ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
psgemm_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void psgemm_( F_CHAR_T TRANSA, F_CHAR_T TRANSB,
21  int * M, int * N, int * K,
22  float * ALPHA,
23  float * A, int * IA, int * JA, int * DESCA,
24  float * B, int * IB, int * JB, int * DESCB,
25  float * BETA,
26  float * C, int * IC, int * JC, int * DESCC )
27 #else
28 void psgemm_( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA,
29  B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )
30 /*
31 * .. Scalar Arguments ..
32 */
33  F_CHAR_T TRANSA, TRANSB;
34  int * IA, * IB, * IC, * JA, * JB, * JC, * K, * M, * N;
35  float * ALPHA, * BETA;
36 /*
37 * .. Array Arguments ..
38 */
39  int * DESCA, * DESCB, * DESCC;
40  float * A, * B, * C;
41 #endif
42 {
43 /*
44 * Purpose
45 * =======
46 *
47 * PSGEMM performs one of the matrix-matrix operations
48 *
49 * sub( C ) := alpha*op( sub( A ) )*op( sub( B ) ) + beta*sub( C ),
50 *
51 * where
52 *
53 * sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1), and, op( X ) is one of
54 * op( X ) = X or op( X ) = X'.
55 *
56 * Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+K-1) if TRANSA = 'N',
57 * A(IA:IA+K-1,JA:JA+M-1)' if TRANSA = 'T',
58 * A(IA:IA+K-1,JA:JA+M-1)' if TRANSA = 'C',
59 *
60 * and, op( sub( B ) ) denotes B(IB:IB+K-1,JB:JB+N-1) if TRANSB = 'N',
61 * B(IB:IB+N-1,JB:JB+K-1)' if TRANSB = 'T',
62 * B(IB:IB+N-1,JB:JB+K-1)' if TRANSB = 'C',
63 *
64 * Alpha and beta are scalars. A, B and C are matrices; op( sub( A ) )
65 * is an m by k submatrix, op( sub( B ) ) is an k by n submatrix and
66 * sub( C ) is an m by n submatrix.
67 *
68 * Notes
69 * =====
70 *
71 * A description vector is associated with each 2D block-cyclicly dis-
72 * tributed matrix. This vector stores the information required to
73 * establish the mapping between a matrix entry and its corresponding
74 * process and memory location.
75 *
76 * In the following comments, the character _ should be read as
77 * "of the distributed matrix". Let A be a generic term for any 2D
78 * block cyclicly distributed matrix. Its description vector is DESC_A:
79 *
80 * NOTATION STORED IN EXPLANATION
81 * ---------------- --------------- ------------------------------------
82 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
83 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
84 * the NPROW x NPCOL BLACS process grid
85 * A is distributed over. The context
86 * itself is global, but the handle
87 * (the integer value) may vary.
88 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
89 * ted matrix A, M_A >= 0.
90 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
91 * buted matrix A, N_A >= 0.
92 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
93 * block of the matrix A, IMB_A > 0.
94 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
95 * left block of the matrix A,
96 * INB_A > 0.
97 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
98 * bute the last M_A-IMB_A rows of A,
99 * MB_A > 0.
100 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
101 * bute the last N_A-INB_A columns of
102 * A, NB_A > 0.
103 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
104 * row of the matrix A is distributed,
105 * NPROW > RSRC_A >= 0.
106 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
107 * first column of A is distributed.
108 * NPCOL > CSRC_A >= 0.
109 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
110 * array storing the local blocks of
111 * the distributed matrix A,
112 * IF( Lc( 1, N_A ) > 0 )
113 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
114 * ELSE
115 * LLD_A >= 1.
116 *
117 * Let K be the number of rows of a matrix A starting at the global in-
118 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
119 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
120 * receive if these K rows were distributed over NPROW processes. If K
121 * is the number of columns of a matrix A starting at the global index
122 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
123 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
124 * these K columns were distributed over NPCOL processes.
