next up previous contents
Next: Test Matrices for the Up: More About the ScaLAPACK Previous: Input File for Testing   Contents

Tests for the ScaLAPACK SVD routines

The following tests will be performed on PSGESVD/PDGESVD. A number of matrix ``types'' are specified, as denoted in Table 2. For each type of matrix, and for the minimal workspace as well as for larger than minimal workspace an $M$-by$N$ matrix ``A'' with known singular values is generated and used to test the SVD routines. For each matrix, A will be factored as $A~=~U~diag(S)~VT$ and the following 9 tests computed:


$\displaystyle r_1$ $\textstyle =$ $\displaystyle \frac{ \left\Vert A - U1 \mbox{diag}(S1) VT1 \right\Vert}
{ \left\Vert A\right\Vert\max(M,N) \, ulp}$  
$\displaystyle r_2$ $\textstyle =$ $\displaystyle \frac{ \left\Vert I - (U1)^T U1 \right\Vert}
{ M \, ulp}$  
$\displaystyle r_3$ $\textstyle =$ $\displaystyle \frac{ \left\Vert I - VT1 (VT1)^T \right\Vert}
{ N \, ulp}$  
$\displaystyle r_4$ $\textstyle =$ $\displaystyle \left\{
\begin{array}{ll}
0 & \mbox{if $S1$\ contains SIZE nonneg...
...s
in decreasing order.} \\
\frac{1}{ulp} & \mbox{otherwise}
\end{array}\right.$  
$\displaystyle r_5$ $\textstyle =$ $\displaystyle \frac{ \left\Vert S1 - S2 \right\Vert}
{ SIZE \, M \left\Vert S\right\Vert}$  
$\displaystyle r_6$ $\textstyle =$ $\displaystyle \frac{ \left\Vert U1 - U2 \right\Vert}
{ M \, ulp}$  
$\displaystyle r_7$ $\textstyle =$ $\displaystyle \frac{ \left\Vert S1 - S3 \right\Vert}
{ SIZE \, ulp \left\Vert S\right\Vert}$  
$\displaystyle r_8$ $\textstyle =$ $\displaystyle \frac{ \left\Vert VT1 - VT3 \right\Vert}
{ N \, ulp}$  
$\displaystyle r_9$ $\textstyle =$ $\displaystyle \frac{ \left\Vert S1 - S4 \right\Vert}
{ SIZE \, ulp \, \left\Vert S\right\Vert}$  

where $ulp$ represents PxLAMCH(ICTXT, 'P').



Subsections
next up previous contents
Next: Test Matrices for the Up: More About the ScaLAPACK Previous: Input File for Testing   Contents
Susan Blackford 2001-08-12