ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pzherk_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void pzherk_( F_CHAR_T UPLO, F_CHAR_T TRANS, int * N, int * K,
21  double * ALPHA,
22  double * A, int * IA, int * JA, int * DESCA,
23  double * BETA,
24  double * C, int * IC, int * JC, int * DESCC )
25 #else
26 void pzherk_( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA,
27  C, IC, JC, DESCC )
28 /*
29 * .. Scalar Arguments ..
30 */
31  F_CHAR_T TRANS, UPLO;
32  int * IA, * IC, * JA, * JC, * K, * N;
33  double * ALPHA, * BETA;
34 /*
35 * .. Array Arguments ..
36 */
37  int * DESCA, * DESCC;
38  double * A, * C;
39 #endif
40 {
41 /*
42 * Purpose
43 * =======
44 *
45 * PZHERK performs one of the Hermitian rank k operations
46 *
47 * sub( C ) := alpha*sub( A )*conjg( sub( A )' ) + beta*sub( C ),
48 *
49 * or
50 *
51 * sub( C ) := alpha*conjg( sub( A )' )*sub( A ) + beta*sub( C ),
52 *
53 * where
54 *
55 * sub( C ) denotes C(IC:IC+N-1,JC:JC+N-1), and,
56 *
57 * sub( A ) denotes A(IA:IA+N-1,JA:JA+K-1) if TRANS = 'N',
58 * A(IA:IA+K-1,JA:JA+N-1) otherwise.
59 *
60 * Alpha and beta are real scalars, sub( C ) is an n by n Hermitian
61 * submatrix and sub( A ) is an n by k submatrix in the first case and a
62 * k by n submatrix in the second case.
63 *
64 * Notes
65 * =====
66 *
67 * A description vector is associated with each 2D block-cyclicly dis-
68 * tributed matrix. This vector stores the information required to
69 * establish the mapping between a matrix entry and its corresponding
70 * process and memory location.
71 *
72 * In the following comments, the character _ should be read as
73 * "of the distributed matrix". Let A be a generic term for any 2D
74 * block cyclicly distributed matrix. Its description vector is DESC_A:
75 *
76 * NOTATION STORED IN EXPLANATION
77 * ---------------- --------------- ------------------------------------
78 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
79 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
80 * the NPROW x NPCOL BLACS process grid
81 * A is distributed over. The context
82 * itself is global, but the handle
83 * (the integer value) may vary.
84 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
85 * ted matrix A, M_A >= 0.
86 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
87 * buted matrix A, N_A >= 0.
88 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
89 * block of the matrix A, IMB_A > 0.
90 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
91 * left block of the matrix A,
92 * INB_A > 0.
93 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
94 * bute the last M_A-IMB_A rows of A,
95 * MB_A > 0.
96 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
97 * bute the last N_A-INB_A columns of
98 * A, NB_A > 0.
99 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
100 * row of the matrix A is distributed,
101 * NPROW > RSRC_A >= 0.
102 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
103 * first column of A is distributed.
104 * NPCOL > CSRC_A >= 0.
105 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
106 * array storing the local blocks of
107 * the distributed matrix A,
108 * IF( Lc( 1, N_A ) > 0 )
109 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
110 * ELSE
111 * LLD_A >= 1.
112 *
113 * Let K be the number of rows of a matrix A starting at the global in-
114 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
115 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
116 * receive if these K rows were distributed over NPROW processes. If K
117 * is the number of columns of a matrix A starting at the global index
118 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
119 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
120 * these K columns were distributed over NPCOL processes.
121 *
122 * The values of Lr() and Lc() may be determined via a call to the func-
123 * tion PB_Cnumroc:
124 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
125 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
126 *
127 * Arguments
128 * =========
129 *
130 * UPLO (global input) CHARACTER*1
131 * On entry, UPLO specifies whether the local pieces of
132 * the array C containing the upper or lower triangular part
133 * of the Hermitian submatrix sub( C ) are to be referenced as
134 * follows:
135 *
136 * UPLO = 'U' or 'u' Only the local pieces corresponding to
137 * the upper triangular part of the
138 * Hermitian submatrix sub( C ) are to be
139 * referenced,
140 *
141 * UPLO = 'L' or 'l' Only the local pieces corresponding to
142 * the lower triangular part of the
143 * Hermitian submatrix sub( C ) are to be
144 * referenced.
