SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ pdgeqr2()

subroutine pdgeqr2 ( integer  m,
integer  n,
double precision, dimension( * )  a,
integer  ia,
integer  ja,
integer, dimension( * )  desca,
double precision, dimension( * )  tau,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

Definition at line 1 of file pdgeqr2.f.

3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 DOUBLE PRECISION A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PDGEQR2 computes a QR factorization of a real distributed M-by-N
21* matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R.
22*
23* Notes
24* =====
25*
26* Each global data object is described by an associated description
27* vector. This vector stores the information required to establish
28* the mapping between an object element and its corresponding process
29* and memory location.
30*
31* Let A be a generic term for any 2D block cyclicly distributed array.
32* Such a global array has an associated description vector DESCA.
33* In the following comments, the character _ should be read as
34* "of the global array".
35*
36* NOTATION STORED IN EXPLANATION
37* --------------- -------------- --------------------------------------
38* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
39* DTYPE_A = 1.
40* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
41* the BLACS process grid A is distribu-
42* ted over. The context itself is glo-
43* bal, but the handle (the integer
44* value) may vary.
45* M_A (global) DESCA( M_ ) The number of rows in the global
46* array A.
47* N_A (global) DESCA( N_ ) The number of columns in the global
48* array A.
49* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
50* the rows of the array.
51* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
52* the columns of the array.
53* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
54* row of the array A is distributed.
55* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
56* first column of the array A is
57* distributed.
58* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
59* array. LLD_A >= MAX(1,LOCr(M_A)).
60*
61* Let K be the number of rows or columns of a distributed matrix,
62* and assume that its process grid has dimension p x q.
63* LOCr( K ) denotes the number of elements of K that a process
64* would receive if K were distributed over the p processes of its
65* process column.
66* Similarly, LOCc( K ) denotes the number of elements of K that a
67* process would receive if K were distributed over the q processes of
68* its process row.
69* The values of LOCr() and LOCc() may be determined via a call to the
70* ScaLAPACK tool function, NUMROC:
71* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
72* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
73* An upper bound for these quantities may be computed by:
74* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
75* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
76*
77* Arguments
78* =========
79*
80* M (global input) INTEGER
81* The number of rows to be operated on, i.e. the number of rows
82* of the distributed submatrix sub( A ). M >= 0.
83*
84* N (global input) INTEGER
85* The number of columns to be operated on, i.e. the number of
86* columns of the distributed submatrix sub( A ). N >= 0.
87*
88* A (local input/local output) DOUBLE PRECISION pointer into the
89* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
90* On entry, the local pieces of the M-by-N distributed matrix
91* sub( A ) which is to be factored. On exit, the elements on
92* and above the diagonal of sub( A ) contain the min(M,N) by N
93* upper trapezoidal matrix R (R is upper triangular if M >= N);
94* the elements below the diagonal, with the array TAU,
95* represent the orthogonal matrix Q as a product of elementary
96* reflectors (see Further Details).
97*
98* IA (global input) INTEGER
99* The row index in the global array A indicating the first
100* row of sub( A ).
101*
102* JA (global input) INTEGER
103* The column index in the global array A indicating the
104* first column of sub( A ).
105*
106* DESCA (global and local input) INTEGER array of dimension DLEN_.
107* The array descriptor for the distributed matrix A.
108*
109* TAU (local output) DOUBLE PRECISION array, dimension
110* LOCc(JA+MIN(M,N)-1). This array contains the scalar factors
111* TAU of the elementary reflectors. TAU is tied to the
112* distributed matrix A.
113*
114* WORK (local workspace/local output) DOUBLE PRECISION array,
115* dimension (LWORK)
116* On exit, WORK(1) returns the minimal and optimal LWORK.
117*
118* LWORK (local or global input) INTEGER
119* The dimension of the array WORK.
120* LWORK is local input and must be at least
121* LWORK >= Mp0 + MAX( 1, Nq0 ), where
122*
123* IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
124* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
125* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
126* Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ),
127* Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ),
128*
129* and NUMROC, INDXG2P are ScaLAPACK tool functions;
130* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
131* the subroutine BLACS_GRIDINFO.
132*
133* If LWORK = -1, then LWORK is global input and a workspace
134* query is assumed; the routine only calculates the minimum
135* and optimal size for all work arrays. Each of these
136* values is returned in the first entry of the corresponding