125 *
126 * The values of Lr() and Lc() may be determined via a call to the func-
127 * tion PB_Cnumroc:
128 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
129 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
130 *
131 * Arguments
132 * =========
133 *
134 * TRANSA (global input) CHARACTER*1
135 * On entry, TRANSA specifies the form of op( sub( A ) ) to be
136 * used in the matrix multiplication as follows:
137 *
138 * TRANSA = 'N' or 'n' op( sub( A ) ) = sub( A ),
139 *
140 * TRANSA = 'T' or 't' op( sub( A ) ) = sub( A )',
141 *
142 * TRANSA = 'C' or 'c' op( sub( A ) ) = sub( A )'.
143 *
144 * TRANSB (global input) CHARACTER*1
145 * On entry, TRANSB specifies the form of op( sub( B ) ) to be
146 * used in the matrix multiplication as follows:
147 *
148 * TRANSB = 'N' or 'n' op( sub( B ) ) = sub( B ),
149 *
150 * TRANSB = 'T' or 't' op( sub( B ) ) = sub( B )',
151 *
152 * TRANSB = 'C' or 'c' op( sub( B ) ) = sub( B )'.
153 *
154 * M (global input) INTEGER
155 * On entry, M specifies the number of rows of the submatrix
156 * op( sub( A ) ) and of the submatrix sub( C ). M must be at
157 * least zero.
158 *
159 * N (global input) INTEGER
160 * On entry, N specifies the number of columns of the submatrix
161 * op( sub( B ) ) and the number of columns of the submatrix
162 * sub( C ). N must be at least zero.
163 *
164 * K (global input) INTEGER
165 * On entry, K specifies the number of columns of the submatrix
166 * op( sub( A ) ) and the number of rows of the submatrix
167 * op( sub( B ) ). K must be at least zero.
168 *
169 * ALPHA (global input) REAL
170 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
171 * supplied as zero then the local entries of the arrays A and
172 * B corresponding to the entries of the submatrices sub( A )
173 * and sub( B ) respectively need not be set on input.
174 *
175 * A (local input) REAL array
176 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
177 * at least Lc( 1, JA+K-1 ) when TRANSA = 'N' or 'n', and is at
178 * least Lc( 1, JA+M-1 ) otherwise. Before entry, this array
179 * contains the local entries of the matrix A.
180 *
181 * IA (global input) INTEGER
182 * On entry, IA specifies A's global row index, which points to
183 * the beginning of the submatrix sub( A ).
184 *
185 * JA (global input) INTEGER
186 * On entry, JA specifies A's global column index, which points
187 * to the beginning of the submatrix sub( A ).
188 *
189 * DESCA (global and local input) INTEGER array
190 * On entry, DESCA is an integer array of dimension DLEN_. This
191 * is the array descriptor for the matrix A.
192 *
193 * B (local input) REAL array
194 * On entry, B is an array of dimension (LLD_B, Kb), where Kb is
195 * at least Lc( 1, JB+N-1 ) when TRANSB = 'N' or 'n', and is at
196 * least Lc( 1, JB+K-1 ) otherwise. Before entry, this array
197 * contains the local entries of the matrix B.
198 *
199 * IB (global input) INTEGER
200 * On entry, IB specifies B's global row index, which points to
201 * the beginning of the submatrix sub( B ).
202 *
203 * JB (global input) INTEGER
204 * On entry, JB specifies B's global column index, which points
205 * to the beginning of the submatrix sub( B ).
206 *
207 * DESCB (global and local input) INTEGER array
208 * On entry, DESCB is an integer array of dimension DLEN_. This
209 * is the array descriptor for the matrix B.
210 *
211 * BETA (global input) REAL
212 * On entry, BETA specifies the scalar beta. When BETA is
213 * supplied as zero then the local entries of the array C
214 * corresponding to the entries of the submatrix sub( C ) need
215 * not be set on input.
216 *
217 * C (local input/local output) REAL array
218 * On entry, C is an array of dimension (LLD_C, Kc), where Kc is
219 * at least Lc( 1, JC+N-1 ). Before entry, this array contains
220 * the local entries of the matrix C.
221 * On exit, the entries of this array corresponding to the local
222 * entries of the submatrix sub( C ) are overwritten by the
223 * local entries of the m by n updated submatrix.
