SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pcsyr2k_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pcsyr2k_( F_CHAR_T UPLO, F_CHAR_T TRANS, Int * N, Int * K,
21 float * ALPHA,
22 float * A, Int * IA, Int * JA, Int * DESCA,
23 float * B, Int * IB, Int * JB, Int * DESCB,
24 float * BETA,
25 float * C, Int * IC, Int * JC, Int * DESCC )
26#else
27void pcsyr2k_( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA,
28 B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )
29/*
30* .. Scalar Arguments ..
31*/
32 F_CHAR_T TRANS, UPLO;
33 Int * IA, * IB, * IC, * JA, * JB, * JC, * K, * N;
34 float * ALPHA, * BETA;
35/*
36* .. Array Arguments ..
37*/
38 Int * DESCA, * DESCB, * DESCC;
39 float * A, * B, * C;
40#endif
41{
42/*
43* Purpose
44* =======
45*
46* PCSYR2K performs one of the symmetric rank 2k operations
47*
48* sub( C ) := alpha*sub( A )*sub( B )' + alpha*sub( B )*sub( A )' +
49* beta*sub( C ),
50*
51* or
52*
53* sub( C ) := alpha*sub( A )'*sub( B ) + alpha*sub( B )'*sub( A ) +
54* beta*sub( C ),
55*
56* where
57*
58* sub( C ) denotes C(IC:IC+N-1,JC:JC+N-1),
59*
60* sub( A ) denotes A(IA:IA+N-1,JA:JA+K-1) if TRANS = 'N',
61* A(IA:IA+K-1,JA:JA+N-1) otherwise, and,
62*
63* sub( B ) denotes B(IB:IB+N-1,JB:JB+K-1) if TRANS = 'N',
64* B(IB:IB+K-1,JB:JB+N-1) otherwise.
65*
66* Alpha and beta are scalars, sub( C ) is an n by n symmetric
67* submatrix and sub( A ) and sub( B ) are n by k submatrices in the
68* first case and k by n submatrices in the second case.
69*
70* Notes
71* =====
72*
73* A description vector is associated with each 2D block-cyclicly dis-
74* tributed matrix. This vector stores the information required to
75* establish the mapping between a matrix entry and its corresponding
76* process and memory location.
77*
78* In the following comments, the character _ should be read as
79* "of the distributed matrix". Let A be a generic term for any 2D
80* block cyclicly distributed matrix. Its description vector is DESC_A:
81*
82* NOTATION STORED IN EXPLANATION
83* ---------------- --------------- ------------------------------------
84* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
85* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
86* the NPROW x NPCOL BLACS process grid
87* A is distributed over. The context
88* itself is global, but the handle
89* (the integer value) may vary.
90* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
91* ted matrix A, M_A >= 0.
92* N_A (global) DESCA[ N_ ] The number of columns in the distri-
93* buted matrix A, N_A >= 0.
94* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
95* block of the matrix A, IMB_A > 0.
96* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
97* left block of the matrix A,
98* INB_A > 0.
99* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
100* bute the last M_A-IMB_A rows of A,
101* MB_A > 0.
102* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
103* bute the last N_A-INB_A columns of
104* A, NB_A > 0.
105* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
106* row of the matrix A is distributed,
107* NPROW > RSRC_A >= 0.
108* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
109* first column of A is distributed.
110* NPCOL > CSRC_A >= 0.
111* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
112* array storing the local blocks of
113* the distributed matrix A,
114* IF( Lc( 1, N_A ) > 0 )
115* LLD_A >= MAX( 1, Lr( 1, M_A ) )
116* ELSE
117* LLD_A >= 1.
118*
119* Let K be the number of rows of a matrix A starting at the global in-
120* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
121* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
122* receive if these K rows were distributed over NPROW processes. If K
123* is the number of columns of a matrix A starting at the global index
124* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
125* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
126* these K columns were distributed over NPCOL processes.
