ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pdsyrk_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void pdsyrk_( F_CHAR_T UPLO, F_CHAR_T TRANS, int * N, int * K,
21  double * ALPHA,
22  double * A, int * IA, int * JA, int * DESCA,
23  double * BETA,
24  double * C, int * IC, int * JC, int * DESCC )
25 #else
26 void pdsyrk_( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA,
27  C, IC, JC, DESCC )
28 /*
29 * .. Scalar Arguments ..
30 */
31  F_CHAR_T TRANS, UPLO;
32  int * IA, * IC, * JA, * JC, * K, * N;
33  double * ALPHA, * BETA;
34 /*
35 * .. Array Arguments ..
36 */
37  int * DESCA, * DESCC;
38  double * A, * C;
39 #endif
40 {
41 /*
42 * Purpose
43 * =======
44 *
45 * PDSYRK performs one of the symmetric rank k operations
46 *
47 * sub( C ) := alpha*sub( A )*sub( A )' + beta*sub( C ),
48 *
49 * or
50 *
51 * sub( C ) := alpha*sub( A )'*sub( A ) + beta*sub( C ),
52 *
53 * where
54 *
55 * sub( C ) denotes C(IC:IC+N-1,JC:JC+N-1), and,
56 *
57 * sub( A ) denotes A(IA:IA+N-1,JA:JA+K-1) if TRANS = 'N',
58 * A(IA:IA+K-1,JA:JA+N-1) otherwise.
59 *
60 * Alpha and beta are scalars, sub( C ) is an n by n symmetric
61 * submatrix and sub( A ) is an n by k submatrix in the first case and a
62 * k by n submatrix in the second case.
63 *
64 * Notes
65 * =====
66 *
67 * A description vector is associated with each 2D block-cyclicly dis-
68 * tributed matrix. This vector stores the information required to
69 * establish the mapping between a matrix entry and its corresponding
70 * process and memory location.
71 *
72 * In the following comments, the character _ should be read as
73 * "of the distributed matrix". Let A be a generic term for any 2D
74 * block cyclicly distributed matrix. Its description vector is DESC_A:
75 *
76 * NOTATION STORED IN EXPLANATION
77 * ---------------- --------------- ------------------------------------
78 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
79 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
80 * the NPROW x NPCOL BLACS process grid
81 * A is distributed over. The context
82 * itself is global, but the handle
83 * (the integer value) may vary.
84 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
85 * ted matrix A, M_A >= 0.
86 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
87 * buted matrix A, N_A >= 0.
88 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
89 * block of the matrix A, IMB_A > 0.
90 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
91 * left block of the matrix A,
92 * INB_A > 0.
93 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
94 * bute the last M_A-IMB_A rows of A,
95 * MB_A > 0.
96 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
97 * bute the last N_A-INB_A columns of
98 * A, NB_A > 0.
99 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
100 * row of the matrix A is distributed,
101 * NPROW > RSRC_A >= 0.
102 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
103 * first column of A is distributed.
104 * NPCOL > CSRC_A >= 0.
105 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
106 * array storing the local blocks of
107 * the distributed matrix A,
108 * IF( Lc( 1, N_A ) > 0 )
109 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
110 * ELSE
111 * LLD_A >= 1.
112 *
113 * Let K be the number of rows of a matrix A starting at the global in-
114 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
115 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
116 * receive if these K rows were distributed over NPROW processes. If K
117 * is the number of columns of a matrix A starting at the global index
118 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
119 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
120 * these K columns were distributed over NPCOL processes.
121 *
122 * The values of Lr() and Lc() may be determined via a call to the func-
123 * tion PB_Cnumroc:
124 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
125 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
126 *
127 * Arguments
128 * =========
129 *
130 * UPLO (global input) CHARACTER*1
131 * On entry, UPLO specifies whether the local pieces of
132 * the array C containing the upper or lower triangular part
133 * of the symmetric submatrix sub( C ) are to be referenced as
134 * follows:
135 *
136 * UPLO = 'U' or 'u' Only the local pieces corresponding to
137 * the upper triangular part of the
138 * symmetric submatrix sub( C ) are to be
139 * referenced,
140 *
141 * UPLO = 'L' or 'l' Only the local pieces corresponding to
142 * the lower triangular part of the
143 * symmetric submatrix sub( C ) are to be
144 * referenced.
