SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
All Classes Files Functions Variables Typedefs Macros
pctranc_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pctranc_( Int * M, Int * N,
21 float * ALPHA,
22 float * A, Int * IA, Int * JA, Int * DESCA,
23 float * BETA,
24 float * C, Int * IC, Int * JC, Int * DESCC )
25#else
26void pctranc_( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )
27/*
28* .. Scalar Arguments ..
29*/
30 Int * IA, * IC, * JA, * JC, * M, * N;
31 float * ALPHA, * BETA;
32/*
33* .. Array Arguments ..
34*/
35 Int * DESCA, * DESCC;
36 float * A, * C;
37#endif
38{
39/*
40* Purpose
41* =======
42*
43* PCTRANC transposes a matrix
44*
45* sub( C ) := beta*sub( C ) + alpha*op( sub( A ) )
46*
47* where
48*
49* sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1),
50*
51* sub( A ) denotes A(IA:IA+N-1,JA:JA+M-1), and,
52*
53* op( X ) = conjg( X )'.
54*
55* Thus, op( sub( A ) ) denotes conjg( A(IA:IA+N-1,JA:JA+M-1)' ).
56*
57* Beta is a scalar, sub( C ) is an m by n submatrix, and sub( A ) is an
58* n by m submatrix.
59*
60* Notes
61* =====
62*
63* A description vector is associated with each 2D block-cyclicly dis-
64* tributed matrix. This vector stores the information required to
65* establish the mapping between a matrix entry and its corresponding
66* process and memory location.
67*
68* In the following comments, the character _ should be read as
69* "of the distributed matrix". Let A be a generic term for any 2D
70* block cyclicly distributed matrix. Its description vector is DESC_A:
71*
72* NOTATION STORED IN EXPLANATION
73* ---------------- --------------- ------------------------------------
74* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
75* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
76* the NPROW x NPCOL BLACS process grid
77* A is distributed over. The context
78* itself is global, but the handle
79* (the integer value) may vary.
80* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
81* ted matrix A, M_A >= 0.
82* N_A (global) DESCA[ N_ ] The number of columns in the distri-
83* buted matrix A, N_A >= 0.
84* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
85* block of the matrix A, IMB_A > 0.
86* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
87* left block of the matrix A,
88* INB_A > 0.
89* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
90* bute the last M_A-IMB_A rows of A,
91* MB_A > 0.
92* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
93* bute the last N_A-INB_A columns of
94* A, NB_A > 0.
95* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
96* row of the matrix A is distributed,
97* NPROW > RSRC_A >= 0.
98* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
99* first column of A is distributed.
100* NPCOL > CSRC_A >= 0.
101* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
102* array storing the local blocks of
103* the distributed matrix A,
104* IF( Lc( 1, N_A ) > 0 )
105* LLD_A >= MAX( 1, Lr( 1, M_A ) )
106* ELSE
107* LLD_A >= 1.
108*
109* Let K be the number of rows of a matrix A starting at the global in-
110* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
111* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
112* receive if these K rows were distributed over NPROW processes. If K
113* is the number of columns of a matrix A starting at the global index
114* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
115* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
116* these K columns were distributed over NPCOL processes.
117*
118* The values of Lr() and Lc() may be determined via a call to the func-
119* tion PB_Cnumroc:
120* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
121* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
122*
123* Arguments
124* =========
125*
126* M (global input) INTEGER
127* On entry, M specifies the number of rows of the submatrix
128* sub( C ) and the number of columns of the submatrix sub( A ).
129* M must be at least zero.
130*
131* N (global input) INTEGER
132* On entry, N specifies the number of columns of the submatrix
133* sub( C ) and the number of rows of the submatrix sub( A ). N
134* must be at least zero.
135*
136* ALPHA (global input) COMPLEX
137* On entry, ALPHA specifies the scalar alpha. When ALPHA is
138* supplied as zero then the local entries of the array A
139* corresponding to the entries of the submatrix sub( A ) need
140* not be set on input.
141*
142* A (local input) COMPLEX array
143* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
144* at least Lc( 1, JA+M-1 ). Before entry, this array contains
145* the local entries of the matrix A.