127*
128* The values of Lr() and Lc() may be determined via a call to the func-
129* tion PB_Cnumroc:
130* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
131* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
132*
133* Arguments
134* =========
135*
136* UPLO (global input) CHARACTER*1
137* On entry, UPLO specifies whether the local pieces of
138* the array C containing the upper or lower triangular part
139* of the symmetric submatrix sub( C ) are to be referenced as
140* follows:
141*
142* UPLO = 'U' or 'u' Only the local pieces corresponding to
143* the upper triangular part of the
144* symmetric submatrix sub( C ) are to be
145* referenced,
146*
147* UPLO = 'L' or 'l' Only the local pieces corresponding to
148* the lower triangular part of the
149* symmetric submatrix sub( C ) are to be
150* referenced.
151*
152* TRANS (global input) CHARACTER*1
153* On entry, TRANS specifies the operation to be performed as
154* follows:
155*
156* TRANS = 'N' or 'n'
157* sub( C ) := alpha*sub( A )*sub( B )' +
158* alpha*sub( B )*sub( A )' +
159* beta*sub( C ),
160*
161* TRANS = 'T' or 't'
162* sub( C ) := alpha*sub( B )'*sub( A ) +
163* alpha*sub( A )'*sub( B ) +
164* beta*sub( C ).
165*
166* N (global input) INTEGER
167* On entry, N specifies the order of the submatrix sub( C ).
168* N must be at least zero.
169*
170* K (global input) INTEGER
171* On entry with TRANS = 'N' or 'n', K specifies the number of
172* columns of the submatrices sub( A ) and sub( B ), and on
173* entry with TRANS = 'T' or 't', K specifies the number of rows
174* of the submatrices sub( A ) and sub( B ). K must be at least
175* zero.
176*
177* ALPHA (global input) COMPLEX
178* On entry, ALPHA specifies the scalar alpha. When ALPHA is
179* supplied as zero then the local entries of the arrays A
180* and B corresponding to the entries of the submatrices
181* sub( A ) and sub( B ) respectively need not be set on input.
182*
183* A (local input) COMPLEX array
184* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
185* at least Lc( 1, JA+K-1 ) when TRANS = 'N' or 'n', and is at
186* least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
187* contains the local entries of the matrix A.
188* Before entry with TRANS = 'N' or 'n', this array contains the
189* local entries corresponding to the entries of the n by k sub-
190* matrix sub( A ), otherwise the local entries corresponding to
191* the entries of the k by n submatrix sub( A ).
192*
193* IA (global input) INTEGER
194* On entry, IA specifies A's global row index, which points to
195* the beginning of the submatrix sub( A ).
196*
197* JA (global input) INTEGER
198* On entry, JA specifies A's global column index, which points
199* to the beginning of the submatrix sub( A ).
200*
201* DESCA (global and local input) INTEGER array
202* On entry, DESCA is an integer array of dimension DLEN_. This
203* is the array descriptor for the matrix A.
204*
205* B (local input) COMPLEX array
206* On entry, B is an array of dimension (LLD_B, Kb), where Kb is
207* at least Lc( 1, JB+K-1 ) when TRANS = 'N' or 'n', and is at
208* least Lc( 1, JB+N-1 ) otherwise. Before entry, this array
209* contains the local entries of the matrix B.
210* Before entry with TRANS = 'N' or 'n', this array contains the
211* local entries corresponding to the entries of the n by k sub-
212* matrix sub( B ), otherwise the local entries corresponding to
213* the entries of the k by n submatrix sub( B ).
214*
215* IB (global input) INTEGER
216* On entry, IB specifies B's global row index, which points to
217* the beginning of the submatrix sub( B ).
218*
219* JB (global input) INTEGER
220* On entry, JB specifies B's global column index, which points
221* to the beginning of the submatrix sub( B ).
222*
223* DESCB (global and local input) INTEGER array
224* On entry, DESCB is an integer array of dimension DLEN_. This
225* is the array descriptor for the matrix B.
226*
227* BETA (global input) COMPLEX
228* On entry, BETA specifies the scalar beta. When BETA is
229* supplied as zero then the local entries of the array C
230* corresponding to the entries of the submatrix sub( C ) need
231* not be set on input.
232*
233* C (local input/local output) COMPLEX array
234* On entry, C is an array of dimension (LLD_C, Kc), where Kc is
235* at least Lc( 1, JC+N-1 ). Before entry, this array contains
236* the local entries of the matrix C.