224 *
225 * IC (global input) INTEGER
226 * On entry, IC specifies C's global row index, which points to
227 * the beginning of the submatrix sub( C ).
228 *
229 * JC (global input) INTEGER
230 * On entry, JC specifies C's global column index, which points
231 * to the beginning of the submatrix sub( C ).
232 *
233 * DESCC (global and local input) INTEGER array
234 * On entry, DESCC is an integer array of dimension DLEN_. This
235 * is the array descriptor for the matrix C.
236 *
237 * -- Written on April 1, 1998 by
238 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
239 *
240 * ---------------------------------------------------------------------
241 */
242 /*
243 * .. Local Scalars ..
244 */
245  char DirAB, DirBC, OpC, OpR, TrA, TrB, ctop, ctopsave, rtop,
246  rtopsave;
247  int Ai, Aj, Bi, Bj, ChooseAB, ChooseBC, Ci, Cj, ForceTop, ctxt,
248  info, mycol, myrow, nb, nota, notb, npcol, nprow;
249  double ABest, ACest, BCest, tmp1, tmp2, tmp3, tmp4;
250  PBTYP_T * type;
251 /*
252 * .. Local Arrays ..
253 */
254  int Ad[DLEN_], Bd[DLEN_], Cd[DLEN_];
255 /* ..
256 * .. Executable Statements ..
257 *
258 */
259  nota = ( ( TrA = Mupcase( F2C_CHAR( TRANSA )[0] ) ) == CNOTRAN );
260  notb = ( ( TrB = Mupcase( F2C_CHAR( TRANSB )[0] ) ) == CNOTRAN );
261  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
262  PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
263  PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
264 #ifndef NO_ARGCHK
265 /*
266 * Test the input parameters
267 */
268  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow,
269  &mycol );
270  if( !( info = ( ( nprow == -1 ) ? -( 1001 + CTXT_ ) : 0 ) ) )
271  {
272  if( ( !nota ) && ( TrA != CTRAN ) && ( TrA != CCOTRAN ) )
273  {
274  PB_Cwarn( ctxt, __LINE__, "PSGEMM", "Illegal TRANSA = %c\n", TrA );
275  info = -1;
276  }
277  else if( ( !notb ) && ( TrB != CTRAN ) && ( TrB != CCOTRAN ) )
278  {
279  PB_Cwarn( ctxt, __LINE__, "PSGEMM", "Illegal TRANSB = %c\n", TrB );
280  info = -2;
281  }
282  if( nota )
283  PB_Cchkmat( ctxt, "PSGEMM", "A", *M, 3, *K, 5, Ai, Aj, Ad, 10,
284  &info );
285  else
286  PB_Cchkmat( ctxt, "PSGEMM", "A", *K, 5, *M, 3, Ai, Aj, Ad, 10,
287  &info );
288  if( notb )
289  PB_Cchkmat( ctxt, "PSGEMM", "B", *K, 5, *N, 4, Bi, Bj, Bd, 14,
290  &info );
291  else
292  PB_Cchkmat( ctxt, "PSGEMM", "B", *N, 4, *K, 5, Bi, Bj, Bd, 14,
293  &info );
294  PB_Cchkmat( ctxt, "PSGEMM", "C", *M, 3, *N, 4, Ci, Cj, Cd, 19,
295  &info );
296  }
297  if( info ) { PB_Cabort( ctxt, "PSGEMM", info ); return; }
298 #endif
299 /*
300 * Quick return if possible
301 */
302  if( ( *M == 0 ) || ( *N == 0 ) ||
303  ( ( ALPHA[REAL_PART] == ZERO || *K == 0 ) &&
304  ( BETA [REAL_PART] == ONE ) ) )
305  return;
306 /*
307 * Get type structure
308 */
309  type = PB_Cstypeset();
310 /*
311 * If alpha or K is zero, sub( C ) := beta * sub( C ).
