/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void pcgeadd_( F_CHAR_T TRANS, int * M, int * N, float * ALPHA, float * A, int * IA, int * JA, int * DESCA, float * BETA, float * C, int * IC, int * JC, int * DESCC ) #else void pcgeadd_( TRANS, M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) /* * .. Scalar Arguments .. */ F_CHAR_T TRANS; int * IA, * IC, * JA, * JC, * M, * N; float * ALPHA, * BETA; /* * .. Array Arguments .. */ int * DESCA, * DESCC; float * A, * C; #endif { /* * Purpose * ======= * * PCGEADD adds a matrix to another * * sub( C ) := beta*sub( C ) + alpha*op( sub( A ) ) * * where * * sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1), and, op( X ) is one of * * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ). * * Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+N-1) if TRANS = 'N', * A(IA:IA+N-1,JA:JA+M-1)' if TRANS = 'T', * conjg(A(IA:IA+N-1,JA:JA+M-1)') if TRANS = 'C'. * * Alpha and beta are scalars, sub( C ) and op( sub( A ) ) are m by n * submatrices. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TRANS (global input) CHARACTER*1 * On entry, TRANS specifies the form of op( sub( A ) ) to be * used in the matrix addition as follows: * * TRANS = 'N' or 'n' op( sub( A ) ) = sub( A ), * * TRANS = 'T' or 't' op( sub( A ) ) = sub( A )', * * TRANS = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ). * * M (global input) INTEGER * On entry, M specifies the number of rows of the submatrix * sub( C ) and the number of columns of the submatrix sub( A ). * M must be at least zero. * * N (global input) INTEGER * On entry, N specifies the number of columns of the submatrix * sub( C ) and the number of rows of the submatrix sub( A ). N * must be at least zero. * * ALPHA (global input) COMPLEX * On entry, ALPHA specifies the scalar alpha. When ALPHA is * supplied as zero then the local entries of the array A * corresponding to the entries of the submatrix sub( A ) need * not be set on input. * * A (local input) COMPLEX array * On entry, A is an array of dimension (LLD_A, Ka), where Ka is * at least Lc( 1, JA+M-1 ). Before entry, this array contains * the local entries of the matrix A. * * IA (global input) INTEGER * On entry, IA specifies A's global row index, which points to * the beginning of the submatrix sub( A ). * * JA (global input) INTEGER * On entry, JA specifies A's global column index, which points * to the beginning of the submatrix sub( A ). * * DESCA (global and local input) INTEGER array * On entry, DESCA is an integer array of dimension DLEN_. This * is the array descriptor for the matrix A. * * BETA (global input) COMPLEX * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then the local entries of the array C * corresponding to the entries of the submatrix sub( C ) need * not be set on input. * * C (local input/local output) COMPLEX array * On entry, C is an array of dimension (LLD_C, Kc), where Kc is * at least Lc( 1, JC+N-1 ). Before entry, this array contains * the local entries of the matrix C. * On exit, the entries of this array corresponding to the local * entries of the submatrix sub( C ) are overwritten by the * local entries of the m by n updated submatrix. * * IC (global input) INTEGER * On entry, IC specifies C's global row index, which points to * the beginning of the submatrix sub( C ). * * JC (global input) INTEGER * On entry, JC specifies C's global column index, which points * to the beginning of the submatrix sub( C ). * * DESCC (global and local input) INTEGER array * On entry, DESCC is an integer array of dimension DLEN_. This * is the array descriptor for the matrix C. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char DirA, DirC, ctop, rtop; int Ai, Aj, Ci, Cj, TrA, ctxt, info, mycol, myrow, npcol, nprow, notran; /* * .. Local Arrays .. */ int Ad[DLEN_], Cd[DLEN_]; /* .. * .. Executable Statements .. * */ notran = ( ( TrA = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN ); PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad ); PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 801 + CTXT_ ) : 0 ) ) ) { if( ( !notran ) && ( TrA != CTRAN ) && ( TrA != CCOTRAN ) ) { PB_Cwarn( ctxt, __LINE__, "PCGEADD", "Illegal TRANS = %c\n", TrA ); info = -1; } if( notran ) PB_Cchkmat( ctxt, "PCGEADD", "A", *M, 2, *N, 3, Ai, Aj, Ad, 8, &info ); else PB_Cchkmat( ctxt, "PCGEADD", "A", *N, 3, *M, 2, Ai, Aj, Ad, 8, &info ); PB_Cchkmat( ctxt, "PCGEADD", "C", *M, 2, *N, 3, Ci, Cj, Cd, 13, &info ); } if( info ) { PB_Cabort( ctxt, "PCGEADD", info ); return; } #endif /* * Quick return if possible */ if( ( *M == 0 ) || ( *N == 0 ) || ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) && ( BETA [REAL_PART] == ONE && BETA [IMAG_PART] == ZERO ) ) ) return; /* * And when alpha is zero */ if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) { if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) ) { PB_Cplapad( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA), ((char *)BETA), ((char *) C), Ci, Cj, Cd ); } else { PB_Cplascal( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA), ((char * )C), Ci, Cj, Cd ); } return; } /* * Start the operations */ /* * This operation mainly involves point-to-point send and receive communication. * There is therefore no particular BLACS topology to recommend. Still, one can * choose the main loop direction in which the operands will be added. This * selection is based on the current setting for the BLACS broadcast operations. */ if( notran ) { rtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); ctop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( *M <= *N ) { DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD ); DirC = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD ); } else { DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD ); DirC = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD ); } PB_Cpgeadd( PB_Cctypeset(), &DirA, &DirC, NOCONJG, *M, *N, ((char *) ALPHA), ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C), Ci, Cj, Cd ); } else if( TrA == CTRAN ) { PB_Cptran( PB_Cctypeset(), NOCONJG, *M, *N, ((char *) ALPHA), ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C), Ci, Cj, Cd ); } else { PB_Cptran( PB_Cctypeset(), CONJG, *M, *N, ((char *) ALPHA), ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C), Ci, Cj, Cd ); } /* * End of PCGEADD */ }