145 *
146 * TRANS (global input) CHARACTER*1
147 * On entry, TRANS specifies the operation to be performed as
148 * follows:
149 *
150 * TRANS = 'N' or 'n'
151 * sub( C ) := alpha*sub( A )*conjg( sub( A )' ) +
152 * beta*sub( C ),
153 *
154 * TRANS = 'C' or 'c'
155 * sub( C ) := alpha*conjg( sub( A )' )*sub( A ) +
156 * beta*sub( C ).
157 *
158 * N (global input) INTEGER
159 * On entry, N specifies the order of the submatrix sub( C ).
160 * N must be at least zero.
161 *
162 * K (global input) INTEGER
163 * On entry, with TRANS = 'N' or 'n', K specifies the number of
164 * columns of the submatrix sub( A ), and with TRANS = 'C' or
165 * 'c', K specifies the number of rows of the submatrix
166 * sub( A ). K must be at least zero.
167 *
168 * ALPHA (global input) DOUBLE PRECISION
169 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
170 * supplied as zero then the local entries of the array A
171 * corresponding to the entries of the submatrix sub( A ) need
172 * not be set on input.
173 *
174 * A (local input) COMPLEX*16 array
175 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
176 * at least Lc( 1, JA+K-1 ) when TRANS = 'N' or 'n', and is at
177 * least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
178 * contains the local entries of the matrix A.
179 * Before entry with TRANS = 'N' or 'n', this array contains the
180 * local entries corresponding to the entries of the n by k sub-
181 * matrix sub( A ), otherwise the local entries corresponding to
182 * the entries of the k by n submatrix sub( A ).
183 *
184 * IA (global input) INTEGER
185 * On entry, IA specifies A's global row index, which points to
186 * the beginning of the submatrix sub( A ).
187 *
188 * JA (global input) INTEGER
189 * On entry, JA specifies A's global column index, which points
190 * to the beginning of the submatrix sub( A ).
191 *
192 * DESCA (global and local input) INTEGER array
193 * On entry, DESCA is an integer array of dimension DLEN_. This
194 * is the array descriptor for the matrix A.
195 *
196 * BETA (global input) DOUBLE PRECISION
197 * On entry, BETA specifies the scalar beta. When BETA is
198 * supplied as zero then the local entries of the array C
199 * corresponding to the entries of the submatrix sub( C ) need
200 * not be set on input.
201 *
202 * C (local input/local output) COMPLEX*16 array
203 * On entry, C is an array of dimension (LLD_C, Kc), where Kc is
204 * at least Lc( 1, JC+N-1 ). Before entry, this array contains
205 * the local entries of the matrix C.
206 * Before entry with UPLO = 'U' or 'u', this array contains
207 * the local entries corresponding to the upper triangular part
208 * of the Hermitian submatrix sub( C ), and the local entries
209 * corresponding to the strictly lower triangular of sub( C )
210 * are not referenced. On exit, the upper triangular part of
211 * sub( C ) is overwritten by the upper triangular part of the
212 * updated submatrix.
213 * Before entry with UPLO = 'L' or 'l', this array contains
214 * the local entries corresponding to the lower triangular part
215 * of the Hermitian submatrix sub( C ), and the local entries
216 * corresponding to the strictly upper triangular of sub( C )
217 * are not referenced. On exit, the lower triangular part of
218 * sub( C ) is overwritten by the lower triangular part of the
219 * updated submatrix.
220 * Note that the imaginary parts of the local entries corres-
221 * ponding to the diagonal elements of sub( C ) need not be
222 * set, they are assumed to be zero, and on exit they are set
223 * to zero.
224 *
225 * IC (global input) INTEGER
226 * On entry, IC specifies C's global row index, which points to
227 * the beginning of the submatrix sub( C ).
228 *
229 * JC (global input) INTEGER
230 * On entry, JC specifies C's global column index, which points
231 * to the beginning of the submatrix sub( C ).
232 *
233 * DESCC (global and local input) INTEGER array
234 * On entry, DESCC is an integer array of dimension DLEN_. This
235 * is the array descriptor for the matrix C.
236 *
237 * -- Written on April 1, 1998 by
238 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
239 *
240 * ---------------------------------------------------------------------
241 */
242 /*
243 * .. Local Scalars ..
244 */
245  char DirA, OpC, OpR, TopC, TopR, TranOp, UploC, ctop, ctopsave,
246  rtop, rtopsave;
247  int Ai, Aj, ChooseAC, Ci, Cj, ForceTop, ctxt, info, mycol,
248  myrow, nb, notran, npcol, nprow, upper;
249  double Aest, ACest, tmp1, tmp2, tmp3, tmp4;
250  cmplx16 Calph;
251  PBTYP_T * type;
252 /*
253 * .. Local Arrays ..
254 */
255  int Ad[DLEN_], Cd[DLEN_];
256 /* ..
257 * .. Executable Statements ..
258 *
259 */
260  upper = ( ( UploC = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
261  notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
262  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
263  PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
264 #ifndef NO_ARGCHK
265 /*
266 * Test the input parameters
267 */
268  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
269  if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
270  {
271  if( ( !upper ) && ( UploC != CLOWER ) )
272  {
273  PB_Cwarn( ctxt, __LINE__, "PZHERK", "Illegal UPLO = %c\n", UploC );
274  info = -1;
275  }
276  else if( ( !notran ) && ( TranOp != CCOTRAN ) )
277  {
278  PB_Cwarn( ctxt, __LINE__, "PZHERK", "Illegal TRANS = %c\n", TranOp );
279  info = -2;
280  }
281  if( notran )
282  PB_Cchkmat( ctxt, "PZHERK", "A", *N, 3, *K, 4, Ai, Aj, Ad, 9,
283  &info );
284  else
285  PB_Cchkmat( ctxt, "PZHERK", "A", *K, 4, *N, 3, Ai, Aj, Ad, 9,
286  &info );
287  PB_Cchkmat( ctxt, "PZHERK", "C", *N, 3, *N, 3, Ci, Cj, Cd, 14,
288  &info );
289  }
290  if( info ) { PB_Cabort( ctxt, "PZHERK", info ); return; }
291 #endif
292 /*
293 * Quick return if possible
294 */
295  if( ( *N == 0 ) ||
296  ( ( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) ) &&
297  ( BETA[REAL_PART] == ONE ) ) )
298  return;
299 /*
300 * Get type structure
301 */
302  type = PB_Cztypeset();
303 /*
304 * And when alpha or K is zero
305 */
306  if( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) )
307  {
308  if( BETA[REAL_PART] == ZERO )
309  {
310  PB_Cplapad( type, &UploC, NOCONJG, *N, *N, type->zero, type->zero,
311  ((char *) C), Ci, Cj, Cd );
312  }
313  else
314  {
315  PB_Cplascal( type, &UploC, CONJG, *N, *N, ((char *) BETA),
316  ((char *) C), Ci, Cj, Cd );
317  }
318  return;
319  }
320 /*
321 * Start the operations
322 */
323 #ifdef NO_ARGCHK
324  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
325 #endif
326  Calph[REAL_PART] = ALPHA[REAL_PART];
327  Calph[IMAG_PART] = ZERO;
328 /*
329 * Algorithm selection is based on approximation of the communication volume
330 * for distributed and aligned operands.
331 *
332 * ACest: both operands sub( A ) and sub( C ) are communicated (K >> N)
333 * Aest : only sub( A ) is communicated (N >> K)
334 */
335  if( notran )
336  {
337  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp3 = DNROC( *K, Ad[NB_], npcol );
338  ACest = (double)(*N) *
339  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp3 ) +
340  ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO :
341  CBRATIO * tmp1 / TWO ) );
342  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
343  tmp4 = DNROC( *N, Ad[MB_], nprow );
344  Aest = (double)(*K) *
345  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
346  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
347  }
348  else
349  {
350  tmp2 = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
351  ACest = (double)(*N) *
352  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp4 ) +
353  ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO :
354  CBRATIO * tmp2 / TWO ) );
355  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
356  tmp3 = DNROC( *N, Ad[NB_], npcol );
357  Aest = (double)(*K) *
358  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
359  ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
360  }
361 /*
362 * Shift a little the cross-over point between both algorithms.
363 */
364  ChooseAC = ( ( 1.3 * ACest ) <= Aest );
365 /*
366 * BLACS topologies are enforced iff N and K are strictly greater than the
367 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
368 * routine calling this routine has already selected an adequate topology.