146*
147* IA (global input) INTEGER
148* On entry, IA specifies A's global row index, which points to
149* the beginning of the submatrix sub( A ).
150*
151* JA (global input) INTEGER
152* On entry, JA specifies A's global column index, which points
153* to the beginning of the submatrix sub( A ).
154*
155* DESCA (global and local input) INTEGER array
156* On entry, DESCA is an integer array of dimension DLEN_. This
157* is the array descriptor for the matrix A.
158*
159* BETA (global input) COMPLEX
160* On entry, BETA specifies the scalar beta. When BETA is
161* supplied as zero then the local entries of the array C
162* corresponding to the entries of the submatrix sub( C ) need
163* not be set on input.
164*
165* C (local input/local output) COMPLEX array
166* On entry, C is an array of dimension (LLD_C, Kc), where Kc is
167* at least Lc( 1, JC+N-1 ). Before entry, this array contains
168* the local entries of the matrix C.
169* On exit, the entries of this array corresponding to the local
170* entries of the submatrix sub( C ) are overwritten by the
171* local entries of the m by n updated submatrix.
172*
173* IC (global input) INTEGER
174* On entry, IC specifies C's global row index, which points to
175* the beginning of the submatrix sub( C ).
176*
177* JC (global input) INTEGER
178* On entry, JC specifies C's global column index, which points
179* to the beginning of the submatrix sub( C ).
180*
181* DESCC (global and local input) INTEGER array
182* On entry, DESCC is an integer array of dimension DLEN_. This
183* is the array descriptor for the matrix C.
184*
185* -- Written on April 1, 1998 by
186* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
187*
188* ---------------------------------------------------------------------
189*/
190/*
191* .. Local Scalars ..
192*/
193 Int Ai, Aj, Ci, Cj, ctxt, info, mycol, myrow, npcol, nprow;
194/*
195* .. Local Arrays ..
196*/
197 Int Ad[DLEN_], Cd[DLEN_];
198/* ..
199* .. Executable Statements ..
200*
201*/
202 PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
203 PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
204#ifndef NO_ARGCHK
205/*
206* Test the input parameters
207*/
208 Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
209 if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
210 {
211 PB_Cchkmat( ctxt, "PCTRANC", "A", *N, 2, *M, 1, Ai, Aj, Ad, 7, &info );
212 PB_Cchkmat( ctxt, "PCTRANC", "C", *M, 1, *N, 2, Ci, Cj, Cd, 12, &info );
213 }
214 if( info ) { PB_Cabort( ctxt, "PCTRANC", info ); return; }
215#endif
216/*
217* Quick return if possible
218*/
219 if( ( *M == 0 ) || ( *N == 0 ) ||
220 ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) &&
221 ( BETA [REAL_PART] == ONE && BETA [IMAG_PART] == ZERO ) ) )
222 return;
223/*
224* And when alpha is zero
225*/
226 if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) )
227 {
228 if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
229 {
230 PB_Cplapad( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
231 ((char *)BETA), ((char *) C), Ci, Cj, Cd );
232 }
233 else
234 {
235 PB_Cplascal( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
236 ((char * )C), Ci, Cj, Cd );
237 }
238 return;
239 }
240/*
241* Start the operations
242*/
243 PB_Cptran( PB_Cctypeset(), CONJG, *M, *N, ((char *) ALPHA),
244 ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C),
245 Ci, Cj, Cd );
246/*
247* End of PCTRANC
248*/
249}
#define Int
Definition Bconfig.h:22
#define REAL_PART
Definition pblas.h:139
#define IMAG_PART
Definition pblas.h:140
void Cblacs_gridinfo()
#define CONJG
Definition PBblas.h:47
#define ALL
Definition PBblas.h:50
#define NOCONJG
Definition PBblas.h:45
#define pctranc_
Definition PBpblas.h:196
#define CTXT_
Definition PBtools.h:38
void PB_Cabort()
#define ONE
Definition PBtools.h:64
void PB_Cptran()
void PB_Cchkmat()
void PB_Cplapad()
void PB_Cplascal()
void PB_CargFtoC()
PBTYP_T * PB_Cctypeset()
#define ZERO
Definition PBtools.h:66
#define DLEN_
Definition PBtools.h:48