237* Before entry with UPLO = 'U' or 'u', this array contains
238* the local entries corresponding to the upper triangular part
239* of the symmetric submatrix sub( C ), and the local entries
240* corresponding to the strictly lower triangular of sub( C )
241* are not referenced. On exit, the upper triangular part of
242* sub( C ) is overwritten by the upper triangular part of the
243* updated submatrix.
244* Before entry with UPLO = 'L' or 'l', this array contains
245* the local entries corresponding to the lower triangular part
246* of the symmetric submatrix sub( C ), and the local entries
247* corresponding to the strictly upper triangular of sub( C )
248* are not referenced. On exit, the lower triangular part of
249* sub( C ) is overwritten by the lower triangular part of the
250* updated submatrix.
251*
252* IC (global input) INTEGER
253* On entry, IC specifies C's global row index, which points to
254* the beginning of the submatrix sub( C ).
255*
256* JC (global input) INTEGER
257* On entry, JC specifies C's global column index, which points
258* to the beginning of the submatrix sub( C ).
259*
260* DESCC (global and local input) INTEGER array
261* On entry, DESCC is an integer array of dimension DLEN_. This
262* is the array descriptor for the matrix C.
263*
264* -- Written on April 1, 1998 by
265* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
266*
267* ---------------------------------------------------------------------
268*/
269/*
270* .. Local Scalars ..
271*/
272 char DirA, OpC, OpR, TopC, TopR, TranOp, UploC, ctop, ctopsave,
273 rtop, rtopsave;
274 Int Ai, Aj, Bi, Bj, ChooseABC, Ci, Cj, ForceTop, ctxt, info,
275 mycol, myrow, nb, notran, npcol, nprow, upper;
276 double ABCest, ABest, tmp1, tmp2, tmp3, tmp4;
277 PBTYP_T * type;
278/*
279* .. Local Arrays ..
280*/
281 Int Ad[DLEN_], Bd[DLEN_], Cd[DLEN_];
282/* ..
283* .. Executable Statements ..
284*
285*/
286 upper = ( ( UploC = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
287 notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
288 PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
289 PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
290 PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
291#ifndef NO_ARGCHK
292/*
293* Test the input parameters
294*/
295 Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
296 if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
297 {
298 if( ( !upper ) && ( UploC != CLOWER ) )
299 {
300 PB_Cwarn( ctxt, __LINE__, "PCSYR2K", "Illegal UPLO = %c\n", UploC );
301 info = -1;
302 }
303 else if( ( !notran ) && ( TranOp != CTRAN ) )
304 {
305 PB_Cwarn( ctxt, __LINE__, "PCSYR2K", "Illegal TRANS = %c\n", TranOp );
306 info = -2;
307 }
308 if( notran )
309 {
310 PB_Cchkmat( ctxt, "PCSYR2K", "A", *N, 3, *K, 4, Ai, Aj, Ad, 9,
311 &info );
312 PB_Cchkmat( ctxt, "PCSYR2K", "B", *N, 3, *K, 4, Bi, Bj, Bd, 13,
313 &info );
314 }
315 else
316 {
317 PB_Cchkmat( ctxt, "PCSYR2K", "A", *K, 4, *N, 3, Ai, Aj, Ad, 9,
318 &info );
319 PB_Cchkmat( ctxt, "PCSYR2K", "B", *K, 4, *N, 3, Bi, Bj, Bd, 13,
320 &info );
321 }
322 PB_Cchkmat( ctxt, "PCSYR2K", "C", *N, 3, *N, 3, Ci, Cj, Cd, 18,
323 &info );
324 }
325 if( info ) { PB_Cabort( ctxt, "PCSYR2K", info ); return; }
326#endif
327/*
328* Quick return if possible
329*/
330 if( ( *N == 0 ) ||
331 ( ( ( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) ||
332 ( *K == 0 ) ) &&
333 ( ( BETA[REAL_PART] == ONE ) && ( BETA[IMAG_PART] == ZERO ) ) ) )
334 return;
335/*
336* Get type structure
337*/
338 type = PB_Cctypeset();
339/*
340* And when alpha or K is zero
341*/
342 if( ( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) ||
343 ( *K == 0 ) )
344 {
345 if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
346 {
347 PB_Cplapad( type, &UploC, NOCONJG, *N, *N, type->zero, type->zero,
348 ((char *) C), Ci, Cj, Cd );
349 }
350 else
351 {
352 PB_Cplascal( type, &UploC, NOCONJG, *N, *N, ((char *) BETA),
353 ((char *) C), Ci, Cj, Cd );
354 }
355 return;
356 }
357/*
358* Start the operations
359*/
360#ifdef NO_ARGCHK
361 Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
362#endif
363/*
364* Algorithm selection is based on approximation of the communication volume
365* for distributed and aligned operands.
366*
367* ABCest: operands sub( A ), sub( B ) and sub( C ) are communicated (K >> N)
368* ABest : only sub( A ) and sub( B ) are communicated (N >> K)
369*/
370 if( notran )
371 {
372 tmp1 = DNROC( *N, Cd[MB_], nprow );
373 tmp3 = DNROC( *K, Ad[NB_], npcol ); tmp4 = DNROC( *K, Bd[NB_], npcol );
374 ABCest = (double)(*N) *
375 ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp3 ) +
376 ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) +
377 ( ( ( ( Ad[CSRC_] == -1 ) && ( Bd[CSRC_] == -1 ) ) ||
378 ( npcol == 1 ) ) ? ZERO : CBRATIO * tmp1 / TWO ) );
379 tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
380 tmp3 = DNROC( *N, Ad[MB_], nprow ); tmp4 = DNROC( *N, Bd[MB_], nprow );
381 ABest = (double)(*K) *
382 ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
383 ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
384 TWO * ( nprow == 1 ? ZERO : tmp2 ) +
385 MAX( tmp2, tmp3 ) + MAX( tmp2, tmp4 ) );
386 }
387 else
388 {
389 tmp2 = DNROC( *N, Cd[NB_], npcol );
390 tmp3 = DNROC( *K, Ad[MB_], nprow ); tmp4 = DNROC( *K, Bd[MB_], nprow );
391 ABCest = (double)(*N) *
392 ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) +
393 ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp4 ) +
394 ( ( ( ( Ad[RSRC_] == -1 ) && ( Bd[RSRC_] == -1 ) ) ||
395 ( nprow == 1 ) ) ? ZERO : CBRATIO * tmp2 / TWO ) );
396 tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
397 tmp3 = DNROC( *N, Ad[NB_], npcol ); tmp4 = DNROC( *N, Bd[NB_], npcol );
398 ABest = (double)(*K) *
399 ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
400 ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
401 TWO * ( npcol == 1 ? ZERO : tmp1 ) +
402 MAX( tmp1, tmp3 ) + MAX( tmp1, tmp4 ) );
403 }
404/*
405* Shift a little the cross-over point between both algorithms.
406*/
407 ChooseABC = ( ( 1.4 * ABCest ) <= ABest );
408/*
409* BLACS topologies are enforced iff N and K are strictly greater than the
410* logical block size returned by pilaenv_. Otherwise, it is assumed that the
411* routine calling this routine has already selected an adequate topology.
412*/
413 nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
414 ForceTop = ( ( *N > nb ) && ( *K > nb ) );
415
416 if( ChooseABC )
417 {
418 if( notran )
419 {
420 OpC = CBCAST;
421 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
422
423 if( ForceTop )
424 {
425 OpR = CCOMBINE;
426 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
427
428 rtopsave = rtop;
429 ctopsave = ctop;
430
431 if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
432 else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
433
434 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
435 rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
436/*
437* Remove the next line when the BLACS combine operations support ring
438* topologies
439*/
440 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
441 }
442
443 DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
444 }
445 else
446 {
447 OpR = CBCAST;
448 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
449
450 if( ForceTop )
451 {
452 OpC = CCOMBINE;
453 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
454
455 rtopsave = rtop;
456 ctopsave = ctop;
457
458 if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
459 else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
460
461 rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
462 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
463/*
464* Remove the next line when the BLACS combine operations support ring
465* topologies
466*/
467 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
468 }
469
470 DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
471 }
472
473 PB_Cpsyr2kAC( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ),
474 *N, *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad,
475 ((char *)B), Bi, Bj, Bd, ((char *)BETA), ((char *)C), Ci,
476 Cj, Cd );
477 }
478 else
479 {
480 if( notran )
481 {
482 OpR = CBCAST;
483 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
484
485 if( ForceTop )
486 {
487 OpC = CBCAST;
488 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
489
490 rtopsave = rtop;
491 ctopsave = ctop;
492/*
493* No clear winner for the ring topologies, so that if a ring topology is
494* already selected, keep it.