369 */
370  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
371  ForceTop = ( ( *N > nb ) && ( *K > nb ) );
372 
373  if( ChooseAC )
374  {
375  if( notran )
376  {
377  OpC = CBCAST;
378  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
379 
380  if( ForceTop )
381  {
382  OpR = CCOMBINE;
383  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
384 
385  rtopsave = rtop;
386  ctopsave = ctop;
387 
388  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
389  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
390 
391  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
392  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
393 /*
394 * Remove the next line when the BLACS combine operations support ring
395 * topologies
396 */
397  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
398  }
399 
400  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
401  }
402  else
403  {
404  OpR = CBCAST;
405  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
406 
407  if( ForceTop )
408  {
409  OpC = CCOMBINE;
410  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
411 
412  rtopsave = rtop;
413  ctopsave = ctop;
414 
415  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
416  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
417 
418  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
419  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
420 /*
421 * Remove the next line when the BLACS combine operations support ring
422 * topologies
423 */
424  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
425  }
426  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
427  }
428 
429  PB_CpsyrkAC( type, &DirA, CONJG, &UploC, ( notran ? NOTRAN : COTRAN ),
430  *N, *K, ((char *)Calph), ((char *)A), Ai, Aj, Ad,
431  ((char *)BETA), ((char *)C), Ci, Cj, Cd );
432  }
433  else
434  {
435  if( notran )
436  {
437  OpR = CBCAST;
438  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
439 
440  if( ForceTop )
441  {
442  OpC = CBCAST;
443  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
444 
445  rtopsave = rtop;
446  ctopsave = ctop;
447 /*
448 * No clear winner for the ring topologies, so that if a ring topology is
449 * already selected, keep it.
450 */
451  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
452  ( rtop != CTOP_SRING ) )
453  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
454  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
455  ( ctop != CTOP_SRING ) )
456  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
457  }
458 
459  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
460  }
461  else
462  {
463  OpC = CBCAST;
464  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
465 
466  if( ForceTop )
467  {
468  OpR = CBCAST;
469  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
470 
471  rtopsave = rtop;
472  ctopsave = ctop;
473 /*
474 * No clear winner for the ring topologies, so that if a ring topology is
475 * already selected, keep it.
476 */
477  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
478  ( rtop != CTOP_SRING ) )
479  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
480  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
481  ( ctop != CTOP_SRING ) )
482  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
483  }
484 
485  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
486  }
487 
488  PB_CpsyrkA( type, &DirA, CONJG, &UploC, ( notran ? NOTRAN : COTRAN ),
489  *N, *K, ((char *)Calph), ((char *)A), Ai, Aj, Ad,
490  ((char *)BETA), ((char *)C), Ci, Cj, Cd );
491  }
492 /*
493 * Restore the BLACS topologies when necessary.
494 */
495  if( ForceTop )
496  {
497  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
498  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
499  }
500 /*
501 * End of PZHERK
502 */
503 }
TOP_SRING
#define TOP_SRING
Definition: PBblacs.h:54
ROW
#define ROW
Definition: PBblacs.h:46
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
CCOTRAN
#define CCOTRAN
Definition: PBblas.h:22
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
PB_Cztypeset
PBTYP_T * PB_Cztypeset()
Definition: PB_Cztypeset.c:19
DLEN_
#define DLEN_
Definition: PBtools.h:48
PB_CpsyrkA
void PB_CpsyrkA()
NOTRAN
#define NOTRAN
Definition: PBblas.h:44
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
PB_CpsyrkAC
void PB_CpsyrkAC()
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
pilaenv_
int pilaenv_()
PB_Cplascal
void PB_Cplascal()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
CLOWER
#define CLOWER
Definition: PBblas.h:25
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
cmplx16
double cmplx16[2]
Definition: pblas.h:133
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
ONE
#define ONE
Definition: PBtools.h:64
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
pzherk_
void pzherk_(F_CHAR_T UPLO, F_CHAR_T TRANS, int *N, int *K, double *ALPHA, double *A, int *IA, int *JA, int *DESCA, double *BETA, double *C, int *IC, int *JC, int *DESCC)
Definition: pzherk_.c:26
PB_CargFtoC
void PB_CargFtoC()
CONJG
#define CONJG
Definition: PBblas.h:47
COTRAN
#define COTRAN
Definition: PBblas.h:48
PB_Cchkmat
void PB_Cchkmat()
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CUPPER
#define CUPPER
Definition: PBblas.h:26
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
TWO
#define TWO
Definition: PBtools.h:65
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
IMAG_PART
#define IMAG_PART
Definition: pblas.h:136
PBTYP_T::zero
char * zero
Definition: pblas.h:331
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111