312 */
313  if( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) )
314  {
315  if( BETA[REAL_PART] == ZERO )
316  {
317  PB_Cplapad( type, ALL, NOCONJG, *M, *N, type->zero, type->zero,
318  ((char * ) C), Ci, Cj, Cd );
319  }
320  else if( !( BETA[REAL_PART] == ONE ) )
321  {
322  PB_Cplascal( type, ALL, NOCONJG, *M, *N, ((char *) BETA),
323  ((char * ) C), Ci, Cj, Cd );
324  }
325  return;
326  }
327 /*
328 * Start the operations
329 */
330 #ifdef NO_ARGCHK
331  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
332 #endif
333 /*
334 * Algorithm selection is based on approximation of the communication volume
335 * for distributed and aligned operands.
336 *
337 * ABest: both operands sub( A ) and sub( B ) are communicated (M, N >> K)
338 * ACest: both operands sub( A ) and sub( C ) are communicated (K, N >> M)
339 * BCest: both operands sub( B ) and sub( C ) are communicated (M, K >> N)
340 */
341  ABest = (double)(*K);
342  ACest = (double)(*M);
343  BCest = (double)(*N);
344 
345  if( notb )
346  {
347  if( nota )
348  {
349  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
350  ABest *= ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
351  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
352 
353  tmp1 = DNROC( *K, Bd[MB_], nprow ); tmp2 = DNROC( *N, Bd[NB_], npcol );
354  tmp3 = DNROC( *K, Ad[NB_], npcol );
355  ACest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
356  CBRATIO * ( nprow == 1 ? ZERO : tmp2 );
357 
358  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *K, Ad[NB_], npcol );
359  tmp4 = DNROC( *K, Bd[MB_], nprow );
360  BCest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) +
361  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
362  }
363  else
364  {
365  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
366  tmp3 = DNROC( *M, Ad[NB_], npcol );
367  ABest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
368  ( nprow == 1 ? ZERO : tmp2 );
369 
370  tmp1 = DNROC( *K, Bd[MB_], nprow ); tmp2 = DNROC( *N, Bd[NB_], npcol );
371  ACest *= ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
372  CBRATIO *
373  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
374 
375  tmp1 = DNROC( *K, Ad[MB_], nprow ); tmp2 = DNROC( *M, Bd[NB_], npcol );
376  tmp4 = DNROC( *M, Cd[MB_], nprow );
377  BCest *= ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
378  CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
379  }
380  }
381  else
382  {
383  if( nota )
384  {
385  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
386  tmp4 = DNROC( *N, Bd[MB_], nprow );
387  ABest *= ( npcol == 1 ? ZERO : tmp1 ) +
388  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
389 
390  tmp1 = DNROC( *N, Bd[MB_], nprow ); tmp2 = DNROC( *K, Bd[NB_], npcol );
391  tmp3 = DNROC( *N, Cd[NB_], npcol );
392  ACest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
393  ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
394 
395  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *K, Ad[NB_], npcol );
396  BCest *= CBRATIO *
397  ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
398  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
399  }
400  else
401  {
402  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
403  tmp3 = DNROC( *M, Ad[NB_], npcol ); tmp4 = DNROC( *N, Bd[MB_], nprow );
404  ABest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
405  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
406 
407  tmp1 = DNROC( *N, Bd[MB_], nprow ); tmp2 = DNROC( *K, Bd[NB_], npcol );
408  tmp3 = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
409  ACest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
410  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
411 
412  tmp1 = DNROC( *K, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
413  tmp3 = DNROC( *K, Bd[NB_], npcol ); tmp4 = DNROC( *M, Cd[MB_], nprow );
414  BCest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
415  CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
416  }
417  }
418  ChooseAB = ( ( ABest <= ( 1.3 * BCest ) ) && ( ABest <= ( 1.3 * ACest ) ) );
419  ChooseBC = ( ( BCest <= ACest ) && ( ( 1.3 * BCest ) <= ABest ) );
420 /*
421 * BLACS topologies are enforced iff M, N and K are strictly greater than the
422 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
423 * routine calling this routine has already selected an adequate topology.