495*/
496 if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
497 ( rtop != CTOP_SRING ) )
498 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
499 if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
500 ( ctop != CTOP_SRING ) )
501 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
502 }
503
504 DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
505 }
506 else
507 {
508 OpC = CBCAST;
509 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
510
511 if( ForceTop )
512 {
513 OpR = CBCAST;
514 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
515
516 rtopsave = rtop;
517 ctopsave = ctop;
518/*
519* No clear winner for the ring topologies, so that if a ring topology is
520* already selected, keep it.
521*/
522 if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
523 ( rtop != CTOP_SRING ) )
524 rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
525 if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
526 ( ctop != CTOP_SRING ) )
527 ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
528 }
529
530 DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
531 }
532
533 PB_Cpsyr2kA( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ), *N,
534 *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B),
535 Bi, Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
536 }
537/*
538* Restore the BLACS topologies when necessary.
539*/
540 if( ForceTop )
541 {
542 rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
543 ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
544 }
545/*
546* End of PCSYR2K
547*/
548}
#define Int
Definition Bconfig.h:22
#define REAL_PART
Definition pblas.h:139
#define F2C_CHAR(a)
Definition pblas.h:124
#define CBRATIO
Definition pblas.h:37
#define C2F_CHAR(a)
Definition pblas.h:125
#define IMAG_PART
Definition pblas.h:140
char * F_CHAR_T
Definition pblas.h:122
#define TOP_GET
Definition PBblacs.h:50
#define COLUMN
Definition PBblacs.h:45
#define CTOP_SRING
Definition PBblacs.h:29
#define TOP_DEFAULT
Definition PBblacs.h:51
#define CCOMBINE
Definition PBblacs.h:24
#define ROW
Definition PBblacs.h:46
#define CBCAST
Definition PBblacs.h:23
#define TOP_SRING
Definition PBblacs.h:54
void Cblacs_gridinfo()
#define CTOP_IRING
Definition PBblacs.h:27
#define CTOP_DRING
Definition PBblacs.h:28
#define NOTRAN
Definition PBblas.h:44
#define TRAN
Definition PBblas.h:46
#define CBACKWARD
Definition PBblas.h:39
#define NOCONJG
Definition PBblas.h:45
#define CUPPER
Definition PBblas.h:26
#define CNOTRAN
Definition PBblas.h:18
#define CTRAN
Definition PBblas.h:20
#define CFORWARD
Definition PBblas.h:38
#define CLOWER
Definition PBblas.h:25
#define pcsyr2k_
Definition PBpblas.h:182
#define pilaenv_
Definition PBpblas.h:44
#define CTXT_
Definition PBtools.h:38
#define MAX(a_, b_)
Definition PBtools.h:77
#define MB_
Definition PBtools.h:43
void PB_Cabort()
#define ONE
Definition PBtools.h:64
void PB_Cchkmat()
void PB_Cwarn()
char * PB_Ctop()
void PB_Cplapad()
void PB_Cpsyr2kA()
void PB_Cplascal()
#define RSRC_
Definition PBtools.h:45
#define TWO
Definition PBtools.h:65
void PB_CargFtoC()
#define CSRC_
Definition PBtools.h:46
PBTYP_T * PB_Cctypeset()
#define ZERO
Definition PBtools.h:66
#define Mupcase(C)
Definition PBtools.h:83
#define DLEN_
Definition PBtools.h:48
#define NB_
Definition PBtools.h:44
#define DNROC(n_, nb_, p_)
Definition PBtools.h:111
void PB_Cpsyr2kAC()
char type
Definition pblas.h:331
char * zero
Definition pblas.h:335