145 *
146 * TRANS (global input) CHARACTER*1
147 * On entry, TRANS specifies the operation to be performed as
148 * follows:
149 *
150 * TRANS = 'N' or 'n'
151 * sub( C ) := alpha*sub( A )*sub( A )' + beta*sub( C ),
152 *
153 * TRANS = 'T' or 't'
154 * sub( C ) := alpha*sub( A )'*sub( A ) + beta*sub( C ).
155 *
156 * TRANS = 'C' or 'c'
157 * sub( C ) := alpha*sub( A )'*sub( A ) + beta*sub( C ).
158 *
159 * N (global input) INTEGER
160 * On entry, N specifies the order of the submatrix sub( C ).
161 * N must be at least zero.
162 *
163 * K (global input) INTEGER
164 * On entry, with TRANS = 'N' or 'n', K specifies the number of
165 * columns of the submatrix sub( A ), and with TRANS = 'T' or
166 * 't' or 'C' or 'c', K specifies the number of rows of the sub-
167 * matrix sub( A ). K must be at least zero.
168 *
169 * ALPHA (global input) DOUBLE PRECISION
170 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
171 * supplied as zero then the local entries of the array A
172 * corresponding to the entries of the submatrix sub( A ) need
173 * not be set on input.
174 *
175 * A (local input) DOUBLE PRECISION array
176 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
177 * at least Lc( 1, JA+K-1 ) when TRANS = 'N' or 'n', and is at
178 * least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
179 * contains the local entries of the matrix A.
180 * Before entry with TRANS = 'N' or 'n', this array contains the
181 * local entries corresponding to the entries of the n by k sub-
182 * matrix sub( A ), otherwise the local entries corresponding to
183 * the entries of the k by n submatrix sub( A ).
184 *
185 * IA (global input) INTEGER
186 * On entry, IA specifies A's global row index, which points to
187 * the beginning of the submatrix sub( A ).
188 *
189 * JA (global input) INTEGER
190 * On entry, JA specifies A's global column index, which points
191 * to the beginning of the submatrix sub( A ).
192 *
193 * DESCA (global and local input) INTEGER array
194 * On entry, DESCA is an integer array of dimension DLEN_. This
195 * is the array descriptor for the matrix A.
196 *
197 * BETA (global input) DOUBLE PRECISION
198 * On entry, BETA specifies the scalar beta. When BETA is
199 * supplied as zero then the local entries of the array C
200 * corresponding to the entries of the submatrix sub( C ) need
201 * not be set on input.
202 *
203 * C (local input/local output) DOUBLE PRECISION array
204 * On entry, C is an array of dimension (LLD_C, Kc), where Kc is
205 * at least Lc( 1, JC+N-1 ). Before entry, this array contains
206 * the local entries of the matrix C.
207 * Before entry with UPLO = 'U' or 'u', this array contains
208 * the local entries corresponding to the upper triangular part
209 * of the symmetric submatrix sub( C ), and the local entries
210 * corresponding to the strictly lower triangular of sub( C )
211 * are not referenced. On exit, the upper triangular part of
212 * sub( C ) is overwritten by the upper triangular part of the
213 * updated submatrix.
214 * Before entry with UPLO = 'L' or 'l', this array contains
215 * the local entries corresponding to the lower triangular part
216 * of the symmetric submatrix sub( C ), and the local entries
217 * corresponding to the strictly upper triangular of sub( C )
218 * are not referenced. On exit, the lower triangular part of
219 * sub( C ) is overwritten by the lower triangular part of the
220 * updated submatrix.
221 *
222 * IC (global input) INTEGER
223 * On entry, IC specifies C's global row index, which points to
224 * the beginning of the submatrix sub( C ).
225 *
226 * JC (global input) INTEGER
227 * On entry, JC specifies C's global column index, which points
228 * to the beginning of the submatrix sub( C ).
229 *
230 * DESCC (global and local input) INTEGER array
231 * On entry, DESCC is an integer array of dimension DLEN_. This
232 * is the array descriptor for the matrix C.
233 *
234 * -- Written on April 1, 1998 by
235 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
236 *
237 * ---------------------------------------------------------------------
238 */
239 /*
240 * .. Local Scalars ..
241 */
242  char DirA, OpC, OpR, TopC, TopR, TranOp, UploC, ctop, ctopsave,
243  rtop, rtopsave;
244  int Ai, Aj, ChooseAC, Ci, Cj, ForceTop, ctxt, info, mycol,
245  myrow, nb, notran, npcol, nprow, upper;
246  double Aest, ACest, tmp1, tmp2, tmp3, tmp4;
247  PBTYP_T * type;
248 /*
249 * .. Local Arrays ..
250 */
251  int Ad[DLEN_], Cd[DLEN_];
252 /* ..
253 * .. Executable Statements ..
254 *
255 */
256  upper = ( ( UploC = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
257  notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
258  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
259  PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
260 #ifndef NO_ARGCHK
261 /*
262 * Test the input parameters
263 */
264  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
265  if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
266  {
267  if( ( !upper ) && ( UploC != CLOWER ) )
268  {
269  PB_Cwarn( ctxt, __LINE__, "PDSYRK", "Illegal UPLO = %c\n", UploC );
270  info = -1;
271  }
272  else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) )
273  {
274  PB_Cwarn( ctxt, __LINE__, "PDSYRK", "Illegal TRANS = %c\n", TranOp );
275  info = -2;
276  }
277  if( notran )
278  PB_Cchkmat( ctxt, "PDSYRK", "A", *N, 3, *K, 4, Ai, Aj, Ad, 9,
279  &info );
280  else
281  PB_Cchkmat( ctxt, "PDSYRK", "A", *K, 4, *N, 3, Ai, Aj, Ad, 9,
282  &info );
283  PB_Cchkmat( ctxt, "PDSYRK", "C", *N, 3, *N, 3, Ci, Cj, Cd, 14,
284  &info );
285  }
286  if( info ) { PB_Cabort( ctxt, "PDSYRK", info ); return; }
287 #endif
288 /*
289 * Quick return if possible
290 */
291  if( ( *N == 0 ) ||
292  ( ( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) ) &&
293  ( BETA[REAL_PART] == ONE ) ) )
294  return;
295 /*
296 * Get type structure
297 */
298  type = PB_Cdtypeset();
299 /*
300 * And when alpha or K is zero
301 */
302  if( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) )
303  {
304  if( BETA[REAL_PART] == ZERO )
305  {
306  PB_Cplapad( type, &UploC, NOCONJG, *N, *N, type->zero, type->zero,
307  ((char *) C), Ci, Cj, Cd );
308  }
309  else
310  {
311  PB_Cplascal( type, &UploC, NOCONJG, *N, *N, ((char *) BETA),
312  ((char *) C), Ci, Cj, Cd );
313  }
314  return;
315  }
316 /*
317 * Start the operations
318 */
319 #ifdef NO_ARGCHK
320  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
321 #endif
322 /*
323 * Algorithm selection is based on approximation of the communication volume
324 * for distributed and aligned operands.
325 *
326 * ACest: both operands sub( A ) and sub( C ) are communicated (K >> N)
327 * Aest : only sub( A ) is communicated (N >> K)
328 */
329  if( notran )
330  {
331  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp3 = DNROC( *K, Ad[NB_], npcol );
332  ACest = (double)(*N) *
333  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp3 ) +
334  ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO :
335  CBRATIO * tmp1 / TWO ) );
336  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
337  tmp4 = DNROC( *N, Ad[MB_], nprow );
338  Aest = (double)(*K) *
339  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
340  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
341  }
342  else
343  {
344  tmp2 = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
345  ACest = (double)(*N) *
346  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp4 ) +
347  ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO :
348  CBRATIO * tmp2 / TWO ) );
349  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
350  tmp3 = DNROC( *N, Ad[NB_], npcol );
351  Aest = (double)(*K) *
352  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
353  ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
354  }
355 /*
356 * Shift a little the cross-over point between both algorithms.
357 */
358  ChooseAC = ( ( 1.3 * ACest ) <= Aest );
359 /*
360 * BLACS topologies are enforced iff N and K are strictly greater than the
361 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
362 * routine calling this routine has already selected an adequate topology.
363 */
364  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
365  ForceTop = ( ( *N > nb ) && ( *K > nb ) );
366 
367  if( ChooseAC )
368  {
369  if( notran )
370  {
371  OpC = CBCAST;
372  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
373 
374  if( ForceTop )
375  {
376  OpR = CCOMBINE;
377  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
378 
379  rtopsave = rtop;
380  ctopsave = ctop;
381 
382  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
383  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
384 
385  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
386  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
387 /*
388 * Remove the next line when the BLACS combine operations support ring
389 * topologies
390 */
391  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
392  }
393 
394  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
395  }
396  else
397  {
398  OpR = CBCAST;
399  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
400 
401  if( ForceTop )
402  {
403  OpC = CCOMBINE;
404  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
405 
406  rtopsave = rtop;
407  ctopsave = ctop;
408 
409  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
410  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
411 
412  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
413  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
414 /*
415 * Remove the next line when the BLACS combine operations support ring
416 * topologies
417 */
418  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
419  }
420  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
421  }
422 
423  PB_CpsyrkAC( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ), *N,
424  *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)BETA),
425  ((char *)C), Ci, Cj, Cd );
426  }
427  else
428  {
429  if( notran )
430  {
431  OpR = CBCAST;
432  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
433 
434  if( ForceTop )
435  {
436  OpC = CBCAST;
437  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
438 
439  rtopsave = rtop;
440  ctopsave = ctop;
441 /*
442 * No clear winner for the ring topologies, so that if a ring topology is
443 * already selected, keep it.
444 */
445  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
446  ( rtop != CTOP_SRING ) )
447  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
448  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
449  ( ctop != CTOP_SRING ) )
450  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
451  }
452 
453  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
454  }
455  else
456  {
457  OpC = CBCAST;
458  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
459 
460  if( ForceTop )
461  {
462  OpR = CBCAST;
463  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
464 
465  rtopsave = rtop;
466  ctopsave = ctop;
467 /*
468 * No clear winner for the ring topologies, so that if a ring topology is
469 * already selected, keep it.
470 */
471  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
472  ( rtop != CTOP_SRING ) )
473  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
474  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
475  ( ctop != CTOP_SRING ) )
476  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
477  }
478 
479  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
480  }
481 
482  PB_CpsyrkA( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ), *N,
483  *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)BETA),
484  ((char *)C), Ci, Cj, Cd );
485  }
486 /*
487 * Restore the BLACS topologies when necessary.
488 */
489  if( ForceTop )
490  {
491  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
492  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
493  }
494 /*
495 * End of PDSYRK
496 */
497 }
TOP_SRING
#define TOP_SRING
Definition: PBblacs.h:54
ROW
#define ROW
Definition: PBblacs.h:46
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
CCOTRAN
#define CCOTRAN
Definition: PBblas.h:22
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
DLEN_
#define DLEN_
Definition: PBtools.h:48
PB_CpsyrkA
void PB_CpsyrkA()
TRAN
#define TRAN
Definition: PBblas.h:46
NOTRAN
#define NOTRAN
Definition: PBblas.h:44
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
PB_Cdtypeset
PBTYP_T * PB_Cdtypeset()
Definition: PB_Cdtypeset.c:19
PB_CpsyrkAC
void PB_CpsyrkAC()
pdsyrk_
void pdsyrk_(F_CHAR_T UPLO, F_CHAR_T TRANS, int *N, int *K, double *ALPHA, double *A, int *IA, int *JA, int *DESCA, double *BETA, double *C, int *IC, int *JC, int *DESCC)
Definition: pdsyrk_.c:26
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
pilaenv_
int pilaenv_()
PB_Cplascal
void PB_Cplascal()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
CLOWER
#define CLOWER
Definition: PBblas.h:25
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
ONE
#define ONE
Definition: PBtools.h:64
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
PB_CargFtoC
void PB_CargFtoC()
PB_Cchkmat
void PB_Cchkmat()
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CUPPER
#define CUPPER
Definition: PBblas.h:26
CTRAN
#define CTRAN
Definition: PBblas.h:20
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
TWO
#define TWO
Definition: PBtools.h:65
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
PBTYP_T::zero
char * zero
Definition: pblas.h:331
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111