424 */
425  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
426  ForceTop = ( ( *M > nb ) && ( *N > nb ) && ( *K > nb ) );
427 
428  if( ChooseAB )
429  {
430  OpR = CBCAST;
431  OpC = CBCAST;
432  }
433  else if( ChooseBC )
434  {
435  if( nota ) { OpR = CCOMBINE; OpC = CBCAST; }
436  else { OpR = CBCAST; OpC = CCOMBINE; }
437  }
438  else
439  {
440  if( notb ) { OpR = CBCAST; OpC = CCOMBINE; }
441  else { OpR = CCOMBINE; OpC = CBCAST; }
442  }
443 
444  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
445  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
446 
447  if( ForceTop )
448  {
449  rtopsave = rtop;
450  ctopsave = ctop;
451 /*
452 * No clear winner for the ring topologies, so that if a ring topology is
453 * already selected, keep it.
454 */
455  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
456  ( rtop != CTOP_SRING ) )
457  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_IRING );
458  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
459  ( ctop != CTOP_SRING ) )
460  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_IRING );
461 /*
462 * Remove the next 4 lines when the BLACS combine operations support ring
463 * topologies
464 */
465  if( OpR == CCOMBINE )
466  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
467  if( OpC == CCOMBINE )
468  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
469  }
470 
471  DirAB = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
472  DirBC = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
473 
474  if( ChooseAB )
475  {
476  PB_CpgemmAB( type, &DirAB, &DirBC, ( nota ? NOTRAN : TRAN ), ( notb ?
477  NOTRAN : TRAN ), *M, *N, *K, ((char *)ALPHA), ((char *)A),
478  Ai, Aj, Ad, ((char *)B), Bi, Bj, Bd, ((char *)BETA),
479  ((char *)C), Ci, Cj, Cd );
480  }
481  else if( ChooseBC )
482  {
483  PB_CpgemmBC( type, &DirAB, &DirBC, ( nota ? NOTRAN : TRAN ), ( notb ?
484  NOTRAN : TRAN ), *M, *N, *K, ((char *)ALPHA), ((char *)A),
485  Ai, Aj, Ad, ((char *)B), Bi, Bj, Bd, ((char *)BETA),
486  ((char *)C), Ci, Cj, Cd );
487  }
488  else
489  {
490  PB_CpgemmAC( type, &DirAB, &DirBC, ( nota ? NOTRAN : TRAN ), ( notb ?
491  NOTRAN : TRAN ), *M, *N, *K, ((char *)ALPHA), ((char *)A),
492  Ai, Aj, Ad, ((char *)B), Bi, Bj, Bd, ((char *)BETA),
493  ((char *)C), Ci, Cj, Cd );
494  }
495 /*
496 * Restore the BLACS topologies when necessary.
497 */
498  if( ForceTop )
499  {
500  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
501  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
502  }
503 /*
504 * End of PSGEMM
505 */
506 }
ROW
#define ROW
Definition: PBblacs.h:46
PB_CpgemmBC
void PB_CpgemmBC()
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
CCOTRAN
#define CCOTRAN
Definition: PBblas.h:22
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
DLEN_
#define DLEN_
Definition: PBtools.h:48
psgemm_
void psgemm_(F_CHAR_T TRANSA, F_CHAR_T TRANSB, int *M, int *N, int *K, float *ALPHA, float *A, int *IA, int *JA, int *DESCA, float *B, int *IB, int *JB, int *DESCB, float *BETA, float *C, int *IC, int *JC, int *DESCC)
Definition: psgemm_.c:28
TRAN
#define TRAN
Definition: PBblas.h:46
PB_CpgemmAB
void PB_CpgemmAB()
NOTRAN
#define NOTRAN
Definition: PBblas.h:44
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
PB_CpgemmAC
void PB_CpgemmAC()
TOP_IRING
#define TOP_IRING
Definition: PBblacs.h:52
pilaenv_
int pilaenv_()
PB_Cplascal
void PB_Cplascal()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
ONE
#define ONE
Definition: PBtools.h:64
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
PB_CargFtoC
void PB_CargFtoC()
PB_Cchkmat
void PB_Cchkmat()
PB_Cstypeset
PBTYP_T * PB_Cstypeset()
Definition: PB_Cstypeset.c:19
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
ALL
#define ALL
Definition: PBblas.h:50
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CTRAN
#define CTRAN
Definition: PBblas.h:20
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
PBTYP_T::zero
char * zero
Definition: pblas.h:331
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111