0, XRd0, ROW, &XC, XCd0, &XCfr ); } else { PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj, Xd, COLUMN, &XC, XCd0, &XCfr ); PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, XC, 0, 0, XCd0, COLUMN, &XR, XRd0, &XRfr ); } /* * Replicate sub( Y ) in process rows (YR) and process columns (YC) spanned by * sub( A ) */ if( *INCY == Yd[M_] ) { PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) Y), Yi, Yj, Yd, ROW, &YR, YRd0, &YRfr ); PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, YR, 0, 0, YRd0, ROW, &YC, YCd0, &YCfr ); } else { PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) Y), Yi, Yj, Yd, COLUMN, &YC, YCd0, &YCfr ); PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, YC, 0, 0, YCd0, COLUMN, &YR, YRd0, &YRfr ); } /* * Local rank-2 update if I own some data */ Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow ); Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol ); if( ( Amp > 0 ) && ( Anq > 0 ) ) { size = type->size; Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size ); XCld = XCd0[LLD_]; YCld = YCd0[LLD_]; XRld = XRd0[LLD_]; YRld = YRd0[LLD_]; Calpha[REAL_PART] = ALPHA[REAL_PART]; Calpha[IMAG_PART] = -ALPHA[IMAG_PART]; /* * Computational partitioning size is computed as the product of the logical * value returned by pilaenv_ and 2 * lcm( nprow, npcol ). */ nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) * PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) ); if( upper ) { for( k = 0; k < *N; k += nb ) { kb = *N - k; kb = MIN( kb, nb ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Akp > 0 && Anq0 > 0 ) { cgerc_( &Akp, &Anq0, ((char *) ALPHA), XC, &ione, Mptr( YR, 0, Akq, YRld, size ), &YRld, Mptr( Aptr, 0, Akq, Ald, size ), &Ald ); cgerc_( &Akp, &Anq0, ((char *) Calpha), YC, &ione, Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, 0, Akq, Ald, size ), &Ald ); } PB_Cpsyr2( type, UPPER, kb, 1, ((char *) ALPHA), Mptr( XC, Akp, 0, XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld, Mptr( YC, Akp, 0, YCld, size ), YCld, Mptr( YR, 0, Akq, YRld, size ), YRld, Aptr, k, k, Ad0, PB_Ctzher2 ); } } else { for( k = 0; k < *N; k += nb ) { kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) ); Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow ); Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol ); PB_Cpsyr2( type, LOWER, kb, 1, ((char *) ALPHA), Mptr( XC, Akp, 0, XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld, Mptr( YC, Akp, 0, YCld, size ), YCld, Mptr( YR, 0, Akq, YRld, size ), YRld, Aptr, k, k, Ad0, PB_Ctzher2 ); Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow ); Amp0 = Amp - Akp; Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol ); if( Amp0 > 0 && Anq0 > 0 ) { cgerc_( &Amp0, &Anq0, ((char *) ALPHA), Mptr( XC, Akp, 0, XCld, size ), &ione, Mptr( YR, 0, Akq, YRld, size ), &YRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald ); cgerc_( &Amp0, &Anq0, ((char *) Calpha), Mptr( YC, Akp, 0, YCld, size ), &ione, Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald ); } } } } if( XRfr ) free( XR ); if( XCfr ) free( XC ); if( YRfr ) free( YR ); if( YCfr ) free( YC ); /* * End of PCHER2 */ }