137* work array, and no error message is issued by PXERBLA.
138*
139* INFO (local output) INTEGER
140* = 0: successful exit
141* < 0: If the i-th argument is an array and the j-entry had
142* an illegal value, then INFO = -(i*100+j), if the i-th
143* argument is a scalar and had an illegal value, then
144* INFO = -i.
145*
146* Further Details
147* ===============
148*
149* The matrix Q is represented as a product of elementary reflectors
150*
151* Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(m,n).
152*
153* Each H(i) has the form
154*
155* H(j) = I - tau * v * v'
156*
157* where tau is a real scalar, and v is a real vector with v(1:i-1) = 0
158* and v(i) = 1; v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1),
159* and tau in TAU(ja+i-1).
160*
161* =====================================================================
162*
163* .. Parameters ..
164 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
165 $ LLD_, MB_, M_, NB_, N_, RSRC_
166 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
167 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
168 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
169 DOUBLE PRECISION ONE
170 parameter( one = 1.0d+0 )
171* ..
172* .. Local Scalars ..
173 LOGICAL LQUERY
174 CHARACTER COLBTOP, ROWBTOP
175 INTEGER I, II, IACOL, IAROW, ICTXT, J, JJ, K, LWMIN,
176 $ MP, MYCOL, MYROW, NPCOL, NPROW, NQ
177 DOUBLE PRECISION AJJ, ALPHA
178* ..
179* .. External Subroutines ..
180 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, dgebr2d,
181 $ dgebs2d, dlarfg, dscal, infog2l,
182 $ pdelset, pdlarf, pdlarfg, pb_topget,
183 $ pb_topset, pxerbla
184* ..
185* .. External Functions ..
186 INTEGER INDXG2P, NUMROC
187 EXTERNAL indxg2p, numroc
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC dble, max, min, mod
191* ..
192* .. Executable Statements ..
193*
194* Get grid parameters
195*
196 ictxt = desca( ctxt_ )
197 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
198*
199* Test the input parameters
200*
201 info = 0
202 IF( nprow.EQ.-1 ) THEN
203 info = -(600+ctxt_)
204 ELSE
205 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 6, info )
206 IF( info.EQ.0 ) THEN
207 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
208 $ nprow )
209 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
210 $ npcol )
211 mp = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
212 $ myrow, iarow, nprow )
213 nq = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
214 $ mycol, iacol, npcol )
215 lwmin = mp + max( 1, nq )
216*
217 work( 1 ) = dble( lwmin )
218 lquery = ( lwork.EQ.-1 )
219 IF( lwork.LT.lwmin .AND. .NOT.lquery )
220 $ info = -9
221 END IF
222 END IF
223*
224 IF( info.NE.0 ) THEN
225 CALL pxerbla( ictxt, 'PDGEQR2', -info )
226 CALL blacs_abort( ictxt, 1 )
227 RETURN
228 ELSE IF( lquery ) THEN
229 RETURN
230 END IF
231*
232* Quick return if possible
233*
234 IF( m.EQ.0 .OR. n.EQ.0 )
235 $ RETURN
236*
237 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
238 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
239 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
240 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
241*
242 IF( desca( m_ ).EQ.1 ) THEN
243 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, ii,
244 $ jj, iarow, iacol )
245 IF( myrow.EQ.iarow ) THEN
246 nq = numroc( ja+n-1, desca( nb_ ), mycol, desca( csrc_ ),
247 $ npcol )
248 i = ii+(jj-1)*desca( lld_ )
249 IF( mycol.EQ.iacol ) THEN
250 ajj = a( i )
251 CALL dlarfg( 1, ajj, a( i ), 1, tau( jj ) )
252 IF( n.GT.1 ) THEN
253 alpha = one - tau( jj )
254 CALL dgebs2d( ictxt, 'Rowwise', ' ', 1, 1, alpha, 1 )
255 CALL dscal( nq-jj, alpha, a( i+desca( lld_ ) ),
256 $ desca( lld_ ) )
257 END IF
258 CALL dgebs2d( ictxt, 'Columnwise', ' ', 1, 1, tau( jj ),
259 $ 1 )
260 a( i ) = ajj
261 ELSE
262 IF( n.GT.1 ) THEN
263 CALL dgebr2d( ictxt, 'Rowwise', ' ', 1, 1, alpha,
264 $ 1, iarow, iacol )
265 CALL dscal( nq-jj+1, alpha, a( i ), desca( lld_ ) )
266 END IF
267 END IF
268 ELSE IF( mycol.EQ.iacol ) THEN
269 CALL dgebr2d( ictxt, 'Columnwise', ' ', 1, 1, tau( jj ), 1,
270 $ iarow, iacol )
271 END IF
272*
273 ELSE
274*
275 k = min( m, n )
276 DO 10 j = ja, ja+k-1
277 i = ia + j - ja
278*
279* Generate elementary reflector H(j) to annihilate
280* A(i+1:ia+m-1,j)
281*
282 CALL pdlarfg( m-j+ja, ajj, i, j, a, min( i+1, ia+m-1 ), j,
283 $ desca, 1, tau )
284 IF( j.LT.ja+n-1 ) THEN
285*
286* Apply H(j)' to A(i:ia+m-1,j+1:ja+n-1) from the left
287*
288 CALL pdelset( a, i, j, desca, one )
289*
290 CALL pdlarf( 'Left', m-j+ja, n-j+ja-1, a, i, j, desca, 1,
291 $ tau, a, i, j+1, desca, work )
292 END IF
293 CALL pdelset( a, i, j, desca, ajj )
294*
295 10 CONTINUE
296*
297 END IF
298*
299 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
300 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
301*
302 work( 1 ) = dble( lwmin )
303*
304 RETURN
305*
306* End of PDGEQR2
307*
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
integer function indxg2p(indxglob, nb, iproc, isrcproc, nprocs)
Definition indxg2p.f:2
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Definition numroc.f:2
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pdelset(a, ia, ja, desca, alpha)
Definition pdelset.f:2
subroutine pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pdlarf.f:3
subroutine pdlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
Definition pdlarfg.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
Here is the call graph for this function:
Here is the caller graph for this function: