SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ psasum_()

void psasum_ ( Int N,
float *  ASUM,
float *  X,
Int IX,
Int JX,
Int DESCX,
Int INCX 
)

Definition at line 23 of file psasum_.c.

35{
36/*
37* Purpose
38* =======
39*
40* PSASUM returns the sum of absolute values of the entries of a subvec-
41* tor sub( X ),
42*
43* where
44*
45* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
46* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
47*
48* Notes
49* =====
50*
51* A description vector is associated with each 2D block-cyclicly dis-
52* tributed matrix. This vector stores the information required to
53* establish the mapping between a matrix entry and its corresponding
54* process and memory location.
55*
56* In the following comments, the character _ should be read as
57* "of the distributed matrix". Let A be a generic term for any 2D
58* block cyclicly distributed matrix. Its description vector is DESC_A:
59*
60* NOTATION STORED IN EXPLANATION
61* ---------------- --------------- ------------------------------------
62* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
63* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
64* the NPROW x NPCOL BLACS process grid
65* A is distributed over. The context
66* itself is global, but the handle
67* (the integer value) may vary.
68* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
69* ted matrix A, M_A >= 0.
70* N_A (global) DESCA[ N_ ] The number of columns in the distri-
71* buted matrix A, N_A >= 0.
72* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
73* block of the matrix A, IMB_A > 0.
74* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
75* left block of the matrix A,
76* INB_A > 0.
77* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
78* bute the last M_A-IMB_A rows of A,
79* MB_A > 0.
80* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
81* bute the last N_A-INB_A columns of
82* A, NB_A > 0.
83* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
84* row of the matrix A is distributed,
85* NPROW > RSRC_A >= 0.
86* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
87* first column of A is distributed.
88* NPCOL > CSRC_A >= 0.
89* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
90* array storing the local blocks of
91* the distributed matrix A,
92* IF( Lc( 1, N_A ) > 0 )
93* LLD_A >= MAX( 1, Lr( 1, M_A ) )
94* ELSE
95* LLD_A >= 1.
96*
97* Let K be the number of rows of a matrix A starting at the global in-
98* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
99* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
100* receive if these K rows were distributed over NPROW processes. If K
101* is the number of columns of a matrix A starting at the global index
102* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
103* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
104* these K columns were distributed over NPCOL processes.
105*
106* The values of Lr() and Lc() may be determined via a call to the func-
107* tion PB_Cnumroc:
108* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
109* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
110*
111* Arguments
112* =========
113*
114* N (global input) INTEGER
115* On entry, N specifies the length of the subvector sub( X ).
116* N must be at least zero.
117*
118* ASUM (local output) REAL
119* On exit, ASUM specifies the sum of absolute values of the
120* subvector sub( X ) only in its scope (See below for further
121* details).
122*
123* X (local input) REAL array
124* On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
125* is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and
126* MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least
127* Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise.
128* Before entry, this array contains the local entries of the
129* matrix X.
130*
131* IX (global input) INTEGER
132* On entry, IX specifies X's global row index, which points to
133* the beginning of the submatrix sub( X ).
134*
135* JX (global input) INTEGER
136* On entry, JX specifies X's global column index, which points
137* to the beginning of the submatrix sub( X ).
138*
139* DESCX (global and local input) INTEGER array
140* On entry, DESCX is an integer array of dimension DLEN_. This
141* is the array descriptor for the matrix X.
142*
143* INCX (global input) INTEGER
144* On entry, INCX specifies the global increment for the
145* elements of X. Only two values of INCX are supported in
146* this version, namely 1 and M_X. INCX must not be zero.
147*
148* Further Details
149* ===============
150*
151* When the result of a vector-oriented PBLAS call is a scalar, this
152* scalar is set only within the process scope which owns the vector(s)
153* being operated on. Let sub( X ) be a generic term for the input vec-
154* tor(s). Then, the processes owning the correct the answer is determi-
155* ned as follows: if an operation involves more than one vector, the
156* processes receiving the result will be the union of the following set
157* of processes for each vector:
158*
159* If N = 1, M_X = 1 and INCX = 1, then one cannot determine if a pro-
160* cess row or process column owns the vector operand, therefore only
161* the process owning sub( X ) receives the correct result;
162*
163* If INCX = M_X, then sub( X ) is a vector distributed over a process
164* row. Each process in this row receives the result;
165*
166* If INCX = 1, then sub( X ) is a vector distributed over a process
167* column. Each process in this column receives the result;
168*
169* -- Written on April 1, 1998 by
170* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
171*
172* ---------------------------------------------------------------------
173*/
174/*
175* .. Local Scalars ..
176*/
177 char top;
178 Int Xcol, Xi, Xii, Xj, Xjj, Xld, Xnp, Xnq, Xrow, ctxt, info,
179 mycol, myrow, npcol, nprow;
180/*
181* .. Local Arrays ..
182*/
183 Int Xd[DLEN_];
184/* ..
185* .. Executable Statements ..
186*
187*/
188 PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
189#ifndef NO_ARGCHK
190/*
191* Test the input parameters
192*/
193 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
194 if( !( info = ( ( nprow == -1 ) ? -( 601 + CTXT_ ) : 0 ) ) )
195 PB_Cchkvec( ctxt, "PSASUM", "X", *N, 1, Xi, Xj, Xd, *INCX, 6, &info );
196 if( info ) { PB_Cabort( ctxt, "PSASUM", info ); return; }
197#endif
198/*
199* Initialize ASUM
200*/
201 *ASUM = ZERO;
202/*
203* Quick return if possible
204*/
205 if( *N == 0 ) return;
206/*
207* Retrieve process grid information
208*/
209#ifdef NO_ARGCHK
210 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
211#endif
212/*
213* Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol
214*/
215 PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj,
216 &Xrow, &Xcol );
217/*
218* Handle degenerate case separately, sub( X )'s scope is just one process
219*/
220 if( ( *N == 1 ) && ( *INCX == 1 ) && ( Xd[M_] == 1 ) )
221 {
222/*
223* Make sure I own some data and compute ASUM
224*/
225 if( ( ( myrow == Xrow ) || ( Xrow < 0 ) ) &&
226 ( ( mycol == Xcol ) || ( Xcol < 0 ) ) )
227 {
228 *ASUM = ABS( *Mptr(X,Xii,Xjj,Xd[LLD_],1) );
229 }
230 return;
231 }
232 else if( *INCX == Xd[M_] )
233 {
234/*
235* sub( X ) resides in (a) process row(s)
236*/
237 if( ( myrow == Xrow ) || ( Xrow < 0 ) )
238 {
239/*
240* Make sure I own some data and compute the local sum
241*/
242 Xnq = PB_Cnumroc( *N, Xj, Xd[INB_], Xd[NB_], mycol, Xd[CSRC_], npcol );
243 if( Xnq > 0 )
244 {
245 Xld = Xd[LLD_];
246 svasum_( &Xnq, ((char *) ASUM), ((char *)Mptr( X,Xii,Xjj,Xld,1) ),
247 &Xld );
248 }
249/*
250* If Xnq <= 0, ASUM is zero (see initialization above)
251*/
252 if( ( npcol > 1 ) && ( Xcol >= 0 ) )
253 {
254/*
255* Combine the local results if npcol > 1 and Xcol >= 0, i.e sub( X ) is
256* distributed.
257*/
258 top = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET );
259 Csgsum2d( ctxt, ROW, &top, 1, 1, ((char *)ASUM), 1, -1,
260 mycol );
261 }
262 }
263 return;
264 }
265 else
266 {
267/*
268* sub( X ) resides in (a) process column(s)
269*/
270 if( ( mycol == Xcol ) || ( Xcol < 0 ) )
271 {
272/*
273* Make sure I own some data and compute the local sum
274*/
275 Xnp = PB_Cnumroc( *N, Xi, Xd[IMB_], Xd[MB_], myrow, Xd[RSRC_], nprow );
276 if( Xnp > 0 )
277 {
278 svasum_( &Xnp, ((char *) ASUM),
279 ((char *)Mptr( X,Xii,Xjj,Xd[LLD_],1) ), INCX );
280 }
281/*
282* If Xnp <= 0, ASUM is zero (see initialization above)
283*/
284 if( ( nprow > 1 ) && ( Xrow >= 0 ) )
285 {
286/*
287* Combine the local results if nprow > 1 and Xrow >= 0, i.e sub( X ) is
288* distributed.
289*/
290 top = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET );
291 Csgsum2d( ctxt, COLUMN, &top, 1, 1, ((char *)ASUM), 1, -1,
292 mycol );
293 }
294 }
295 return;
296 }
297/*
298* End of PSASUM
299*/
300}
#define Int
Definition Bconfig.h:22
#define TOP_GET
Definition PBblacs.h:50
#define COLUMN
Definition PBblacs.h:45
#define COMBINE
Definition PBblacs.h:49
#define ROW
Definition PBblacs.h:46
void Cblacs_gridinfo()
void Csgsum2d()
#define CTXT_
Definition PBtools.h:38
#define MB_
Definition PBtools.h:43
void PB_Cabort()
void PB_Cchkvec()
void PB_Cinfog2l()
#define Mptr(a_, i_, j_, lda_, siz_)
Definition PBtools.h:132
#define LLD_
Definition PBtools.h:47
Int PB_Cnumroc()
char * PB_Ctop()
#define RSRC_
Definition PBtools.h:45
#define M_
Definition PBtools.h:39
#define INB_
Definition PBtools.h:42
#define ABS(a_)
Definition PBtools.h:75
void PB_CargFtoC()
#define CSRC_
Definition PBtools.h:46
#define IMB_
Definition PBtools.h:41
#define ZERO
Definition PBtools.h:66
#define DLEN_
Definition PBtools.h:48
#define NB_
Definition PBtools.h:44
#define svasum_
Definition PBtools.h:668
Here is the call graph for this function: